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[A. Bacchetta and P. J. Mulders, Phys. Rev. D 62, 114004 (2000)]

A spin-1 target can have tensor polarization [associated with � = 0]
3 additional T -even and 7 additional T -odd quark TMDs compared to nucleon

Analogous situation for gluon TMDs [See talk of Mulders & Shanahan]

to fully expose role of gluons in nuclei need polarized nuclear targets [e.g. D, 6Li]
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• Quark correlator is the quantity that can be decomposed into 8 components (6 T -even and 2 T -odd
terms).
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Definition of ⇠:

Why light-cone coordinates are used? Because the manifestation of quark-parton structure of
QCD, and construction of multi-parton Fock states as eigen states of QCD Hamiltonian is only possible
in the light-cone quantization.

What’s the role of gauge-link

Why ⇠+ = 0 limit?

• Asymmetry measurements like A
sin�
UT

• The first measurement of the Sivers function was done by STAR collaboration.

• The origin of the non-Universality of the Sivers function (relative sign between DY and SIDIS) is the
gauge invariance in QCD.

• Usually, the “hard scale” is the intermediate photon/boson virtuality, and the “soft scale” is parton’s
transverse momentum.
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Indeed, measurements at the EIC and
lattice calculations will have a high degree
of complementarity. For some quantities,
notably the x moments of unpolarized and
polarized quark distributions, a precise de-
termination will be possible both in experi-
ment and on the lattice. Using this to vali-
date the methods used in lattice calculations,
one will gain confidence in computing quan-
tities whose experimental determination is
very hard, such as generalized form factors.
Furthermore, one can gain insight into the
underlying dynamics by computing the same
quantities with values of the quark masses
that are not realized in nature, so as to reveal
the importance of these masses for specific
properties of the nucleon. On the other hand,
there are many aspects of hadron structure
beyond the reach of lattice computations, in
particular, the distribution and polarization
of quarks and gluons at small x, for which
collider measurements are our only source of
information.
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Figure 2.1: Schematic view of a parton with
longitudinal momentum fraction x and trans-
verse position bT in the proton.

Both impact parameter distributions
f(x, bT ) and transverse-momentum distri-
butions f(x,kT ) describe proton structure
in three dimensions, or more accurately in
2+ 1 dimensions (two transverse dimensions
in either configuration or momentum space,
along with one longitudinal dimension in mo-

mentum space). Note that in a fast-moving
proton, the transverse variables play very dif-
ferent roles than the longitudinal momen-
tum.

It is important to realize that f(x, bT )
and f(x,kT ) are not related to each other by
a Fourier transform (nevertheless it is com-
mon to denote both functions by the same
symbol f). Instead, f(x, bT ) and f(x,kT )
give complementary information about par-
tons, and both types of quantities can be
thought of as descendants of Wigner distri-
butions W (x, bT ,kT ) [8], which are used ex-
tensively in other branches of physics [9].
Although there is no known way to mea-
sure Wigner distributions for quarks and
gluons, they provide a unifying theoretical
framework for the di↵erent aspects of hadron
structure we have discussed. Figure 2.2
shows the connection between these di↵erent
aspects and the experimental possibilities to
explore them.

All parton distributions depend on a
scale which specifies the resolution at which
partons are resolved, and which in a given
scattering process is provided by a large mo-
mentum transfer. For many processes in
e+p collisions, the relevant hard scale is Q

2

(see the Sidebar on page 18). The evolution
equations that describe the scale dependence
of parton distributions provide an essential
tool, both for the validation of the theory
and for the extraction of parton distributions
from cross section data. They also allow one
to convert the distributions seen at high res-
olution to lower resolution scales, where con-
tact can be made with non-perturbative de-
scriptions of the proton.

An essential property of any particle is its
spin, and parton distributions can depend on
the polarization of both the parton and the
parent proton. The spin structure is particu-
larly rich for TMDs and GPDs because they
single out a direction in the transverse plane,
thus opening the way for studying correla-
tions between spin and kT or bT . Informa-
tion about transverse degrees of freedom is
essential to access orbital angular momen-
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The decomposition of the correlators in terms of relevant structures allowed by symmetry and scaling by the non-
perturbative TMD functions is now a common and advantageous practice. This enables a singling out of the relevant
quantities that contribute to the cross-section of a selected process. The complete parametrization of the TMD
correlator for quarks, including the T -odd structure, is given in [53] for spin-1/2 hadrons, and complemented in [54, 62]
with the addition of spin-1 hadrons with the tensor polarization parts for quarks. For gluons, the first parametrization
was performed in [55], followed by [56], with extended parameterization in [57]. The work on gluons indicate that
some distributions are accessible in polarized nuclei. Exploring nuclei in pursuit of gluonic content of hadrons of spin
greater than 1/2 is highly attractive, especially because they are expected to be accessible at high-x. Looking at novel
gluon distributions, not related to the ones from the nucleons, is very interesting in the study of exotic e↵ects in the
binding of nuclei, as well as their dynamic contribution to spin and mass.
To consider the application to the full spin-1 target including the tensor polarization components, we have to

