
DNP apparatus at UT for solid targets and NMR data analysis

Vicente Corral

Contents


- 1. Polarized target group at UT
 - 1. Goals and applications
 - 2. Current status and next steps
- 2. NMR signal analysis of deuterated propanediol
 - 1. Boltzmann Distribution
 - 2. Vector polarization
 - 3. Tensor polarization

DNP system at UT

Modify ORNL DNP apparatus provided by Josh Pierce for operation at UT:

- 1. New insert design (Taylor M.E. undergrad)
- 2. Attempt to reach lower operation temperatures (collaborative effort)
- Demonstrate and maximize polarization in a variety of nuclei and proteins
- Detailed measurements of nuclear spinrelaxation times at ultra-low temperatures
- Demonstration and characterization of negative tensor polarization using AFP

C. Keith's ideas

Current Status: Dilution fridge cool down to

31.8 milli-Kelvin!

The goal is to reach 10mK

- What may have stopped us from achieving a lower temperature:
 - Compressor has low helium pressure.
 - Did not have liquid nitrogen for nitrogen trap.
 - Openings of heat shields were not closed.

Next steps

- Attempt lower temperature cool down after resolving technical issues; test cooling power
- Assemble magnet and target volume
- Build and implement target insert once designed

Boltzmann distribution

Total number of spins

$$N_{+1} + N_0 + N_{-1} = 1$$

Vector polarization

$$P = \frac{\langle I_z \rangle}{I} = N_{+1} - N_{-1}$$

Tensor polarization (alignment)

$$N_{+1} + N_0 + N_{-1} = 1$$
 $P = \frac{\langle I_z \rangle}{I} = N_{+1} - N_{-1}$ $Q = \frac{\langle 3I_z^2 - I^2 \rangle}{I^2} = (N_{+1} - N_0) - (N_0 - N_{-1})$ $= 1 - 3N_0$

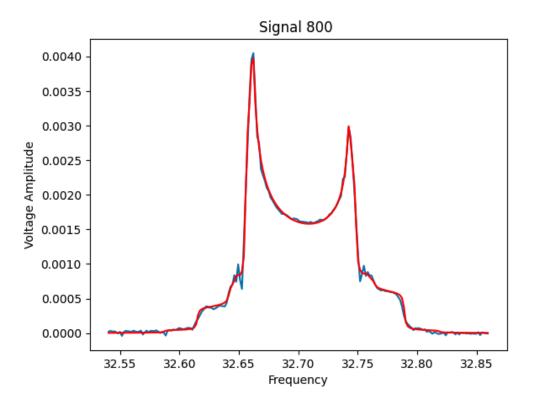
$$N_{+1} = \frac{1}{3} + \frac{P}{2} + \frac{Q}{6}$$

$$N_{-1} = \frac{1}{3} - \frac{P}{2} + \frac{Q}{6}$$

$$N_0 = \frac{1}{3}(1 - Q)$$

If the three levels are populated according to a Maxwell-Boltzmann distribution (aka "Spin Temperature")

$$Q = 2 - \sqrt{4 - 3P^2}$$
$$+1 \ge Q \ge 0$$


$$P = c_{cal} * Area vs P = \frac{r^2 - 1}{r^2 + r + 1}$$

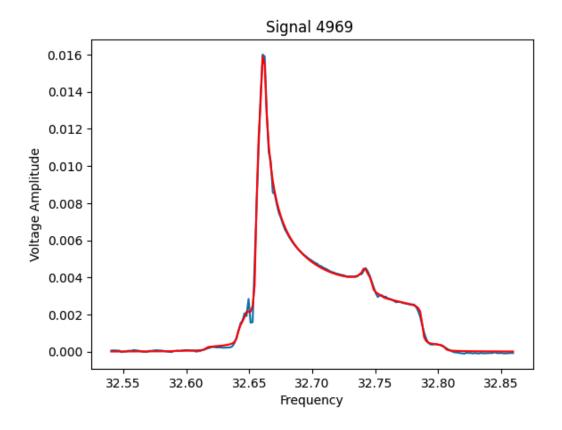
Deuterated propanediol (C3D8O2)

data from C. Keith and J. Pierce during FROST experiment

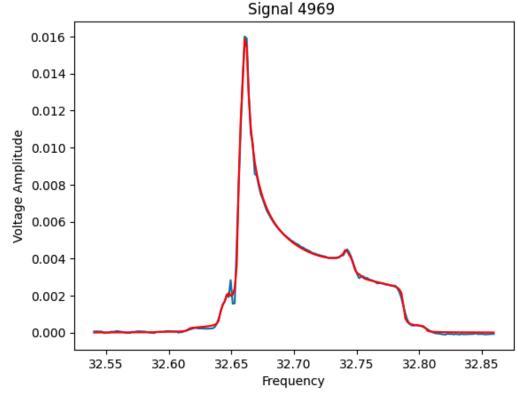
r parameter for each bond, low polarization

