Extracting Quantum Properties of Solid-State Polarized Targets

Sujan Subedi and Dustin Keller

Tensor Collaboration Meeting Jefferson Lab

13-14 October 2025

Outline

- Motivation
- 2 Theoretical Background
- 3 Computational Modeling
- Outcome
- 5 Future Prospects

Motivation

Importance of Polarized Targets:

• Spin structure of nucleons.

• Spin-dependent scattering/interactions.

• Probing the strong force and the dynamics of QCD.

Motivation

Importance of Polarized Targets:

• Spin structure of nucleons.

• Spin-dependent scattering/interactions.

 Probing the strong force and the dynamics of QCD.

Today's Challenges:

- Achieving high polarization.
- Understanding the relaxation mechanism.

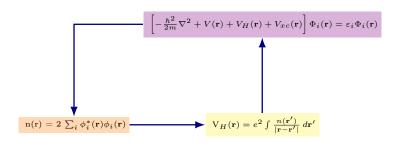
Big Picture

- We want to explore ESR parameters such as linewidth, intensities for radicals including NH_2 . and ND_2 ..
- Other characteristics that we can use in our Rate Equations.

We try to understand and extract the properties/parameters governing polarization and relaxation in target materials.

Density Functional Theory:

Uses the electron density approach to find the ground state of the system.


Based on two **Hohenberg-Kohn** theorems.

Density Functional Theory:

Uses the electron density approach to find the ground state of the system.

Based on two **Hohenberg-Kohn** theorems.

Self Consistency of Kohn-Sham Equation

The ESR parameters form DFT

The g-Tensor:

Determines the position of the signal in the ESR spectra. There are four contributions to it.

$$\mathbf{g} = g_e \mathbf{1} + \mathbf{g}^{\text{RMC}} + \mathbf{g}^{\text{DSO}} + \mathbf{g}^{\text{PSO}}$$
 (1)

The ESR parameters form DFT

The g-Tensor:

Determines the position of the signal in the ESR spectra. There are four contributions to it.

$$\mathbf{g} = g_e \mathbf{1} + \mathbf{g}^{\text{RMC}} + \mathbf{g}^{\text{DSO}} + \mathbf{g}^{\text{PSO}}$$
 (1)

Spin Zeeman / Isotropic part: free electron g value is 2.002319

$$g_{\mu\nu}^{\rm SZ} = \delta_{\mu\nu} g_e. \qquad (2)$$

The ESR parameters form DFT

The g-Tensor:

Determines the position of the signal in the ESR spectra. There are four contributions to it.

$$\mathbf{g} = g_e \mathbf{1} + \mathbf{g}^{\text{RMC}} + \mathbf{g}^{\text{DSO}} + \mathbf{g}^{\text{PSO}}$$
 (1)

Spin Zeeman / Isotropic part: free electron g value is 2.002319

$$g_{\mu\nu}^{\rm SZ} = \delta_{\mu\nu} g_e. \qquad (2)$$

Relativistic Mass Correction

$$g^{\rm RMC} = -\frac{\alpha^2 g_e}{2S} \sum_{k,l} P_{kl}^{\alpha-\beta} \langle \phi_k | \hat{T} | \phi_l \rangle \end{supp} \label{eq:grmc}$$
 (3)

The ESR parameters form DFT

The g-Tensor:

Determines the position of the signal in the ESR spectra. There are four contributions to it.

$$\mathbf{g} = g_e \mathbf{1} + \mathbf{g}^{\text{RMC}} + \mathbf{g}^{\text{DSO}} + \mathbf{g}^{\text{PSO}}$$
 (1)

Spin Zeeman / Isotropic part: free electron g value is 2.002319

$$g_{\mu\nu}^{\rm SZ} = \delta_{\mu\nu} g_e. \tag{2}$$

Relativistic Mass Correction

$$g^{\rm RMC} = -\frac{\alpha^2 g_e}{2S} \sum_{k,l} P_{kl}^{\alpha-\beta} \langle \phi_k | \hat{T} | \phi_l \rangle$$
(3)