start with the deuteron polarization density matrix. In being consistent with the popular work on the subject, the
subscript U is used to denote unpolarized hadrons, the subscripts L and T are used to denote respectively longitudinal
and transverse vector polarization, and the subscripts LL, LT , and TT are used to denote longitudinal-longitudinal,
longitudinal-transverse, and transverse-transverse tensor polarization. The tensor polarizations have double index,
indicating a specific orientation of the tensor polarized state (MJ = 0) of the spin-1 target. It is also necessary to
use superscripts to indicate which axis is the axis of quantization. For example, SLL is the longitudinal component of
the spin tensor, and it is oriented longitudinally along the z-axis, or the beam-line. However, the S

x

TL
term indicates

a tensor polarization pointed ⇡/4 with respect to the beam line in the xz-plane, where the x-axis is pointing directly
vertical transverse to the beam-line, and the y-axis is pointing sideways transverse to the beam-line.
The density matrix has the form:

⇢(S, T ) =
1

3

✓
I +

3

2
S
i⌃i + 3T ij⌃ij

◆
, (18)

where the components S
i of the vector S represent the vector part of the spin. The tensor part of the spin state is

represented by the T
ij by demanding PµT

µ⌫ . With this notation in mind, the density matrix is parameterized in
terms of a spacelike spin vector S and a symmetric traceless spin tensor T [57]:
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The density matrix would take the form,

⇢(S, T ) =

0

BBB@

1
3 + SL

2 + SLL

3
S

x

T
�iS

y

T

2
p
2

+
S

x

LT
�iS

y

LT

2
p
2

S
xx

TT
�iS

xy

TT

2

S
x+iS

y

T

T

2
p
2

+
S

x

LT
+iS

y

LT

2
p
2

1
3 � 2SLL

3
S

x

T
�iS

y

T

2
p
2

� S
x

LT
�iS

y

LT

2
p
2

S
xx

TT
+iS

xy

TT

2
S

x

T
+iS

y

T

2
p
2

� S
x

LT
+iS

y

LT

2
p
2

1
3 � SL

2 + SLL

3

1

CCCA
. (21)

To explore both transversity of quarks and gluons with the same spin-1 target, we must take a closer look at the
leading-twist correlators for both. For parametrization of the quarks, the leading-twist TMD correlator is,

� (x,kT ) ⌘ �[U ] (x,kT ;n, P, S, T )

⌘
Z

d(⇠ · P )d2kT

(2⇡)3
e
ik·⇠hP, S, T | ̄(0)U(0, ⇠) (⇠)|P, S, T i

����
⇠+=0

.
(22)

Using the indicated notation, the quark correlator is organized in terms of target polarization such that,

� = �U + �L + �T + �LL + �LT + �TT ,

and the decomposition is expressed as:
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first defined by Ja↵e and Manohar [34] and referred to as nuclear gluonometry. This observable is related to a transfer
of two units of helicity to the polarized target and vanishes for any target of spin smaller than 1. A finite value of this
observable requires the existence of a tower of gluon operators contributing to the scattering amplitude, where such
a double-helicity flip cannot be linked to single nucleons. This observable is exclusive to hadrons and nuclei of spin
� 1, and measures a gluon distribution, providing a clear signature for exotic gluonic components in the target. In
the parton model language, this observable comes from the linearly polarized gluons in targets with transverse tensor
polarization and is related to the TMD h1TT . This interesting function is the focal point of our motivation and is
one of the least investigated aspects in the gluonic structure linked to the target polarization where non-nucleonic
dynamics becomes accessible. TMD h

g

1TT
is expected to yield new insights into the internal dynamics of hadrons and

nuclei.
Going beyond the collinear case, one can define new TMDs, see Fig 5. These TMDs appear in the parametrization of

a TMD correlator, which is a bilocal matrix element containing nonlocal field strength operators and Wilson lines. The
Wilson lines, or gauge links, guarantee color gauge invariance by connecting the nonlocality and give rise to a process
dependence of the TMDs. The description of spin-1 TMDs is presented by Bacchetta and Mulders [62] for quarks
and Boeret al. [57] for gluons. Additionally, a study of the properties of and the relations between the gluon TMDs
for spin-1 hadrons has recently been published [64]. Positivity bounds were derived that provide model-independent
inequalities that help in relating and estimating the magnitude of the gluon TMDs.
In [57], the gluon-gluon TMD correlator was parametrized in terms of TMDs for unpolarized, vector, and tensor