Signal 800 0.0040 0.0035 0.0030 Amplitude 0.0025 0.0020 0.0015 0.0010 0.0005 0.0000 32.55 32.60 32.65 32.70 32.75 32.80 32.85 Frequency

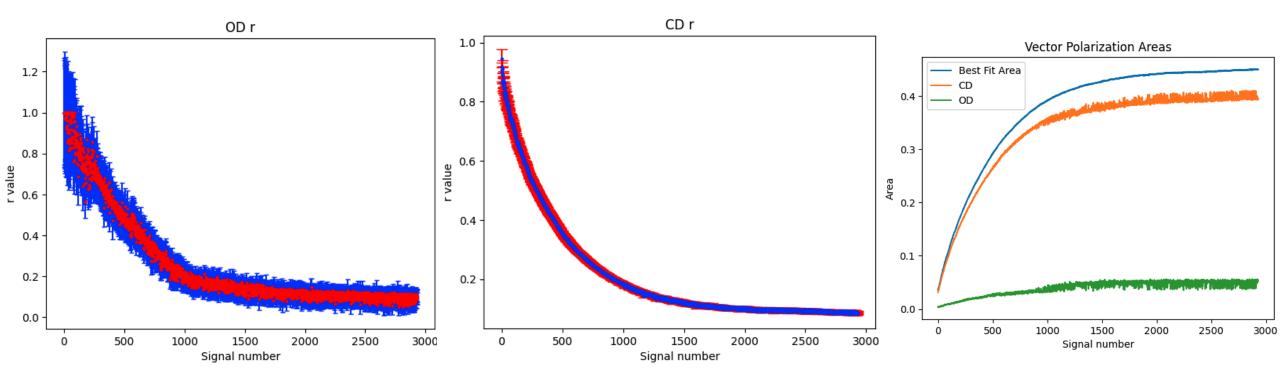
Polarization: -30.84%


Code for fits from J. Maxwell: https://github.com/idmax/NMR_Analys

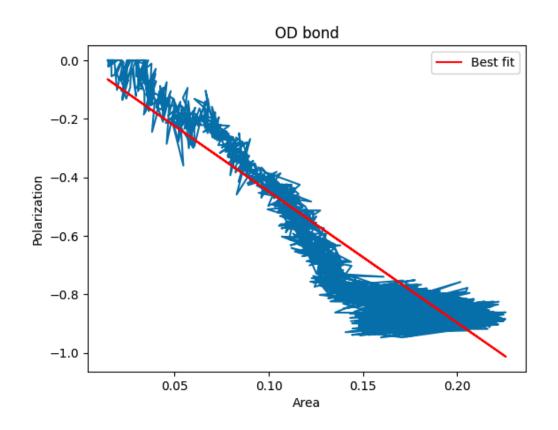
https://github.com/jdmax/NMR_Analysis/tree/master


Polarization from OD: -16.76% Polarization from CD: -30.94%

r parameter for each bond, high polarization

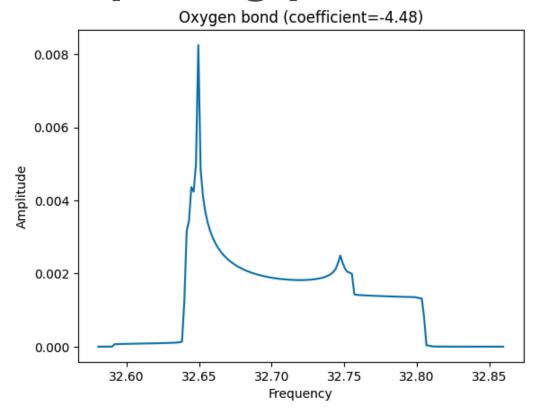

Polarization: -90.78%

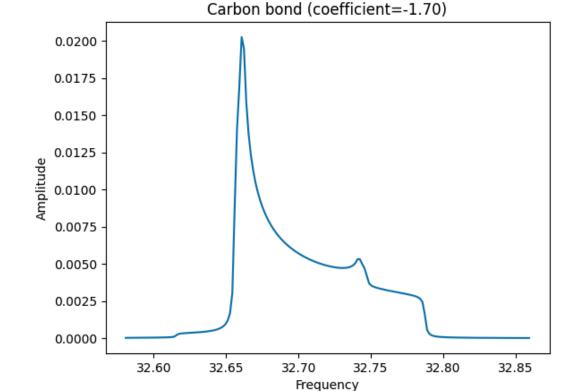
Polarization from OD: -89.76% Polarization from CD: -90.87%



