
g2p2 Experiment Preparations

Tensor Collaboration Meeting
10/14/25
David Ruth

- Partons Combine to Form Nucleon
- Confinement
- Effective Theories: χPT
- Can't use Twist Approx.

- **Quark/Gluon Correlations**
- Lattice QCD
- Higher Twists

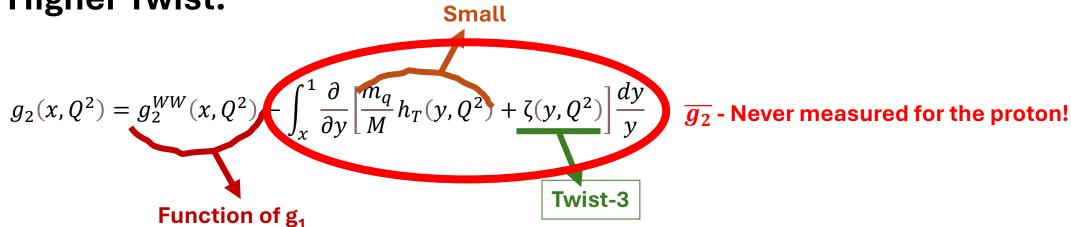
- Individual Partons
- Asymptotic Freedom
- Perturbative QCD
- Leading Twist

How to study QCD and higher twist in the transition region?

• In unpolarized systems, F_1 / F_2 structure functions describe quark-gluon distribution:

$$\frac{d^2\sigma}{d\Omega dE'} = \sigma_{\text{Mott}} \left[\frac{1}{\nu} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) \tan^2 \frac{\theta}{2} \right]$$

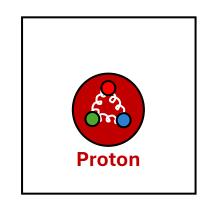
• In a spin- $\frac{1}{2}$ polarized system, g_1/g_2 describe the spin distribution :

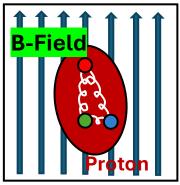

$$\frac{d^2\sigma^{\pm}}{d\Omega dE'} = \sigma_{\text{Mott}} \left[\alpha F_1(x, Q^2) + \beta F_2(x, Q^2) \pm \gamma g_1(x, Q^2) \pm \delta g_2(x, Q^2) \right]$$

Nucleon Spin Structure

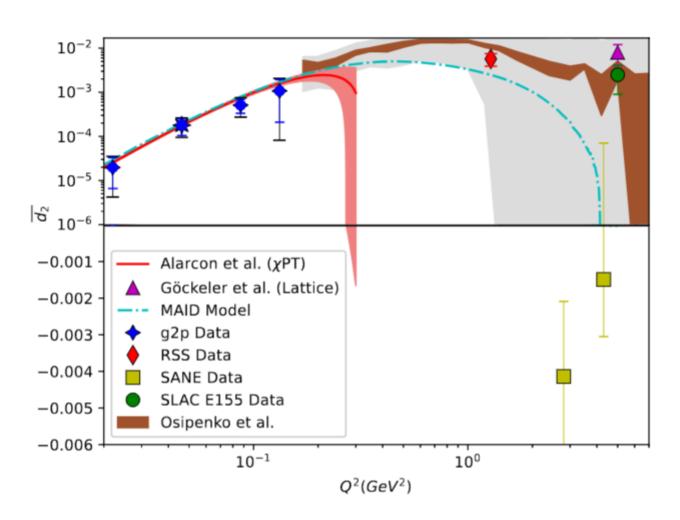
Quark-Gluon Correlations

g₂ Structure Function enables direct tests of QCD and higher twist



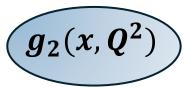

Benchmarking (Lattice) QCD:

Weighted integrals (moments) of the spin structure functions can be directly calculated by effective theories:


$$\overline{d_2} = \int_0^{x_{th}} x^2 [2g_1(x, Q^2) + 3g_2(x, Q^2)] dx$$

Polarizabilities describe nucleon's ensemble response to an external field

"Color Polarizability" d₂



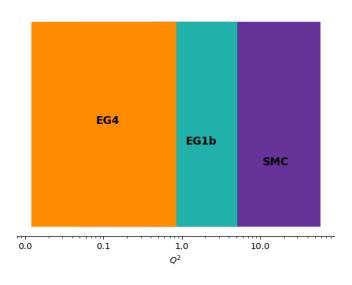
$$\overline{d_2} = \int_0^{x_{th}} x^2 [2g_1(x, Q^2) + 3g_2(x, Q^2)] dx$$

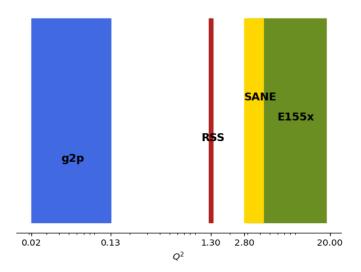
- At high Q²: color polarizability / "color Lorentz force"
- Interesting differences in existing data motivate further study
- Upcoming lattice predictions in this region need experimental benchmark!

g₂ is the perfect quantity to study the transition regime...

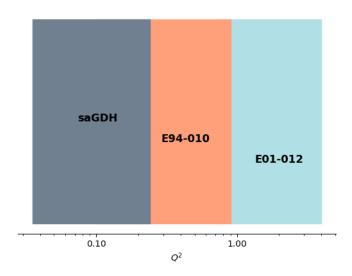
Examine quark-gluon correlations

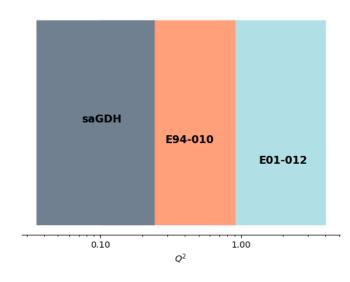
Study interaction dependent (twist-3) effects


Benchmark Lattice QCD

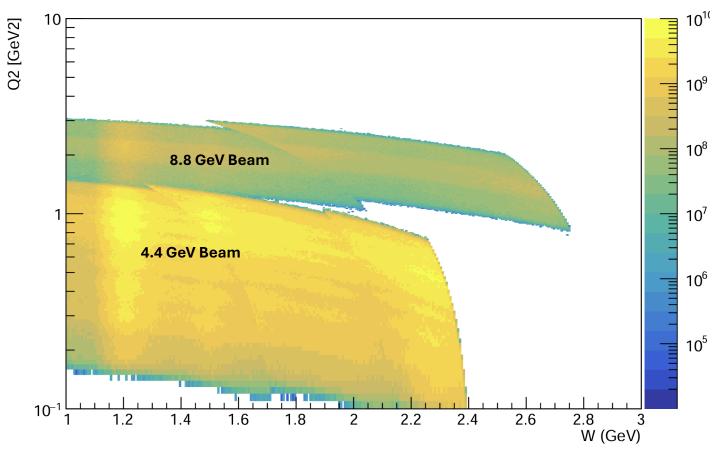

However...

Proton

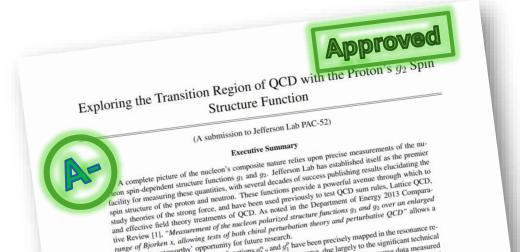

 g_1



 g_2



Neutron



g2p2 Experiment (E12-24-002)