polarized targets. We use a decomposition for the gluon momentum k in terms of the hadron momentum P and the
lightlike four-vector n, such that,

k
µ = xP

µ + k
µ

T
+
�
k · P � xM

2
�
n
µ
,

satisfying P · n = 1 and P
2 = M

2, where M is the mass of the hadron. The gluon-gluon TMD correlator for spin-1
hadrons is defined as:

�[U,U
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(24)

where the process-dependent Wilson lines U[0,⇠] and U
0
[0,⇠] are required for color gauge invariance. The leading-twist

terms are identified as the ones containing the contraction of the field strength tensor with n and one transverse index
(i, j = 1, 2), explicitly indicating the dependence of the vector and tensor part of the spin. The correlator is then
expressed as,

�ij (x,kT ) ⌘
Z

d(⇠ · P )d2kT

(2⇡)3
e
ik·⇠ hP, S, T |Fµ⌫(0)U(0, ⇠)F ⇢�(⇠)U 0(⇠, 0)|P, S, T i

⇠+=0 (25)

where there is a trace over color, and the dependence on the gauge links is omitted. After the separation in terms of
the possible hadronic polarization states, the correlator can be expressed using the indicated notation as the following,
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. (26)

The parametrization in terms of TMDs with specific polarizations and orientations can then be expressed as,
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as the pretzelosity h
?
1T [58], but considerably less exists for the sea. Beyond this, there is essentially no experimental

information on any of the other functions. In Fig. 4, the list is shown of leading twist quark TMDs for the spin-1
target, which contain 3 additional T -even and 7 additional T -odd TMDs compared to spin-1/2 nucleons. The rows
indicate target polarization, and the columns indicate quark polarization. The bold-face functions survive integration
over transverse momenta.

FIG. 4. The list of leading twist quark TMDs for the spin-1 target, which contain 3 additional T -even and 7 additional T -odd
TMDs (all T -odd are shown in red) compared to spin-1/2 nucleons. The blue indicates collinear PDFs. Here, the rows indicate
target polarization, and the columns indicate quark polarization. The bold-face functions survive integration over transverse
momenta.

To zero in on some observables of interest, we can integrate over transverse momenta and force many functions to
vanish. The collinear correlator can then be parametrized as,

�(x;P, S, T ) =
1

2


6 Pf1(x) + SL�5Pg1(x) +

[ 6 BT , 6 P ] �5
2

h1(x)

+SLLPf1LL(x) +
[ 6 BLT , P ]

2
ih1LT

�
x, k

2
T

��
.

(23)

So, even for the spin-1 target (deuteron), the quark PDFs for the spin-1/2 constituents are easiest to access. They,
of course, represent the distribution of quarks in the longitudinal momentum space of unpolarized f1, longitudinally
polarized g1, and transversely polarized h1 quarks in the proton and neutron. For the polarized cases, the neutron
dominates in its contribution to the observables, as it caries more than 90% of the deuteron polarization.
Then, there are the extra collinear functions from the tensor polarization contributions f1LL and h1LT . For quarks,

there is a measurement of f1LL [59] indirectly as the b1 structure function in DIS. This observable deserves its own
Drell-Yan experimental e↵ort (mentioned later). Information on sea-quark f1LL specifically is needed [60, 61]. This is
also an attractive function because it contains non-nucleonic degrees of freedom that are detectable in nuclei. There
is also the tensor polarized observable h1LT , which is T -odd and simultaneously survives integration over transverse
momenta. At first order, the function h1LT vanishes due to the gauge link structure and the behavior under naive
time reversal transformations. In any case, these tensor polarized observables are mitigated when the spin-1 target
has zero tensor polarization but some finite vector polarization.
Naturally, valence quarks have been the focus for the last few decades. There has also been considerable theoret-

ical e↵ort in the last several years to understand the gluonic content of hadrons. Gluon observables can be easily
overwhelmed by the valence quarks depending on the target and the kinematics available at the facility. However,
the structure and dynamics produced by the gluons and the quark sea are turning out to be critical to answer many
pressing questions, and they must be studied in detail.
There is a clear need for sea-quark specific experiments; however, the information on gluon distributions is far more

scarce and essentially restricted to the collinear gluon PDFs for spin-1/2 targets. Gluon TMDs are mostly unknown
because it is generally very challenging to access the relevant kinematic regions for a spin-1/2 target. What little
information that is available on gluons comes from the LHC at CERN.
Little GPD or TMD information is available on spin-1 targets, and absolutely no experimental information is

available on the tensor polarization contributions in TMDs. However, the interest in the gluon content of nuclei is
growing, even if restricted to the collinear quantities. The collinear structure function for gluons in spin-1 targets was