Track polarization (r) and area over time

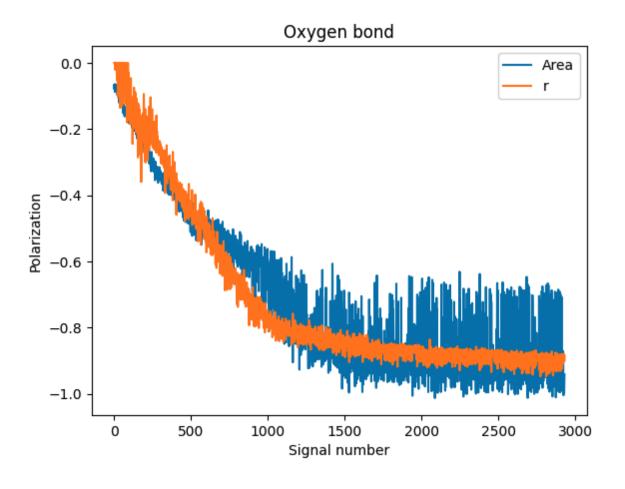
Fitting for calibration constant

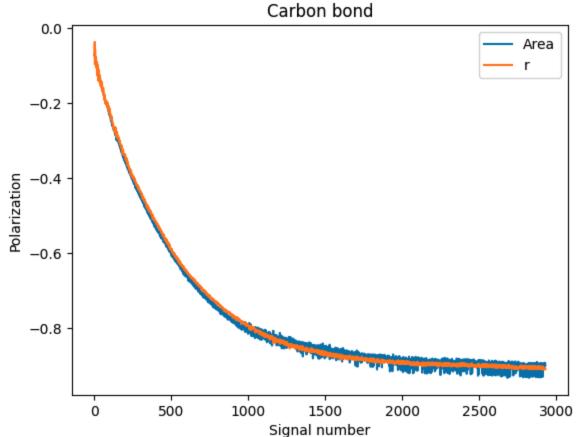

CD bond Best fit -0.2-0.4Polarization -0.80.2 0.4 0.1 0.5 0.3 Area


Calibration constant: -4.48

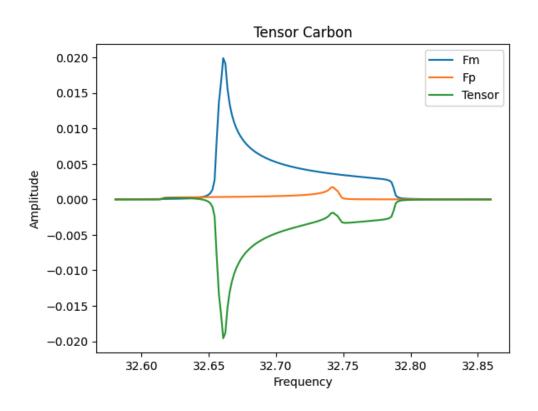
Calibration constant: -1.7

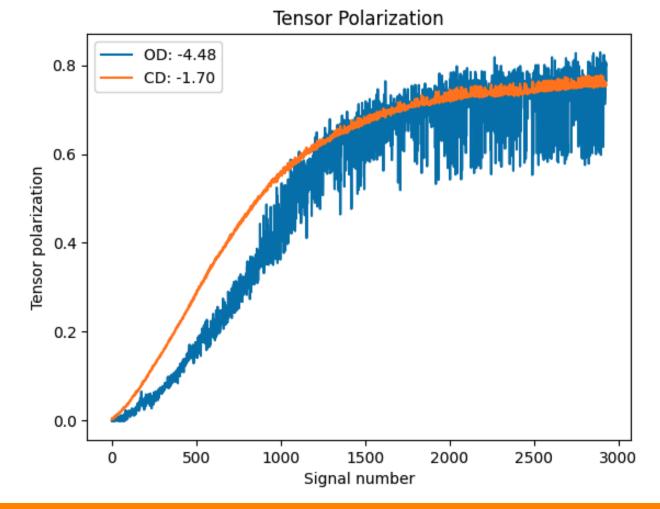
Comparing polarization from both methods