26 PAC Days

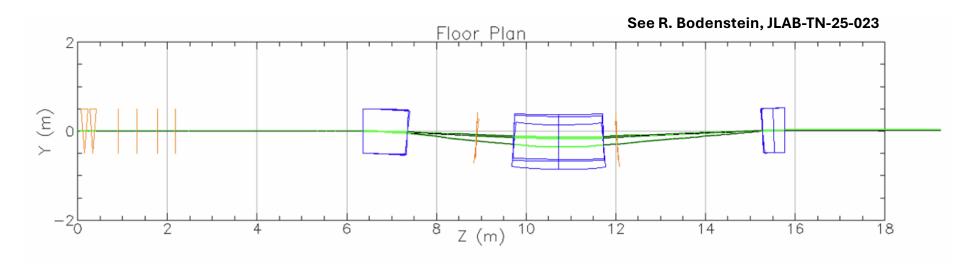
- Measure proton g₂ in the resonance region for <u>a full order of magnitude in Q² range</u> from 0.2 GeV² - 2.2 GeV²
- Use a transversely polarized NH₃ target and the SHMS spectrometer in Hall C
- Collect the first transition region measurement of the proton's g₂, and extract its moments and higher twist effects

Synergy with Tensor Experiments

- Hall C Experimental setup shares many equipment needs:
 - **➤** Solid Polarized DNP Target
 - **≻Slow Raster**
 - > Low Current Beamline Instrumentation
- Differences:
 - **→ Tensor Enhancement Techniques**
 - **≻**Chicane Magnets
 - > Transverse Target Field

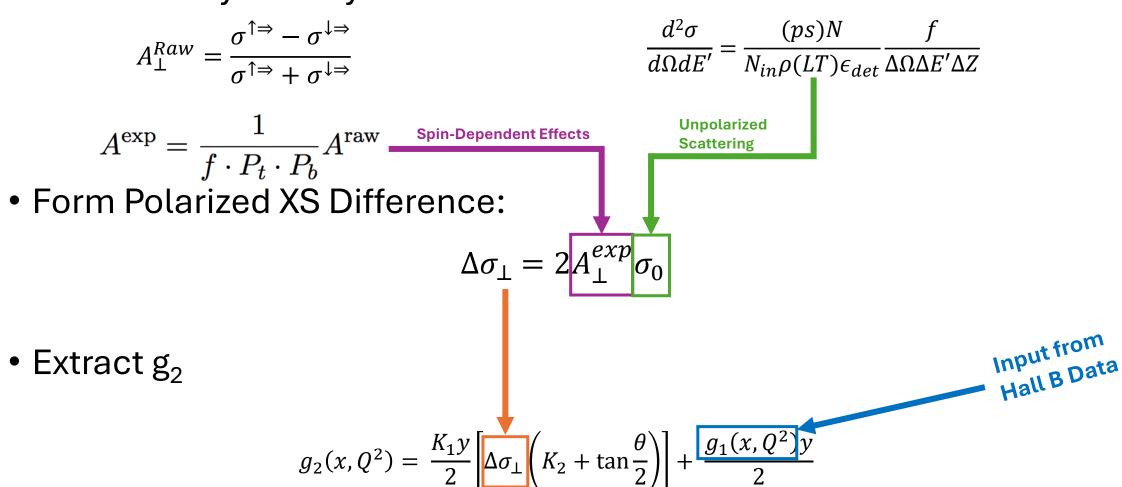
A <u>lot</u> of beamline work to be done... See D. Gaskell talk yesterday