Diamagnetic Spin-Orbit

$$\begin{split} \mathbf{g}_{\mu\nu}^{\mathrm{DSO}} &= \frac{\alpha^2 g_e}{4S} \sum_{k,l} P_{kl}^{\alpha-\beta} \langle \phi_k | \xi(r_A) \\ &[\mathbf{r}_A r_O - r_{A,\mu} r_{O,\nu}] | \phi_l \rangle(4) \end{split}$$

The ESR parameters form DFT

The g-Tensor:

Determines the position of the signal in the ESR spectra. There are four contributions to it.

$$\mathbf{g} = g_e \mathbf{1} + \mathbf{g}^{\text{RMC}} + \mathbf{g}^{\text{DSO}} + \mathbf{g}^{\text{PSO}}$$
 (1)

Spin Zeeman / Isotropic part: free electron g value is 2.002319

$$g_{\mu\nu}^{\rm SZ} = \delta_{\mu\nu} g_e. \tag{2}$$

Relativistic Mass Correction

$$g^{\rm RMC} = -\frac{\alpha^2 g_e}{2S} \sum_{k,l} P_{kl}^{\alpha-\beta} \langle \phi_k | \hat{T} | \phi_l \rangle$$
(3)

Diamagnetic Spin-Orbit

$$\begin{split} \mathbf{g}_{\mu\nu}^{\mathrm{DSO}} &= \frac{\alpha^2 g_{\ell}}{4S} \sum_{k,l} P_{kl}^{\alpha-\beta} \langle \phi_k | \xi(r_A) \\ [\mathbf{r}_A r_O - r_{A,\mu} r_{O,\nu}] | \phi_l \rangle (4) \end{split}$$

Orbital Zeeman: usually the main source of deviation from free electron g-value.

$$g_{\mu\nu}^{\rm PSO} = -\frac{g_e}{2S} \sum_{k,l} \frac{\partial P_{kl}^{\alpha-\beta}}{\partial B_{\nu}} \langle \phi_k | \hat{h}_{\nu}^{SOC} | \phi_l \rangle$$
 (5)

(Source: ORCA manual, Release 6.1.0)

Hyperfine Coupling (A) Tensor:
It characterizes the interaction between electron and nuclear spin that leads to splitting of the signal.

$$\mathbf{A}_N = A_{\rm iso} \mathbf{1} + \mathbf{A}^{\rm dip} + \mathbf{A}^{\rm orb} + \mathbf{A}^{\rm GC} \tag{6}$$

Hyperfine Coupling (A) Tensor:

It characterizes the interaction between electron and nuclear spin that leads to splitting of the signal.

$$\mathbf{A}_N = A_{\rm iso} \mathbf{1} + \mathbf{A}^{\rm dip} + \mathbf{A}^{\rm orb} + \mathbf{A}^{\rm GC} \tag{6}$$

Fermi Contact/ Isotropic Part

$$A_{\rm iso}(N) = \frac{4\pi}{3} \langle S_z \rangle^{-1} g_e g_N \beta_e \beta_N \, \rho(\mathbf{R}_N), \tag{7}$$

Hyperfine Coupling (A) Tensor:

It characterizes the interaction between electron and nuclear spin that leads to splitting of the signal.

$$\mathbf{A}_N = A_{\rm iso} \mathbf{1} + \mathbf{A}^{\rm dip} + \mathbf{A}^{\rm orb} + \mathbf{A}^{\rm GC} \tag{6}$$

Fermi Contact/ Isotropic Part

$$A_{\rm iso}(N) = \frac{4\pi}{3} \langle S_z \rangle^{-1} g_e g_N \beta_e \beta_N \, \rho(\mathbf{R}_N), \tag{7}$$

Spin Dipole: Through-space dipole-dipole interaction of nucleus with electron magnetic moment

$$\begin{split} A_{\mu\nu}^{\mathrm{dip}}(N) &= P_N \sum_{k,l} \rho_{kl} \left\langle \phi_k \left| r_N^{-5} (3r_{N\mu} r_{N\nu} - \delta_{\mu\nu} r_N^2) \phi_l(8) \right| \right. \end{split}$$

Hyperfine Coupling (A) Tensor:

It characterizes the interaction between electron and nuclear spin that leads to splitting of the signal.

$$\mathbf{A}_N = A_{\rm iso} \mathbf{1} + \mathbf{A}^{\rm dip} + \mathbf{A}^{\rm orb} + \mathbf{A}^{\rm GC} \tag{6}$$