Polarization from area: -98.66%

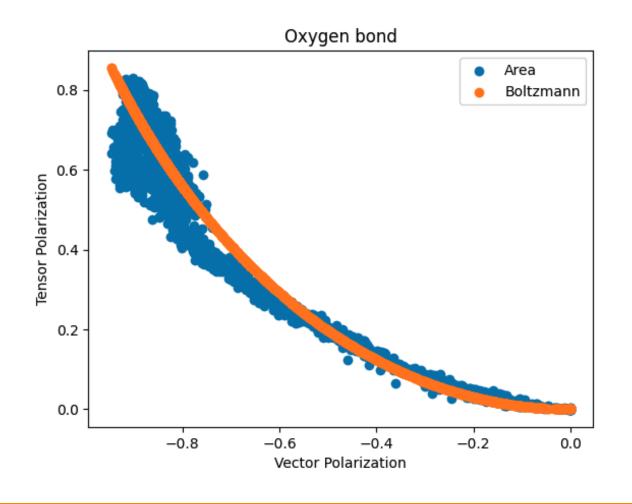

Polarization from r: -87.32%

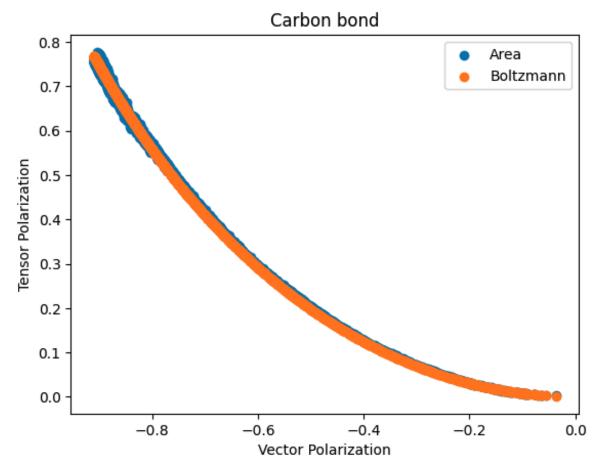
Polarization from area: -88.49% Polarization from r: -90.29%




Polarization from area vs r parameter

Tensor polarization





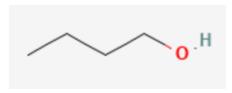
Boltzmann Distribution

$$Q=2-\sqrt{4-3P^2}$$

Conclusion

- 1. Polarized target group at UT
 - 1. Achieved 31.8mK!
 - 2. Adapt DNP apparatus for application in crystallography and nuclear physics experiments across multiple facilities
- 2. NMR analysis of deuterated propanediol
 - 1. Linear relationship between area and asymmetry parameter methods
 - 2. Quadratic relationship between tensor and vector polarization
 - 3. Both results support Boltzmann distribution for spin states at high polarization

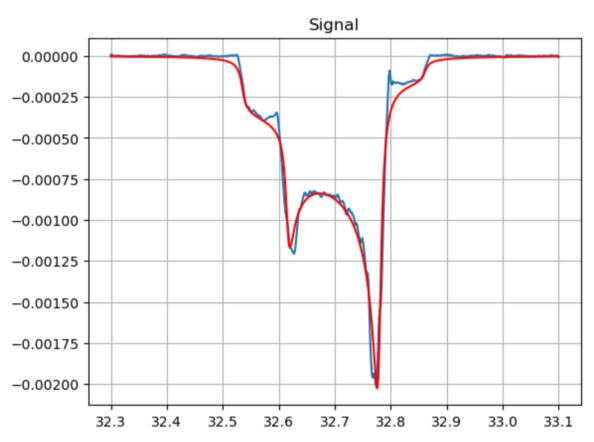
Back up slides



Vector polarization

 The paper investigated deuterated butanol, C4D9OD.

 We want to analyze deuterated propanediol, C3D8O2



A line-shape analysis for spin-1 NMR signals

The Spin Muon Collaboration (SMC)

C. Dulya^{a,b,*}, D. Adams^c, B. Adeva^d, E. Arik^e, A. Arvidson^f, B. Badelek^{f,g} M.K. Ballintijnb, 1, D. Bardin2, G. Bardinb, G. Baumi, P. Berglundi, L. Betevk, I.G. Birdh, R. Birsal, P. Björkholmf, B.E. Bonnerc, N. de Bottonh, M. Boutemeurm, 4. F. Bradamante^{1, 5}, A. Bressan^{1, 6}, S. Bültmann^{1, 7}, E. Burtin^h, C. Cavata^h, D. Crabbⁿ, J. Cranshawc, 8, T. Cuhadarc, S. Dalla Torrel, R. van Dantzigh, B. Derrol, A. Deshpandem, S. Dhawan^m, A. Dyring^f, S. Eichblatt^{c, 9}, J.C. Faivre^h, D. Fasching^{o, 10}, F. Feinstein^h, C. Fernandez^{d,p}, B. Frois^{q,h}, A. Gallas^d, J.A. Garzon^{d,p}, T. Gaussiran^c, R. Gehring^r, M. Giorgi¹, E. von Goeler⁸, St. Goertz^r, F. Gomez^d, G. Gracia^d, N. de Groot^{b, 11}, M. Grosse Perdekamp^{a, 12}, E. Gülmez^c, J. Harmsen^r, D. von Harrach^t, T. Hasegawa^{u, 13} P. Hautleq, 14, N. Hayashiu, 15, C.A. Heuschq, 16, N. Horikawau, V.W. Hughesm, G. Igoa, S. Ishimoto^{u, 17}, T. Iwata^v, E.M. Kabuß^t, T. Kageya^u, L. Kalinovskaya^{w, 18}, A. Karev^w, H.J. Kessler*, T.J. Ketelb, A. Kishiv, Yu. Kisselev*, L. Klostermannb, 19, D. Krämer, V. Krivokhijine^w, W. Kröger^{q, 16}, V. Kukhtin^w, K. Kurek^g, J. Kyynäräinen^{q, j} M. Lamanna¹, U. Landgraf^x, J.M. Le Goff^{h,q}, F. Lehar^h, A. de Lesquen^h, J. Lichtenstadt^y T. Lindqvist^f, M. Litmaath^{b, 5}, M. Lowe^{c, 10}, A. Magnon^h, G.K. Mallot^t, F. Marie^h, A. Martin¹, J. Martino^h, T. Matsuda^{u, 13}, B. Mayes^p, J.S. McCarthy^h, K. Medved^w W. Meyer', G. van Middelkoopb, D. Millero, K. Moriz, J. Moromisatos, A. Nagaitsevw,