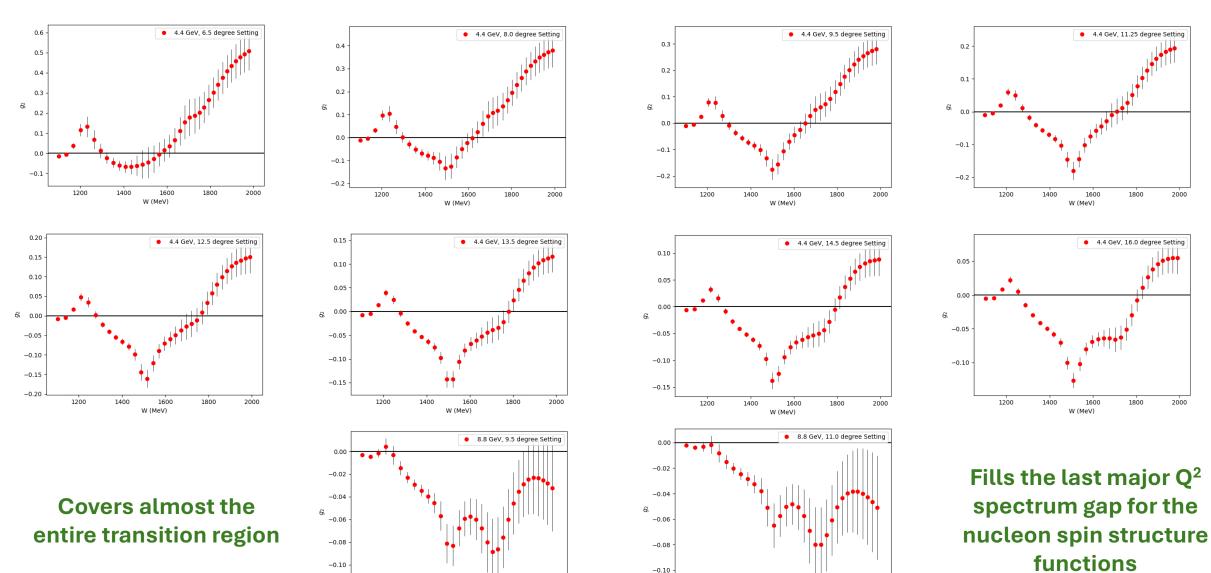
- Currently plausible to be scheduled in sequence with b_1 and A_{zz}
- Makes a lot of sense to collaborate on preparing the equipment and simulations


Solid Polarized Target

- NH₃ (Ammonia) target
- Dynamic Nuclear Polarization (DNP)

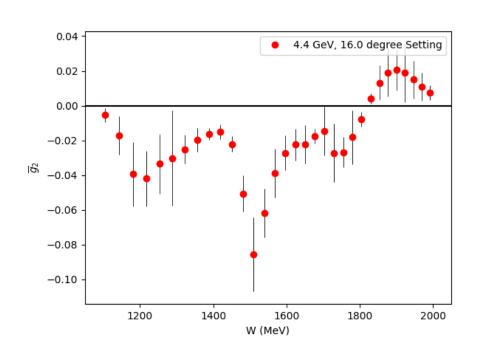
- When target group has space, effort must begin to commission new superconducting magnet w/ scattering chamber and older UVA system fridge (1-2 years effort – C. Keith)
- b₁/A_{zz}/g2p2 collaborations should support this effort in whatever way target group recommends
- Students from WH will be available to help

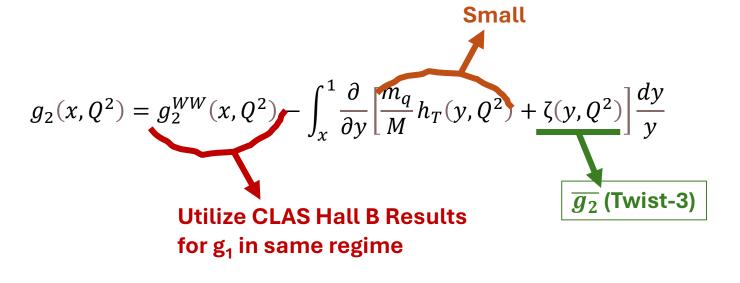

Chicane Magnet


- The transverse target field needs pre-bending of the beam
- Chicane design (J. Benesch) would replace two existing 1m dipoles
- Further BMAD optimization performed by R. Bodenstein
- High Priority: designs/drawings for the chicane and hoistincluded beamline

g₂ Extraction Method

• Measure Asymmetry and Cross Section:

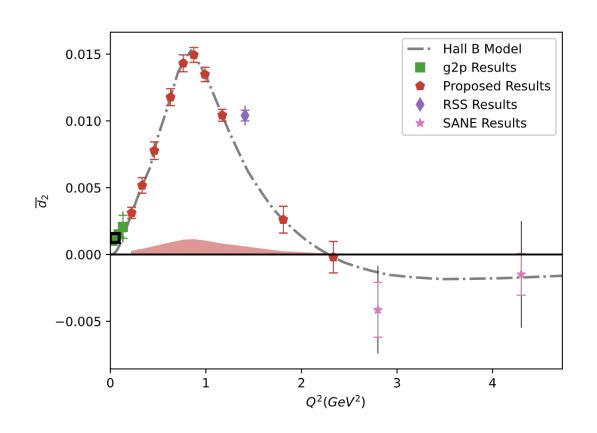

Projected g₂ Uncertainties



-0.12

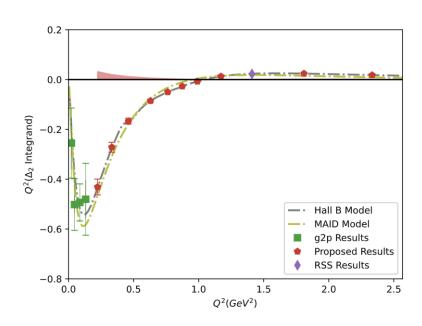
13

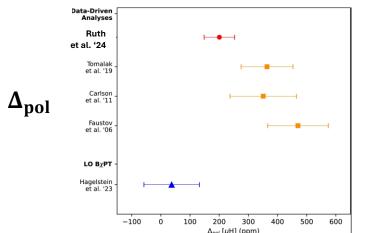
$\overline{g_2}$ (Twist 3 Extraction)



- Direct extraction of Twist 3 effects **in the regime they contribute most significantly**
 - Can also be used to study *Dynamical Mass Generation*

World First Extraction of this quantity


Projected $\overline{d_2}$ Uncertainties



Can benchmark Lattice QCD in the regime where Perturbative QCD starts failing

New Lattice calculations expected *in next* few years!

Hyperfine Splitting Impact

$$\Delta_2 = -24M_p^2 \int_0^\infty \frac{dQ^2}{Q^4} \int_0^{x_{th}} \widetilde{\beta_2}(x, Q^2) g_2(x, Q^2) dx$$

- Transition region accounts for 30% of Δ_2
- These results can cut the error in this region to $\frac{1}{6}$ of the current error
- $\Delta_{pol}=c(\Delta_1+\Delta_2)$ accounts for **81%** of the current two-photon Hyperfine Splitting uncertainty
- Opportunity to study or maybe eliminate a long-standing tension between theory and experiment for Δ_{pol} !

Preparing for ERR

• Not too soon to think about: Though it is early days for this experiment, the sooner we can be ready the more options the lab has to fit us into the schedule

Major Requirements (guess):

- Proving the transverse target will be operational in time
- Designs and drawings for beamline revision outlined by D. Gaskell
- Proving the beamline instruments can run at 85 nA (see D. Mack talk)
- Possibility of a joint ERR with b1/Azz? More discussion needed since timetable is uncertain
- Collaboration will be ready to send students, help build or obtain equipment, lobby with lab leadership about the importance of the experiment, or anything else that is needed/helpful
- Relying on JLab staff to help us figure out where we can actually be helpful

Thanks to the Collaboration!


Jian-Ping Chen

Karl Slifer

Nathaly Santiesteban

David Ruth

Thanks especially to all the lab staff who helped us prepare the proposal:

D. Gaskell

D. Mack

C. Keith

J. Benesch

R. Bodenstein

D. Higinbotham

M. Jones

S. Lassiter

And others...