The collinear correlators after integrating over the momentum, 
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part of the double-helicity flip Compton amplitude of367

A++,�� is associated with a set of gluon operators368

which appear to have vanishing matrix elements asso-369

ciated with states with spin less than one. Therefore,370

�(x,Q2) was defined as,371

�(x,Q2) =
↵s(Q2)

2⇡
TrQ

2x2

Z
1

x

dy

y3
�
gx̂(x,Q

2)� gŷ(x,Q
2)
�
, (14)

which represents the gluon transversity related to372

the probability distributions gx̂(x,Q2) and gŷ(x,Q2) of373

gluons with momentum fraction x and linearly polar-374

ized along the x̂ and ŷ directions respectively, with the375

target polarization along the x̂ direction. Q is the quark376

charge matrix. Q = diag
�
2

3
,� 1

3
,� 1

3

�
. The Mellin mo-377

ments of �(x,Q2) were calculated in lattice QCD [91,378

92]. A dedicated proposal to measure the gluon transver-379

sity in SIDIS (complementary to DY as we propose in380

this paper) with a transversely tensor-polarized deuteron381

target is in progress [93].382

Similarly to the quark transversity, Eq. 9, the gluon383

transversity is written as [74]384

hg
1TT (x) ⇠ ImA++,�� ⇠ �(x,Q2), (15)

where the spin flip of �s = 2(|�f � �i| = |⇤f �385

⇤i| = 2) is necessary for gluon transversity (see Fig. 2).386

The simplest and stable spin-1 nucleus is the deuteron,387

which is our choice for the future experiment to study388

gluon transversity. By angular momentum conserva-389

tion, the linear polarization of a gluon is zero for the390

spin-1/2 hadron. Naturally, linear polarization is mea-391

sured by an operator that flips helicity by two units.392

Since no helicity is absorbed by the space-time part of393

the definition of the parton densities (the integrals are394

azimuthally symmetric), the helicity flip in the operator395

must correspond to a helicity flip term in the density.396

397

The gluon correlation function in the deuteron at398

twist-2 is [68,70,74],399

�↵�
g (x) ⌘

Z
d2pT�

↵�
g (x, ~pT ) (16)

=
1

2

h
�g↵�T fg

1
(x) + i✏↵�T SLg

g
1
(x)� g↵�T SLLf

g
1LL (x)

+S↵�
TTh

g
1TT (x)

i
(17)

where fg
1
is the unpolarized gluon distribution func-400

tion, gg
1
is the longitudinally-polarized distribution func-401

tion, fg
1LL is the longitudinally tensor polarized distri-402

bution function, and hg
1TT is the transversely tensor403

polarized distribution function, or the gluon transver-404

sity. It is clear that the matrix elements S↵�
TT must be405

finite in order to measure this observable.406

For optimal gluon transversity extraction, the key is407

in the target configuration utilized to selectively reduce408

all unneeded terms in the spin tensor to zero, preserving409

only the terms that relate to the observable of interest.410

In this case, having a finite Sxx
TT gives the desired access411

to the gluon transversity. Making the other terms zero412

or negligible is advantageous to a clean measurement.413

In this case, the polarization vectors Ex and Ey can be414

used to provide linear polarization, and both consist of415

a deuteron tensor polarized in the transverse plane to416

the beam-line. The di↵erence in the cross-section from417

these polarization states can be used in an asymme-418

try to build an observable to extract gluon transversity,419

which can be written as [74],420

AExy =
d�pd!µ+µ�X (Ex � Ey) /

�
d⌧dq2T d�dy

�

d�pd!µ+µ�X (Ex + Ey) / (d⌧dq2T d�dy)
. (18)

Based on the polarization vector di↵erence, an equiv-421

alency can be derived using the unpolarized combina-422

tion vector ~Ex + ~Ey + ~Ez := U , resulting in zeros for423

all terms in the spin polarization vector and tensor.424

We can then write ~Ex � ~Ey ⌘ 2 ~Ex + ~E0 � U and425

~Ex+ ~Ey ⌘ U� ~E0. If we use f
g
1LL ⇡ 0 for gluons [37,94]426

such that the di↵erential cross-section from the longi-427

tudinal tensor polarized part is small compared to the428

transverse tensor polarized part, then it can be written429

as [37],430

AExy =
d�pd!µ+µ�X (2Ex � U) /

�
d⌧dq2T d�dy

�

d�pd!µ+µ�XU/ (d⌧dq2T d�dy)
. (19)