Clean fit for deuterated ammonia (ND3)


```
[[Model]]
   Model(FitFunc)
[[Fit Statistics]]
    # fitting method
                       = leastsq
    # function evals
                       = 120
    # data points
                       = 512
    # variables
                       = 7
    chi-square
                       = 1.5933e-06
    reduced chi-square = 3.1551e-09
    Akaike info crit = -10015.0668
    Bayesian info crit = -9985.39850
                       = 0.98528332
    R-squared
## Warning: uncertainties could not be estimated:
[[Variables]]
    A: -0.07454608 (init = 0.0468)
       -2.8006e-05 (init = -1e-05)
       2.50264629 \text{ (init} = 1.1)
    w0: 0.02718309 (init = 0.027)
    wL: 32.6978501 (init = 32.7)
    eta: -0.03122776 (init = 0.5)
         0.00498219 (init = -0.0012)
```

Polarization: 53.894128263272236 %

https://github.com/jdmax/NMR_Analysis

LMFIT and scipy.optimize packages

- Non-linear Least-squares Minimization and Curve-Fitting for Python (LMFIT) builds on and expands on many of the optimization methods of scipy.optimize.
- Scipy.optimize rovides functions to minimize, or maximize, objective functions. Including olvers for non-linear problems (with support for local and global optimization), linear programming, constrained and non-linear least squares, root finding, and curve fitting.
- LMFIT builds on this with the creation of Parameter objects, a Model class, allowing for quick change of optimization method, and improved confidence intervals.

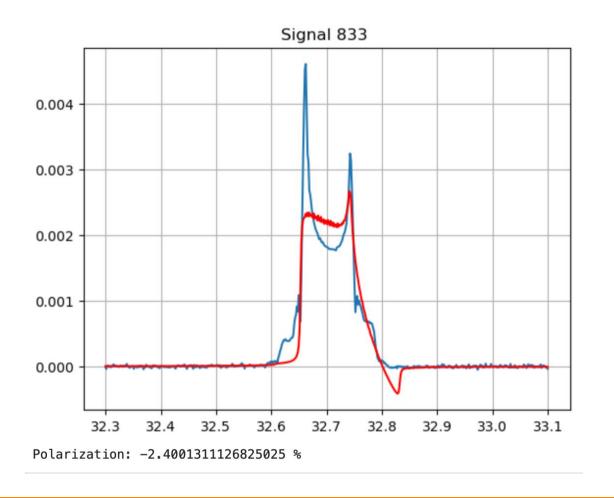
(13) Parameters from paper

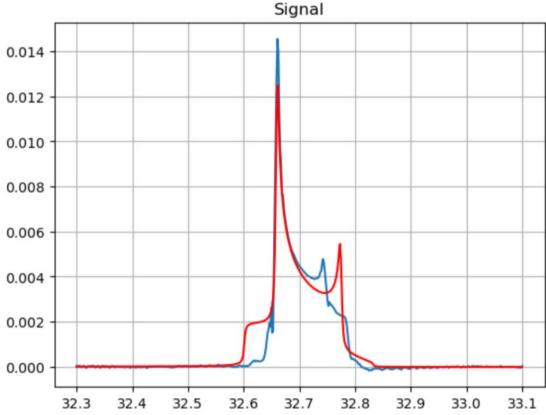
- w_d Larmor frequency, in this case deuteron. 30.7MHz/T
- η filling factor of coil
- \mathcal{K} contains all unknown frequency-dependent gains in the Q-meter; found from TE calibration.
- w_q quadruple interaction. $\hbar w_q = eq * eQ/8$
- R dimensionless parameter $R = \frac{w w_d}{3w_q}$
- r asymmetry parameter $r=e^{\beta\hbar w_d}$, $\beta=\frac{1}{K_BT}$
- a_{0-3} fitting coefficients for 3rd order polynomial of signal wings
- ξ false asymmetry from q-meter distortions
- \mathcal{L} constant gain factor of q-meter
- $\sigma = 3w_q A$ dipolar broadening
- K relative amount of O-D bonds to C-D bonds

Parameters in the code

- w not a parameter, it is the frequency
- A- width of dipolar broadening
- G scaling parameter
- r asymmetry parameter
- w_q quadruple interaction
- w_L Larmor frequency
- eta (η) peak width factor
- xi (ξ)- false asymmetry