Anchit Arora, Hector Chinchay, Muhammad Farooq, Chhetra Lama, Elena Long , Michael McClellan, Olaiya Oltokunboyo , David Ruth , Nathaly Santiesteban , Karl Slifer , Zoe Wolters, and Allison Zec .

University of New Hampshire, Durham, NH 03824

Ryan Bodenstein, James Brock, Alexandre Camsonne , Jian-Ping Chen , Silviu Covrig Dusa, Alexandre Deur , Dave Gaskell , T. J. Hague, J.-O. Hansen , Mark Jones, Chris Keith, Dave Mack, James Maxwell , Dave Meckins, and

Thomas Jefferson National Accelerator Facilty, Newport News, VA 23606, USA

Ishara Fernando, Dustin Keller, Michael Nycz, Oscar Rondon-Aramayo, and Jixie Zhang

University of Virginia, Charlottesville, VA 22904

Nathan Heinrich , Garth Huber , Muhammad Junaid, Vijay Kumar, and Alicia Postuma

University of Regina, Regina, SK S4S0A2, Canada

Whitney Armstrong, Sylvester Joosten, Zein-Eddine Meziani, and Chao Peng Argonne National Laboratory, Lemont, IL 60439

Hamza Ataç, Nazmus Ifat, Suman Shrestha, and Nikos Sparveris Temple University, Philadelphia, PA 19122

Arthur Mkrtchyan, Vardan Tadevosyan, Hamlet Mkrtchyan, and Arthur Hoghmrtsyan

A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan

Sebastian Kuhn and Carlos Ayerbe Gayoso

Old Dominion University, Norfolk, VA 23529

Burcu Duran

New Mexico State University, Las Cruces, NM 88003

Pushpa Pandey

Massachussetts Institute of Technology, Cambridge, MA 02139

Pete Markowitz

Florida International University, Miami, FL 33199

Darko Androic

University of Zagreb, Faculty of Science, Croatia

Axel Schmidt

George Washington University, Washington, DC 20052

Simon Širca

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

Mostafa Elaasar

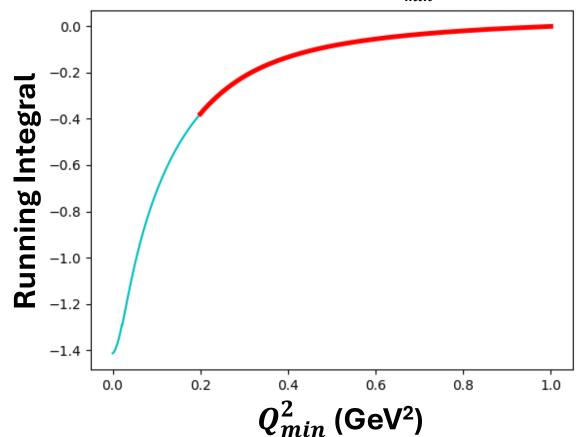
Southern University at New Orleans, New Orleans, LA 70126

Hem Bhatt

Mississippi State University, Mississippi State, MS 39762

Carlos Yero

ero


18

Backup Slides

Hyperfine Contribution

$$\Delta_2 = -24M_p^2 \int_0^\infty \frac{dQ^2}{Q^4} \int_0^{x_{th}} \widetilde{\beta_2}(x, Q^2) g_2(x, Q^2) dx$$

- The leading error in theoretical calculations of the hydrogen HFS comes from these spin-structure function dependent integrals!
- The subject of an ongoing tension between theory and experiment
- The transition region accounts for ~30% of the integral!