Therefore, the generalized experimental gluon transver-431

sity asymmetry is [37],432

AExy =
2�Ex

pd!µ+µ�X � �U
pd!µ+µ�X

�U
pd!µ+µ�X

=
1

fQ

2NEx

pd!µ+µ�X �NU
pd!µ+µ�X

NU
pd!µ+µ�X

, (20)

where Q is the tensor polarization of the target en-433

semble pertaining to the tensor polarized cross-section434

events NEx , and f is the dilution factor, which rep-435

resents the ratio of polarizable deuterons to the total436

number of nucleons in the target material.437

There are several ways to build a gluon transversity438

asymmetry using di↵erent quantization axes and polar-439

ized target configurations, but this equivalence provides440

a way to compare directly with predictions and requires441

the same polarized target magnet and orientation al-442

ready in place in the SpinQuest experimental hall. We443

Kumano et al (2020)
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The decomposition of the correlators in terms of relevant structures allowed by symmetry and scaling by the non-
perturbative TMD functions is now a common and advantageous practice. This enables a singling out of the relevant
quantities that contribute to the cross-section of a selected process. The complete parametrization of the TMD
correlator for quarks, including the T -odd structure, is given in [53] for spin-1/2 hadrons, and complemented in [54, 62]
with the addition of spin-1 hadrons with the tensor polarization parts for quarks. For gluons, the first parametrization
was performed in [55], followed by [56], with extended parameterization in [57]. The work on gluons indicate that
some distributions are accessible in polarized nuclei. Exploring nuclei in pursuit of gluonic content of hadrons of spin
greater than 1/2 is highly attractive, especially because they are expected to be accessible at high-x. Looking at novel
gluon distributions, not related to the ones from the nucleons, is very interesting in the study of exotic e↵ects in the
binding of nuclei, as well as their dynamic contribution to spin and mass.
To consider the application to the full spin-1 target including the tensor polarization components, we have to

start with the deuteron polarization density matrix. In being consistent with the popular work on the subject, the
subscript U is used to denote unpolarized hadrons, the subscripts L and T are used to denote respectively longitudinal
and transverse vector polarization, and the subscripts LL, LT , and TT are used to denote longitudinal-longitudinal,
longitudinal-transverse, and transverse-transverse tensor polarization. The tensor polarizations have double index,
indicating a specific orientation of the tensor polarized state (MJ = 0) of the spin-1 target. It is also necessary to
use superscripts to indicate which axis is the axis of quantization. For example, SLL is the longitudinal component of
the spin tensor, and it is oriented longitudinally along the z-axis, or the beam-line. However, the S

x

TL
term indicates

a tensor polarization pointed ⇡/4 with respect to the beam line in the xz-plane, where the x-axis is pointing directly
vertical transverse to the beam-line, and the y-axis is pointing sideways transverse to the beam-line.
The density matrix has the form:

⇢(S, T ) =
1

3

✓
I +

3

2
S
i⌃i + 3T ij⌃ij

◆
, (18)

where the components S
i of the vector S represent the vector part of the spin. The tensor part of the spin state is

represented by the T
ij by demanding PµT

µ⌫ . With this notation in mind, the density matrix is parameterized in
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S
µ = SL

P
µ

M
+ S

µ

T
�MSLn

µ (19)

and,

T
µ⌫ =

1

2

"
2

3
SLLg

µ⌫

T
+

4

3
SLL

P
µ
P

⌫

M2
+

S
{µ
LT

P
⌫}

M
+ S

µ⌫

TT
�4

3
SLLP

{µ
n
⌫} �MS

{µ
LT

n
⌫} +

4

3
M

2
SLLn

µ
n
⌫

�
.(20)

The density matrix would take the form,

⇢(S, T ) =

0

BBB@

1
3 + SL

2 + SLL

3
S

x

T
�iS

y

T

2
p
2

+
S

x

LT
�iS

y

LT

2
p
2

S
xx

TT
�iS

xy

TT

2

S
x+iS

y

T

T

2
p
2

+
S

x

LT
+iS

y

LT

2
p
2

1
3 � 2SLL

3
S

x

T
�iS

y

T

2
p
2

� S
x

LT
�iS

y

LT

2
p
2

S
xx

TT
+iS

xy

TT

2
S

x

T
+iS

y

T

2
p
2

� S
x

LT
+iS

y

LT

2
p
2

1
3 � SL

2 + SLL

3

1

CCCA
. (21)