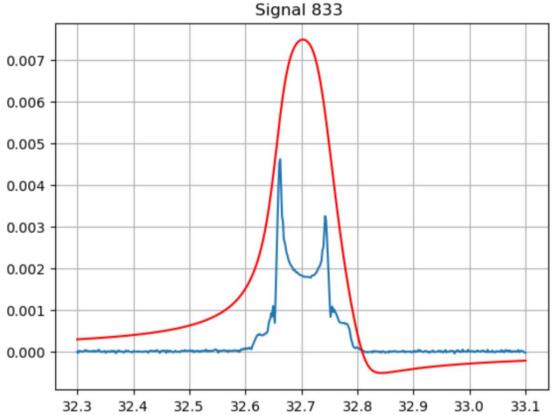
*Deuterated propanediol, C3D8O2 *


Fitting Function and bonds

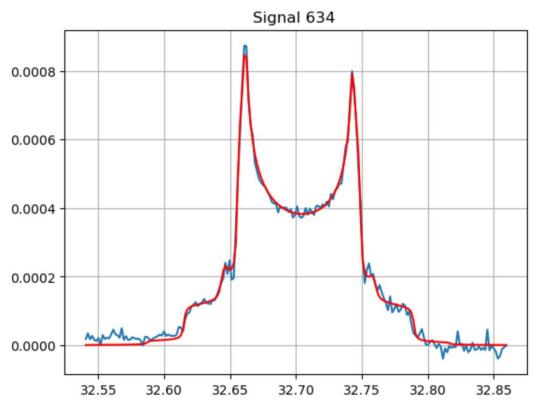

```
def SumFitFunc(w, A, G1, r, wQ1, wL1, eta1, xi1, G2, wQ2, wL2, eta2, xi2, K):
    OD = FitFunc(w, A, G1, r, wQ1, wL1, eta1, xi1)
    CD = FitFunc(w, A, G2, r, wQ2, wL2, eta2, xi2) #r could be the same
    signal = (1-K)*CD+K*OD
    return signal
```

- FitFunc describes the NMR signal for a single bond.
- The parameters labeled with "subscript" 1 are those related to the oxygen and deuteron bond. Those with subscript 2 are those related to the carbon and deuteron bond.
- Looking at the propanediol molecule, there are more carbon bonds and is therefore the stronger signal.
- The parameter K takes care of scaling the signals. K=.25