Rates
Table

E ₀ (GeV)	Scattering Angle (deg)	P ₀ (GeV)	Target Q² (GeV²)	Proton Rate (Hz)	Rate (kHz)	Time (h)
		3.607	0.22	77	40.0	1
	6.5	2.661		65	25.1	1
		1.963		69	18.9	1
	8	3.607	0.33	41	21.4	1.3
		2.661		28	11.5	1.9
		1.963		30	8.3	1.8
	9.5	3.607	0.46	18	9.1	2.3
		2.661		14	5.9	3.0
		1.963		15	4.3	2.8
4.4	11.2	3.607	0.62	7	3.7	6.0
		2.661		6	3.0	6.5
		1.963		7	2.2	5.9
	12.5	3.607	0.765	4	2.0	9.1
		2.661		4	1.9	8.5
		1.963		4	1.5	7.6
	13.5	3.607	0.892	2	1.3	16.5
		2.661		3	1.3	13.7
:		1.963		3	1.1	12.1
	14.5	3.607	1.028	1	0.8	23.2
		2.661		2	1.0	17.4
		1.963		2	0.8	14.9
	16	3.607	1.250	0	0.4	50.8
		2.661		1	0.6	32.7
		1.963		1	0.5	26.6
8.8	11	7.213	2.3	0	0.5	33.3
		5.321		0	0.8	19.0
3.3	14	7.213	3.44	0	0.1	101.8
		5.321		0	0.2	31.6

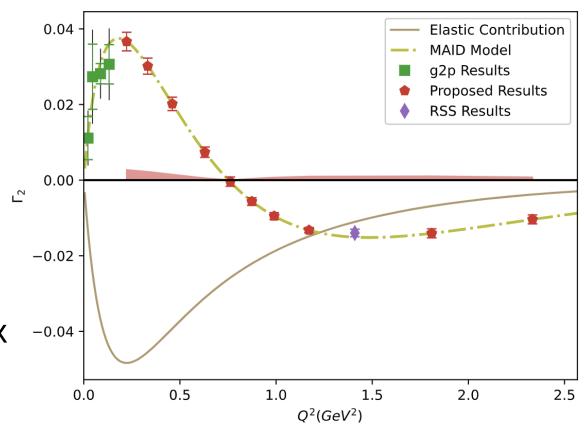
Total PAC Days

Overhead

 Total: 12.7 Overhead Days (305.5)

Overhead	Number	Time Per (hr)	(hr)
Target Anneal	26	2.0	52.0
Beamline Survey	10	8.0	80.0
Target Swap	2	4.0	8.0
Target T.E.	6	4	24.0
Target Field Ramp	10	1.0	10.0
Carbon, Dummy, Empty runs	28	0.5	14.0
Pass Change	2	4.0	8.0
Momentum Change	28	0.5	14.0
Moller Measurement	10(+1 shift)	4.0(+8.0)	48.0
Pair-Symmetric Background	2	4.0	8.0
Optics Calibration	2	16.0	32.0
BCM Calibration	2	4.0	8.0

Burkhardt-Cottingham Sum Rule


$$\int_0^{x_{th}} g_2(x, Q^2) dx = 0$$

- "Superconvergence" Sum Rule for an amplitude whose imaginary part is g₂
- Assuming convergent dispersion relations for $g_2(\nu)$ and $\nu g_2(\nu)$, arises naturally from subtraction of VVCS amplitudes:
 - $Im S_2(\nu, Q^2) = \frac{2\pi}{\nu^2 M} g_2(x, Q^2)$
 - $S_2(\nu, Q^2) = \frac{2}{\pi} \int_{\nu_{th}}^{\infty} \frac{\nu \operatorname{Im} S_2}{\nu'^2 \nu^2} d\nu'$
 - $\nu S_2(\nu, Q^2) = \frac{2}{\pi} \int_{\nu_{th}}^{\infty} \frac{\nu' Im S_2}{\nu'^2 \nu^2} d\nu'$
- B.C. Integral converges to 0 in both QED and Perturbative QCD, and follows from Wandzura-Wilczek relation (Altarelli et al [1994], R. L. Jaffe [1990 Review])

Projected Γ_2 Uncertainties

 Having data in the regime where twist-2 assumption fails helps us better understand the small-x regime

• If B.C. Sum Rule is followed, then we directly measure how the low-x part transitions from g_2^{WW} into a more complex form!