To explore both transversity of quarks and gluons with the same spin-1 target, we must take a closer look at the
leading-twist correlators for both. For parametrization of the quarks, the leading-twist TMD correlator is,
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Using the indicated notation, the quark correlator is organized in terms of target polarization such that,

� = �U + �L + �T + �LL + �LT + �TT ,

and the decomposition is expressed as:
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where ⌃i are 3⇥ 3 spin matrices for the deuteron,230
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and ⌃ij are spin tensors defined by,231
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and I is the 3⇥ 3 identity matrix [62]. The spin vector232

(S) and tensor (T ) are parameterized in the rest frame233

of the deuteron as,234
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where Sx
T , S
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T , SL are the spin-vector components, and235

Sxx
TT , Sxy

LT ,S
x
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y
LT , SLL are the spin-tensor compo-236

nents of the deuteron.237

The deuteron polarization vector ~E is,238
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where ~E+, ~E0, and ~E� indicate the three possible spin239

states of the deuteron. Here, the polarizations ~Ex and240

~Ey are spin-1 alignment-dependent states and can be241

used to orient the gluons in a linearly polarized config-242

uration in the target, based on the gluon transversity243

distributions defined by the matrix elements between244

linearly polarized states. The spin vector and tensor245

are written in terms of the polarization vector ~E of the246

deuteron as,247

~S = Im
⇣
~E⇤

⇥ ~E
⌘
, Tij =

1

3
�ij � Re (E⇤

i Ej) . (8)

The polarization vectors ~Ex, ~E0, and ~Ey are all in-248

dicative of a purely tensor polarized target with spin249

quantization axis along the x, z, and y axis respec-250

tively. From Eq. 8, we get for ~Ex a vector polarization251

of Sx
T = Sy

T = SL = 0, with SLL = 1/2, Sxx
T = �1,252

and Sxy
TT = Sx

LT = Sy
LT = 0. For ~Ey, a vector po-253

larization of Sx
T = Sy

T = SL = 0, with SLL = 1/2,254

Sxx
TT = +1 and Sxy

TT = Sx
LT = Sy

LT = 0 is obtained.255

For ~E0, a vector polarization of Sx
T = Sy

T = SL = 0,256

with SLL = �1, Sxx
TT = 0 and Sxy

TT = Sx
LT = Sy

LT = 0257

is obtained. We can then use combinations to optimize258

such that ~Ex � ~Ey yields Sx
T = Sy

T = SL = 0, with259

SLL = 0, Sxx
TT = �2 and Sxy

TT = Sx
LT = Sy

LT = 0.260

Also, 2 ~Ex � ~E0 yields Sx
T = Sx

T = Sx
T = Sx

T = 0, with261

SLL = 0, Sxx
T = �2, and Sxy

TT = Sx
LT = Sy

LT = 0. With262

either of these configurations, the longitudinal tensor263

polarization is zero as well as any vector polarization264

contributions, and the critical term Sxx
TT is also maxi-265

mized.266

3.1 Sea-quarks transversity distributions and the267

neutron Electric Dipole Moment (EDM)268

The general form of the hadronic tensor from [69] con-269

tains 48 structure functions. In particular, there are270

108 structure functions for the spin-1 target, with 60271

of them being associated with the tensor structure of272

the deuteron. The structure functions of the nucleon273

are given by the imaginary part of forward scattering274

amplitudes by the optical theorem. Figure 3 shows the275

parton-hadron forward scattering amplitudes, which can276

be written asA⇤i�i,⇤f�f with the initial and final hadron277

helicities ⇤i and ⇤f , and with parton helicities �i and278

�f , such that the PDFs can be related to the helicity279

amplitudes by [70,71], where the transversity distribu-280

tion is281

�T q(x) = q"(x)� q#(x) ⇠ Im (A"","" �A"#,"#) . (9)

Fig. 3 Parton-hadron forward scattering amplitude
A⇤i�i,⇤f�f

with the hadron helicities ⇤i and ⇤f and
parton helicities �i and �f [72].