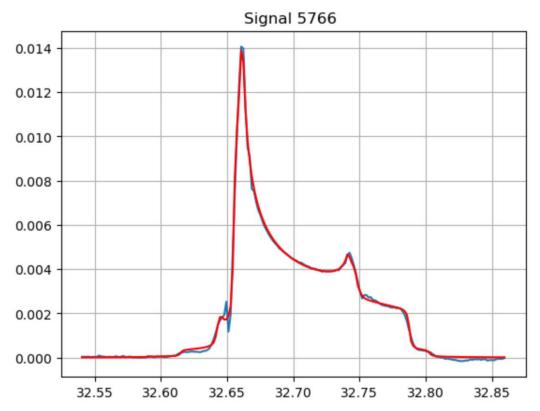
Fitting signal only one bond



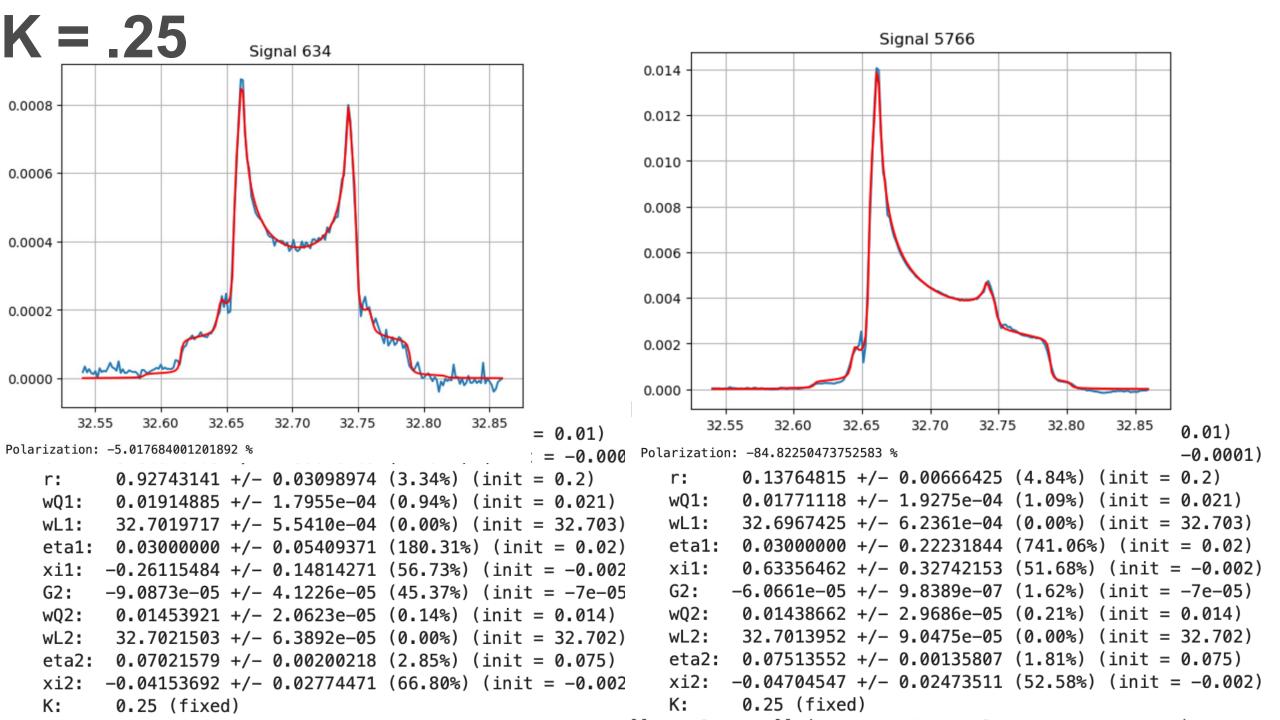
Polarization: 0.6975772654363473 %



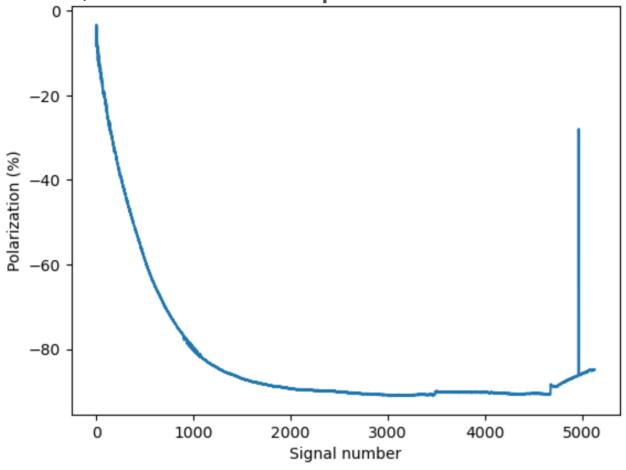
Fitting signal two bonds


Clean low polarization fit

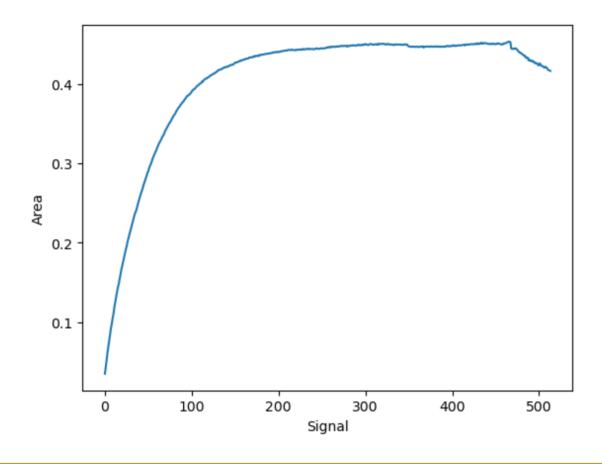

```
Polarization: -5.0550481394869315 %
```


```
[[Fit Statistics]]
   # fitting method
                        = leastsq
   # function evals
                        = 20631
   # data points
                       = 200
   # variables
                       = 12
                       = 6.6264e - 08
   chi-square
   reduced chi-square = 3.5247e-10
   Akaike info crit
                       = -4341.58750
   Bayesian info crit = -4302.00769
   R-squared
                        = 0.99292920
[[Variables]]
          0.02376276 + - 0.00215068 (9.05\%) (init = 0.01)
   Α:
          -9.4556e-05 +/- 3.9380e-05 (41.65\%) (init = -0.0001)
          0.92691028 +/- 0.03097287 (3.34\%) (init = 0.2)
   r:
          0.01914866 + - 1.7967e - 04 (0.94\%) (init = 0.021)
   w01:
          32.7019698 + -5.5449e - 04 (0.00\%) (init = 32.703)
   wL1:
   eta1:
          0.03000000 + - 0.24858201 (828.61\%) (init = 0.02)
          -0.26234451 + -0.14799693 (56.41\%) (init = -0.002)
   xi1:
   G2:
          -7.5154e-05 + -3.3850e-05 (45.04\%) (init = -7e-05)
   w02:
          0.01453920 +/- 2.0624e-05 (0.14\%) (init = 0.014)
   wL2:
          32.7021501 + -6.3896e - 05 (0.00\%) (init = 32.702)
          0.07021558 + - 0.00200227 (2.85\%) (init = 0.075)
   eta2:
   xi2:
          -0.04117382 +/- 0.02775526 (67.41\%) (init = -0.002)
           0.1 (fixed)
   K:
```

