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Motivation

Importance of Polarized Targets:

@ Spin structure of nucleons.

@ Spin-dependent
scattering/interactions.

@ Probing the strong force and the
dynamics of QCD.

S. Subedi QM Properties of Polarized Targets October 2025



Importance of Polarized Targets: Today’s Challenges:

@ Achieving high
polarization.

@ Spin structure of nucleons. o Understanding the

relaxation mechanism.

@ Spin-dependent
scattering/interactions.

@ Probing the strong force and the
dynamics of QCD.

S. Subedi QM Properties of Polarized T



Big Picture

@ We want to explore ESR parameters such as linewidth, intensities
for radicals including N Hy. and N Ds..

@ Other characteristics that we can use in our Rate Equations.

We try to understand and extract the
properties/parameters governing polarization
and relaxation in target materials.
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Theoretical Framework

Density Functional Theory:

Uses the electron density approach to find the ground state of the
system.

Based on two Hohenberg-Kohn theorems.
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Theoretical Framework

Density Functional Theory:

Uses the electron density approach to find the ground state of the
system.

Based on two Hohenberg-Kohn theorems.

[ Self Consistency of Kohn-Sham Equation ]
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Theoretical Framework

The ESR parameters form DFT
The g-Tensor:

Determines the position of the signal in the ESR spectra. There are four contributions to it.

RMC , _DSO , _PSO
g=gel+g +g +g (1)
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Theoretical Framework

The ESR parameters form DFT
The g-Tensor:

Determines the position of the signal in the ESR spectra. There are four contributions to it.

Diamagnetic Spin-Orbit

RMC DSO PsSO
g=gel+g +g +g (1)
Spin Zeeman / Isotropic part: free 2 —_
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Theoretical Framework

The ESR parameters form DFT
The g-Tensor:
Determines the position of the signal in the ESR spectra. There are four contributions to it

Diamagnetic Spin-Orbit

RMC , _DSO , _PSO
g=gel+g +g +g (1)

Spin Zeeman / Isotropic part: free a2 —_
/ s 0 = g8 Th PP (0klE(ra)

electron g value is 2.002319
[raro —ra,uro,vllé)(4)

SZ
9y = Ouvge- (2)
Orbital Zeeman: usually the main source of

deviation from free electron g-value.

Relativistic Mass Correction

PSO _ e e (6 1R5OC |41y
RMC __ e ZPIZXZ ﬁ<¢k‘T|¢l> nv 2S =~ o8B, k1M 1
(5)

g =
25 &
(3)

(Source: ORCA manual, Release 6.1.0)
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Theoretical Background

Hyperfine Coupling (A) Tensor:

It characterizes the interaction between electron and nuclear spin that leads to splitting of the signal.

Apn = Aol + AP | p0tb L AGC (6)

QM Pro of Polarized T:



Theoretical Background

Hyperfine Coupling (A) Tensor:

It characterizes the interaction between electron and nuclear spin that leads to splitting of the signal.

Apn = Aol + AP | p0tb L AGC (6)

Fermi Contact/ Isotropic Part

4
—(52) " 'gegnBeBN P(RN),
(7

Ajso(N) =

QM Pro



Theoretical Background

Hyperfine Coupling (A) Tensor:

It characterizes the interaction between electron and nuclear spin that leads to splitting of the signal.

Apn = Aol + AP | p0tb L AGC (6)

Fermi Contact/ Isotropic Part

4 1
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Spin Dipole: Through-space dipole-dipole
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moment
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Theoretical Background

Hyperfine Coupling (A) Tensor:

It characterizes the interaction between electron and nuclear spin that leads to splitting of the signal.

Apn = Aol + AP | p0tb L AGC (6)

Fermi Contact/ Isotropic Part Spin-orbit contribution: comes from cross terms

between spin orbit and nucleus orbit coupling

operators

4 1
Ajso(N) = ?<SZ> gedNBeBN P(RN),
1 dp .
(7) by = _ L p Kkl < ‘hsoc| >
L () G Nkzgialu Pk |hiy | 4

Spin Dipole: Through-space dipole-dipole
interaction of nucleus with electron magnetic 9)
moment

S(N 3N
b = Z riA?’lg,v) (10)
K2

di -5
ALY (N) =Py Zpkz <¢k )TN (BrNuTNY
koL
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Theoretical Background

Hyperfine Coupling (A) Tensor:

It characterizes the interaction between electron and nuclear spin that leads to splitting of the signal.

Apn = Ajaol + AdIP 4 p0TD 4+ AGC (6)
Fermi Contact/ Isotropic Part Spin-orbit contribution: comes from cross terms
between spin orbit and nucleus orbit coupling
operators
4 1
Ajso(N) = ?<SZ> gedNBeBN P(RN),
1 9, &
(7) by = _ L p Pkl ‘hsoc|
L () G NkZ;TIV <¢k H ¢z>

Spin Dipole: Through-space dipole-dipole
interaction of nucleus with electron magnetic

moment (9)
(N -
al =5 hl(\IO)C = Z riA?’lg,V) (10)
Au‘,,p(N) = PN kz;/’kl <¢k )T‘N (BTN‘LTN 7
- 83 )91(8) (Source: ORCA manual,

Release 6.1.0)
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Computational Modeling

DFT Software: for ESR parameters, we used ORCA. For phonon dispersion calculations,
we are using Quantum Espresso.
Radical : we are currently studying NH2. and ND2. radicals.
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Computational Modeling

DFT Software: for ESR parameters, we used ORCA. For phonon dispersion calculations,

we are using Quantum Espresso.
Radical : we are currently studying NH2. and ND2. radicals.

Steps:
@ Build the molecule/compound.

@ Made cluster/supercell depending on
the calculation.