Fermi Contact/ Isotropic Part

$$A_{\rm iso}(N) = \frac{4\pi}{3} \langle S_z \rangle^{-1} g_e g_N \beta_e \beta_N \, \rho(\mathbf{R}_N), \eqno(7)$$

Spin Dipole: Through-space dipole-dipole interaction of nucleus with electron magnetic moment

$$A_{\mu\nu}^{\text{dip}}(N) = P_N \sum_{k,l} \rho_{kl} \left\langle \phi_k \middle| r_N^{-5} (3r_{N\mu} r_{N\nu} - \delta_{\mu\nu} r_N^2) \phi_l(8) \right\rangle$$

Spin-orbit contribution: comes from cross terms between spin orbit and nucleus orbit coupling operators

$$A_{\mu\nu}^{\rm orb}(N) = -\frac{1}{2S} P_N \sum_{k,l} \frac{\partial \rho_{kl}}{\partial I_\nu} \, \left\langle \phi_k \left| \hat{h}_\mu^{\rm SOC} \right| \phi_l \right\rangle$$

(9)

$$\hat{h}_{\text{NOC}}^{(N)} = \sum_{i} \mathbf{r}_{iA}^{-3} \mathbf{l}_{i,\nu}^{(N)}$$
 (10)

Hyperfine Coupling (A) Tensor:

It characterizes the interaction between electron and nuclear spin that leads to splitting of the signal.

$$\mathbf{A}_N = A_{\rm iso} \mathbf{1} + \mathbf{A}^{\rm dip} + \mathbf{A}^{\rm orb} + \mathbf{A}^{\rm GC} \tag{6}$$

Fermi Contact/ Isotropic Part

$$A_{\rm iso}(N) = \frac{4\pi}{3} \langle S_z \rangle^{-1} g_e g_N \beta_e \beta_N \, \rho(\mathbf{R}_N), \eqno(7)$$

Spin Dipole: Through-space dipole-dipole interaction of nucleus with electron magnetic moment

$$A_{\mu\nu}^{\rm dip}(N) = P_N \sum_{k,l} \rho_{kl} \left\langle \phi_k \middle| r_N^{-5} (3r_{N\mu} r_{N\nu} - \delta_{\mu\nu} r_N^2) \phi_l(8) \right\rangle$$

Spin-orbit contribution: comes from cross terms between spin orbit and nucleus orbit coupling operators

$$A_{\mu\nu}^{\rm orb}(N) = -\frac{1}{2S} P_N \sum_{k,l} \frac{\partial \rho_{kl}}{\partial I_\nu} \, \left\langle \phi_k \, \left| \hat{h}_\mu^{\rm SOC} \right| \phi_l \right\rangle \label{eq:Appendix}$$

(9)

$$\hat{h}_{\text{NOC}}^{(N)} = \sum_{i} \mathbf{r}_{iA}^{-3} \mathbf{l}_{i,\nu}^{(N)}$$
 (10)

(Source: ORCA manual, Release 6.1.0)

Computational Modeling

DFT Software: for ESR parameters, we used ORCA. For phonon dispersion calculations, we are using Quantum Espresso.

Radical: we are currently studying NH2. and ND2. radicals.

Computational Modeling

DFT Software: for ESR parameters, we used ORCA. For phonon dispersion calculations, we are using Quantum Espresso.

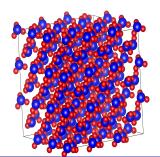
Radical: we are currently studying NH2. and ND2. radicals.

Steps:

- Build the molecule/compound.
- Made cluster/supercell depending on the calculation.
- Irradiated it with pymatgen.
- Optimize the geometry and conduct the production run for properties calculation.

Computational Modeling

DFT Software: for ESR parameters, we used ORCA. For phonon dispersion calculations, we are using Quantum Espresso.


Radical: we are currently studying NH2. and ND2. radicals.

Steps:

- Build the molecule/compound.
- Made cluster/supercell depending on the calculation.
- Irradiated it with pymatgen.
- Optimize the geometry and conduct the production run for properties calculation.

Example output with anisotropic g and A tensors from ORCA.