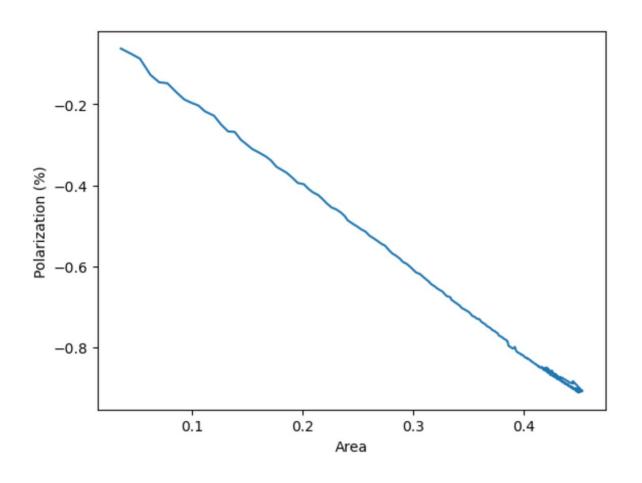
High polarization

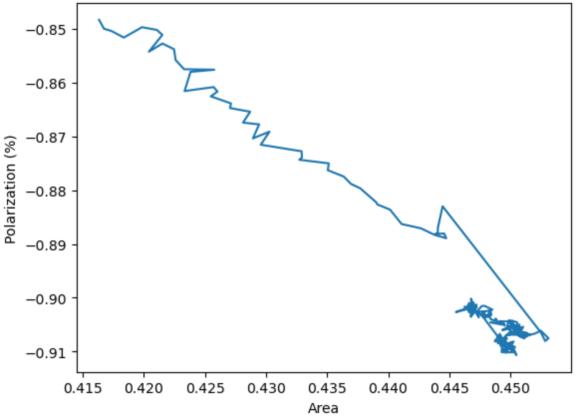

Polarization: -84.82248101733923 %

```
[[Fit Statistics]]
   # fitting method
                       = leastsq
                       = 1028
   # function evals
   # data points
                       = 200
   # variables
                       = 12
   chi-square
                       = 5.0057e - 06
    reduced chi-square = 2.6626e-08
   Akaike info crit
                      = -3476.64905
   Bayesian info crit = -3437.06924
   R-squared
                       = 0.99671566
[[Variables]]
    Α:
           0.02355381 + - 0.00146598 (6.22\%) (init = 0.01)
    G1:
          -4.2540e-05 +/- 3.3962e-06 (7.98\%) (init = -0.0001)
           0.13764835 + - 0.00666425 (4.84\%) (init = 0.2)
    r:
    w01:
           0.01771119 + - 1.9275e - 04 (1.09\%) (init = 0.021)
    wL1:
           32.6967425 + - 6.2361e - 04 (0.00\%) (init = 32.703)
    eta1:
           0.02999997 + - 0.14917215 (497.24\%) (init = 0.02)
    xi1:
           0.63355134 + - 0.32741855 (51.68\%) (init = -0.002)
    G2:
          -5.0550e-05 + -8.1991e-07 (1.62\%) (init = -7e-05)
    w02:
           0.01438662 +/- 2.9686e-05 (0.21%) (init = 0.014)
    wL2:
           32.7013952 + -9.0476e - 05 (0.00\%) (init = 32.702)
    eta2: 0.07513548 + - 0.00135807 (1.81\%) (init = 0.075)
    xi2:
          -0.04704491 + -0.02473496 (52.58\%) (init = -0.002)
    K:
           0.1 (fixed)
```

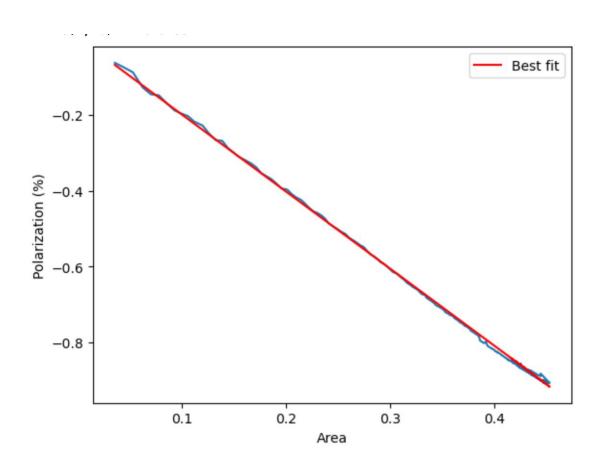


Polarization v Time


Having "good" fits, we can track polarization over time



Area v Time (every 10 signals)


Polarization (%) v Area

Linear fit of polarization vs area

- This tells us that
 Boltzmann distribution
 appears to hold even at
 high vector polarization.
- However, we want to test each individual bond of propanediol.