@ Irradiated it with pymatgen.
@ Optimize the geometry and conduct

the production run for properties
calculation.
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Results

Example output with anisot
ORCA.

ELECTRONIC G-MATRIX

Method : SCF
Type of density : Spin Density
Type of derivative : Magnetic Field (no GIAOs) (Direction=X)
Muttiplicity 2
Irrep : 0
Basis :AO
The g-matrix:
2.0055754 0.0021273 0.0008500
0.0021272 2.0035016 0.0005473
0.0008500 0.0005473 2.0040343

Breakdown of the contributions

gel 2.0023193 2.0023193 2.0023193

gRMC -0.0002020 -0.0002020 -0.0002020

gDSO(tot) 0.0000458 0.0000990 0.0001000

gPSO(tot) 0.0000088 0.0014979 0.0050080

g(tot) 2.0021719 2.0037142 2.0072252 iso= 2.0043704
Delta-g  -0.0001474 0.0013949 0.0049060 iso= 0.0020512

Orientation:
X 0.5284972 0.2605601 0.8079599
Y -0.8488948 0.1529278 0.5059553
z 0.0082722 -0.9532689 0.3020100

ropic g and A tensors from

i
" Nucleus OH:A :lsotope= 1I= 0.5 P=533.5514 MHz/au*'3
b Q :lsotope= 2I= 1.0 Q= 0.0029 barn

) HFC:iso =YES dip=YES orb=YES gauge=YES

) EFG: fgrad= NO rho=NO

I Total HFC matrix (all values in MHz):

)
b
b
) -25.4538 25.5939 -30.8252
) 25.5948 -51.2955 -19.5230
i -30.7407 -19.4704 -101.0501
b
) A(FC) -59.3666 -59.3666 -59.3666
) A(SD) 62.1955 -7.6721 -54.5234
A(ORB+DIA) 02198 -0.0030 00834 A(PC)= 0.1001
! A(ORB) 0.2108 -0.0007 0.0811 A(PC)= 0.0971
} A(DIA) 0.0090 -0.0023 0.0023 A(PC) = 0.0030
b - -
i A(Tot) 3.0488 -67.0417 -113.8066 A(iso)= -59.2665
i Orientation:
"X 0.8025849 0.5285326 -0.2766059
[ 0.4964997 -0.8488730 -0.1813911
) Z -0.3306744 0.0082470 -0.9437089
)

Euler rotation of hyperfine tensor to g-tensor

Atom | Alpha Beta Gamma | Ax Ay
I [degrees] | [MHz]

Az

2N -00 00 00 11064 -21.38 -19.92

»
} OH -800 369 900 -67.04 -113.81 3
bo1H 90.0 369 -90.0 -67.04 -113.81 3

.05
05




Results

EPR parameters for NHo.

Experimental values are from references'??. The Hybrid B3LYP
functional was used for all calculations.

System Size Basis set Jiso Ag Jexp

Single radical def2-TZVP 2.0043704 0.0020512 2.0034-2.0047
EPR-III 2.0044454 0.0021261 -

Cluster (51 atoms) def2-TZVP 2.0039831 0.0016639 —

'Koksal et al., 1985.
2Peyerimhoff et al., 1990.
3DeMarco et al., 1998.
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EPR parameters for NHo.
Experimental values are from references'??. The Hybrid B3LYP
functional was used for all calculations.
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Results

EPR parameters for NDs.

Experimental values are from? and®.

g Giso Ag Jexp
2.0044462 0.0021270 2.0034 - 2.0047

Aiso (MHz) N D Acap
28.6327 -9.1423, -9.142305 N:27.8, D:-10.1

4Peyerimhoff et al., 1990.
5DeMarco et al., 1998.
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HF-Coupling with Surrounding Nuclei

HF-Coupling in a Cluster

204
o e

=3
=
=

2 —20
=

—404

—60 = T T

KEeN

Nucleus ID




ESR Spectra

Used the softwareEasyspin, which takes the ESR Hamiltonian: Hg = ;/,BB; -g- S+ Ez IA,L A - S
The Microwave frequancy used is & 9.5GHz based on AE = hv = ;I,Bgeé




ESR Spectra

Used the softwarelasyspin, which takes the ESR Hamiltonian: Hg = I‘BB; cg-S+ > f, CA S
The Microwave frequancy used is & 9.5GHz based on AE = hv = HBQCB

ESR Powder Spectra for NH2. Radical

Absorption Spectra of NHyRadical at 77K EPR Spectra of NH,. Radical at 77 K

Polarized



ESR Spectra

Used the softwarelasyspin, which takes the ESR Hamiltonian: Hg = MBE cg-S+ > f, A S
The Microwave frequancy used is & 9.5GHz based on AE = hv = HBQ@B

ESR Powder Spectra for NH2. Radical
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-8

Used the softwareBasyspin, which takes the ESR Hamiltonian: Hg .8 +> I
is & 9.5GHz based on AE = hV £
al Spectra for NH->.

The Microwave frequancy used is
EPR Spectra of NH Radical al 77 K

ESR Powder Spectra for NH2. Radical

Rbsorplon Specira of N Radial ot 77K
i ——DFT

Absorpon Specta of ND;Radical at 77K EPR Specta of N, Rodial ot 77 K
|
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Future Prospects

@ We are currently running a QE simulation to calculate the phonon
dispersion relation / DOS for NHs.

@ Use DFT/ NNQMD ( NN driven Path Integral Molecular
Dynamics) to understand quantum level fluctuations at low
temperature.

@ We plan to generate INS data to study different contributions,
such as nuclear quantum effects and different vibrational modes,
that contribute to spin-lattice relaxation.

o If funding situation allows, we also plan to perform INS on our
sample to verify these theoretical calculations.

@ We plan to model the time constants 77 and 75 in different radical
lattices.
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