FLECTRONIC G-MATRIX : SCF Method Type of density : Spin Density Type of derivative : Magnetic Field (no GIAOs) (Direction=X) Multiplicity Irrep O Basis : AO The g-matrix: 2.0055754 0.0021273 0.0021272 Breakdown of the contributions 2.0023193 2.0023193 2.0023193 gRMC -0.0002020 -0.0002020 -0.0002020 2.0021719 2.0037142 2.0072252 iso= 2.0043704 Delta-q -0.0001474 0.0013949 0.0049060 iso= 0.0020512 Orientation: х 0.5284972 0.2605601 0.8079599 Y -0.8488948 0.1529278 0.5059553 0.0082722 -0.9532689

Nucleus OH : A : Isotope= 1 I= 0.5 P=533.5514 MHz/au**3 Q : Isotope= 2 I= 1.0 Q= 0.0029 barn HFC: iso =YES dip=YES orb=YES gauge=YES EFG: fgrad= NO rho= NO Total HFC matrix (all values in MHz): -25.4538 25.5939 -30.8252 25.5948 -51.2955 -19.5230 -30.7407-19.4704 -101.0501 A(FC) -59.3666 -59.3666 -59.3666 A(SD) 62.1955 -7.6721 -54.5234 A(ORB+DIA) 0.2198 -0.0030 0.0834 A(PC) = 0.1001

A(DIA) 0.0090 -0.00230.0023 A(PC) = 0.0030A(Tot) 3.0488 -67.0417 -113.8066 A(iso)= -59.2665 Orientation: 0.8025849 0.5285326 -0.2766059 Υ 0.4964997 -0.8488730 -0.1813911 7 -0.33067440.0082470 -0.9437089

-0.0007

Euler rotation of hyperfine tensor to g-tensor

Atom		a Beta grees]	Gar	nma I [Mh		y Az
2N	-0.0	0.0	0.0	110.64	-21.38	-19.92
0H	-90.0	36.9	90.0	-67.04	-113.8	1 3.05
1H	90.0	36.9	-90.0	-67.04	-113.8	1 3.05

A(ORB)

0.2108

0.0811 A(PC) = 0.0971

EPR parameters for NH_2 .

Experimental values are from references¹²³. The **Hybrid B3LYP** functional was used for all calculations.

System Size	Basis set	$g_{ m iso}$	Δg	g_{exp}
Single radical	def2-TZVP	2.0043704	0.0020512	2.0034-2.0047
	EPR-III	2.0044454	0.0021261	_
Cluster (51 atoms)	${ m def2-TZVP}$	2.0039831	0.0016639	

¹Köksal et al., 1985.

²Peyerimhoff et al., 1990.

³DeMarco et al., 1998.

EPR parameters for NH_2 .

Experimental values are from references¹²³. The **Hybrid B3LYP** functional was used for all calculations.

System Size	Basis set	$g_{ m iso}$	Δg	g_{exp}
Single radical	def2-TZVP	2.0043704	0.0020512	2.0034 - 2.0047
	EPR-III	2.0044454	0.0021261	-
Cluster (51 atoms)	${ m def2-TZVP}$	2.0039831	0.0016639	_

System Size	Basis set	$A_{\rm iso}$ (MHz)	$A_{\rm exp}$ (MHz)
Single radical	def2-TZVP	N: 23.1120, H: -59.2665, H: -59.2664	N: 19-27, H: 67-69
	EPR-III	N: 28.6276, H: -60.8941, H: -60.8883	_
Cluster (51 atoms)	def2-TZVP	N: 26.460, H: -57.202, H: -56.9775	_

 $^{^{1}}$ Köksal et al., 1985.

²Peyerimhoff et al., 1990.

³DeMarco et al., 1998.

EPR parameters for NH_2 .

Experimental values are from references¹²³. The **Hybrid B3LYP** functional was used for all calculations.