Summing over the polarizations of the produced lep-282

tons, the expression for the Drell-Yan cross-section us-283

ing a transversely polarized nucleon target contains three284

transverse spin-dependent asymmetries. This part of285

the di↵erential cross-section can be expressed as [73,286
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quantization axis along the x, z, and y axis respec-250

tively. From Eq. 8, we get for ~Ex a vector polarization251

of Sx
T = Sy

T = SL = 0, with SLL = 1/2, Sxx
T = �1,252

and Sxy
TT = Sx

LT = Sy
LT = 0. For ~Ey, a vector po-253

larization of Sx
T = Sy

T = SL = 0, with SLL = 1/2,254

Sxx
TT = +1 and Sxy

TT = Sx
LT = Sy

LT = 0 is obtained.255

For ~E0, a vector polarization of Sx
T = Sy

T = SL = 0,256

with SLL = �1, Sxx
TT = 0 and Sxy

TT = Sx
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LT = 0257

is obtained. We can then use combinations to optimize258

such that ~Ex � ~Ey yields Sx
T = Sy

T = SL = 0, with259
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T = 0, with261
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LT = Sy

LT = 0. With262

either of these configurations, the longitudinal tensor263

polarization is zero as well as any vector polarization264

contributions, and the critical term Sxx
TT is also maxi-265

mized.266

3.1 Sea-quarks transversity distributions and the267

neutron Electric Dipole Moment (EDM)268

The general form of the hadronic tensor from [69] con-269

tains 48 structure functions. In particular, there are270

108 structure functions for the spin-1 target, with 60271

of them being associated with the tensor structure of272

the deuteron. The structure functions of the nucleon273

are given by the imaginary part of forward scattering274

amplitudes by the optical theorem. Figure 3 shows the275

parton-hadron forward scattering amplitudes, which can276

be written asA⇤i�i,⇤f�f with the initial and final hadron277

helicities ⇤i and ⇤f , and with parton helicities �i and278

�f , such that the PDFs can be related to the helicity279

amplitudes by [70,71], where the transversity distribu-280

tion is281

�T q(x) = q"(x)� q#(x) ⇠ Im (A"","" �A"#,"#) . (9)

Fig. 3 Parton-hadron forward scattering amplitude
A⇤i�i,⇤f�f

with the hadron helicities ⇤i and ⇤f and
parton helicities �i and �f [72].

Summing over the polarizations of the produced lep-282

tons, the expression for the Drell-Yan cross-section us-283

ing a transversely polarized nucleon target contains three284

transverse spin-dependent asymmetries. This part of285

the di↵erential cross-section can be expressed as [73,286
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�f , such that the PDFs can be related to the helicity279

amplitudes by [70,71], where the transversity distribu-280

tion is281

�T q(x) = q"(x)� q#(x) ⇠ Im (A"","" �A"#,"#) . (9)

Fig. 3 Parton-hadron forward scattering amplitude
A⇤i�i,⇤f�f

with the hadron helicities ⇤i and ⇤f and
parton helicities �i and �f [72].

Summing over the polarizations of the produced lep-282

tons, the expression for the Drell-Yan cross-section us-283

ing a transversely polarized nucleon target contains three284

transverse spin-dependent asymmetries. This part of285

the di↵erential cross-section can be expressed as [73,286
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tions are T -odd [70]. This is an important distinction236

and will help to impose constraints with data from mul-237

tiple future experiments.238

3 Theory239

Polarizations of a composite object of fundamental par-240

ticles can be explained in general by using the spin-241

density matrix because it relates to the matrix elements242

or the expectation value over the ensemble for the spin243

operators. The spin-density matrix for spin-1/2 is given244

by,245

⇢
(1/2) =

1

2
(1 + si�i) , (1)

where i = 1, 2, 3, with the Pauli matrix �i, and the spin-246

polarization vector is given by si = h�ii = Tr(⇢
(1/2)�i).247

The spin-density matrix for spin-1 is given by,248

⇢
(1)

=
1

3

✓
1 +

3

2
Si⌃i + 3Tij⌃ij

◆
, (2)

where ⌃i are 3⇥ 3 spin matrices for the deuteron,249
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1
p
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@
0 1 0
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1

A , ⌃y =
i
p
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@
0 �1 0
1 0 �1
0 1 0

1
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0 0 �1

1

A , (3)

and ⌃ij are spin tensors defined by,250

⌃ij =
1

2
(⌃i⌃j +⌃j⌃i)�

2

3
I�ij (4)

and I is the 3⇥ 3 identity matrix [64]. The spin vector251

(S) and tensor (T ) are parameterized in the rest frame252

of the deuteron as,253

S = (Sx
T , S

y
T , SL) (5)
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A (6)

where Sx
T , S

y
T , SL are the spin-vector components, and254

Sxx
TT , Sxy

LT ,S
x
LT ,S

y
LT , SLL are the spin-tensor compo-255

nents of the deuteron.256

The deuteron polarization vector ~E is,257

~E0 = (0, 0, 1)
~E± = 1p

2
(⌥1,�i, 0)

~Ex = 1p
2

⇣
~E� � ~E+

⌘
= (1, 0, 0)