System Size	Basis set	$g_{ m iso}$	Δg	g_{exp}
Single radical	def2-TZVP	2.0043704	0.0020512	2.0034 - 2.0047
	EPR-III	2.0044454	0.0021261	-
Cluster (51 atoms)	${ m def2-TZVP}$	2.0039831	0.0016639	_

System Size	Basis set	$A_{\rm iso}$ (MHz)	$A_{\rm exp}$ (MHz)
Single radical	def2-TZVP	N: 23.1120, H: -59.2665, H: -59.2664	N: 19-27, H: 67-69
	EPR-III	N: 28.6276, H: -60.8941, H: -60.8883	_
Cluster (51 atoms)	def2-TZVP	N: 26.460, H: -57.202, H: -56.9775	_

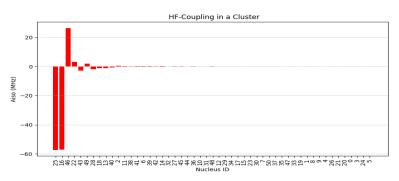
 $^{^{1}}$ Köksal et al., 1985.

²Peyerimhoff et al., 1990.

³DeMarco et al., 1998.

EPR parameters for ND_2 .

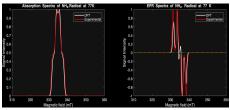
Experimental values are from 4 and 5 .


g	g_{iso}	Δg	g_{exp}
	2.0044462	0.0021270	2.0034 - 2.0047
A_{iso} (MHz)	N	D	A_{exp}
	28.6327	-9.1423, -9.142305	N:27.8, D:-10.1

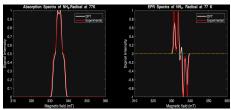
⁴Peyerimhoff et al., 1990.

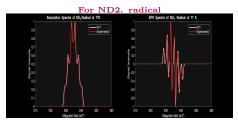
⁵DeMarco et al., 1998.

Cluster Effect

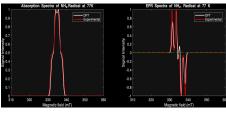

HF-Coupling with Surrounding Nuclei

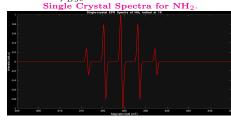
Used the software Easyspin, which takes the ESR Hamiltonian: $\mathbf{H}_s = \mu_B \vec{B} \cdot g \cdot \hat{S} + \sum_i \hat{I}_i \cdot A_i \cdot \hat{S}$ The Microwave frequency used is $\approx 9.5 \mathrm{GHz}$ based on $\Delta E = h \nu = \mu_B g_e \vec{B}$

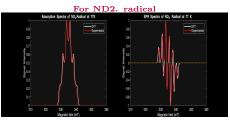

Used the software Easyspin, which takes the ESR Hamiltonian: $\mathbf{H}_s = \mu_B \vec{B} \cdot g \cdot \hat{S} + \sum_i \hat{I}_i \cdot A_i \cdot \hat{S}$ The Microwave frequency used is $\approx 9.5 \mathrm{GHz}$ based on $\Delta E = h \nu = \mu_B g_e \vec{B}$

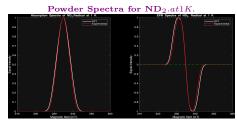

ESR Powder Spectra for NH2. Radical

Used the software Easyspin, which takes the ESR Hamiltonian: $\mathbf{H}_s = \mu_B \vec{B} \cdot g \cdot \hat{S} + \sum_i \hat{I}_i \cdot A_i \cdot \hat{S}$ The Microwave frequency used is $\approx 9.5 \mathrm{GHz}$ based on $\Delta E = h \nu = \mu_B g_e \vec{B}$


ESR Powder Spectra for NH2. Radical






Used the software Easyspin, which takes the ESR Hamiltonian: $\mathbf{H}_s = \mu_B \vec{B} \cdot g \cdot \hat{S} + \sum_i \hat{l}_i \cdot A_i \cdot \hat{S}$ The Microwave frequency used is $\approx 9.5 \mathrm{GHz}$ based on $\Delta E = h\nu = \mu_B g_e \vec{B}$

ESR Powder Spectra for NH2. Radical

Future Prospects

- We are currently running a QE simulation to calculate the phonon dispersion relation / DOS for NH₃.
- Use DFT/ NNQMD (NN driven Path Integral Molecular Dynamics) to understand quantum level fluctuations at low temperature.
- We plan to generate INS data to study different contributions, such as nuclear quantum effects and different vibrational modes, that contribute to spin-lattice relaxation.
- If funding situation allows, we also plan to perform INS on our sample to verify these theoretical calculations.
- We plan to model the time constants T_1 and T_2 in different radical lattices.

Any Questions