~Ey = ip
2

⇣
~E� + ~E+

⌘
= (0, 1, 0)

(7)

where ~E+, ~E0, and ~E� indicate the three possible spin258

states of the deuteron. Here, the polarizations ~Ex and259

~Ey are spin-1 alignment-dependent states and can be260

used to orient the gluons in a linearly polarized config-261

uration in the target, based on the gluon transversity262

distributions defined by the matrix elements between263

linearly polarized states. The spin vector and tensor264

are written in terms of the polarization vector ~E of the265

deuteron as,266

~S = Im
⇣
~E⇤

⇥ ~E
⌘
, Tij =

1

3
�ij � Re (E⇤

i Ej) . (8)

The polarization vectors ~Ex, ~E0, and ~Ey are all in-267

dicative of a purely tensor polarized target with spin268

quantization axis along the x, z, and y axis respec-269

tively. From Eq. 8, we get for ~Ex a vector polarization270

of Sx
T = Sy

T = SL = 0, with SLL = 1/2, Sxx
T = �1,271

and Sxy
TT = Sx

LT = Sy
LT = 0. For ~Ey, a vector po-272

larization of Sx
T = Sy

T = SL = 0, with SLL = 1/2,273

Sxx
TT = +1 and Sxy

TT = Sx
LT = Sy

LT = 0 is obtained.274

For ~E0, a vector polarization of Sx
T = Sy

T = SL = 0,275

with SLL = �1, Sxx
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LT = 0276

is obtained. We can then use combinations to optimize277

such that ~Ex � ~Ey yields Sx
T = Sy
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LT = Sy
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T = Sx

T = Sx
T = Sx

T = 0, with280

SLL = 0, Sxx
T = �2, and Sxy

TT = Sx
LT = Sy

LT = 0. With281

either of these configurations, the longitudinal tensor282

polarization is zero as well as any vector polarization283

contributions, and the critical term Sxx
TT is also maxi-284

mized.285

3.1 Sea-quarks transversity distributions and the286

neutron Electric Dipole Moment (EDM)287

The general form of the hadronic tensor from [71] con-288

tains 48 structure functions. In particular, there are289

108 structure functions for the spin-1 target, with 60290

of them being associated with the tensor structure of291

the deuteron. The structure functions of the nucleon292

are given by the imaginary part of forward scattering293

amplitudes by the optical theorem. Figure 1 shows the294

parton-hadron forward scattering amplitudes, which can295

be written asA⇤i�i,⇤f�f with the initial and final hadron296

helicities ⇤i and ⇤f , and with parton helicities �i and297

�f , such that the PDFs can be related to the helicity298

amplitudes by [72,73], where the transversity distribu-299

tion is300

�T q(x) = q"(x)� q#(x) ⇠ Im (A"","" �A"#,"#) . (9)

Summing over the polarizations of the produced lep-301

tons, the expression for the Drell-Yan cross-section us-302

ing a transversely polarized nucleon target contains three303
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Fig. 1. The potential values of tensor polarization Qn as a function of vector
polarization Pn. The red line corresponds to the Boltzmann condition, while the blue
triangular area corresponds to all allowed polarizations for the spin-1 system.

conditions, the system is in Boltzmann equilibrium and Qn can be
calculated directly from Pn as,

Qn = 2 *
t

4 * 3P 2
n . (6)

This relationship is indicated in Fig. 1 by the red line. It is clear from the
figure that vector polarization should be as high as possible to achieve
high tensor polarization when the Boltzmann condition applies across
the frequency domain.

Typically, the scale of polarization enhancement from DNP depends
greatly on the material in use. High-vector polarizations are often
at odds with high beam intensity and radiation resistance. Beam-
heating effects reduce the polarization of the target. Some materials
can achieve high polarization but are only applicable as low-intensity,
low-temperature targets due to their poor radiation resistance.

Selective semi-saturating RF radiation (ss-RF) [1] can be used to
manipulate the energy levels by driving transitions at select positions
in the NMR line at predetermined degrees of saturation. This technique
can increase, decrease, or modulate the target’s tensor polarization.
It can also connect spin reservoirs to transfer polarization. Finally, it
can drive the polarization of one spin system to zero to eliminate the
contamination in a spin asymmetry measurement. An example of the
latter is NH3, where the nitrogen polarization can contribute to the
asymmetry of polarized proton measurement. Eliminating the nitrogen
polarization without depleting the proton polarization reduces the error
in the proton asymmetry and improves the overall figure of merit of the
experiment.

2.2. Deuteron lineshape

The deuteron (or any other spin-1 particle without cubic symmetry)
has an NMR lineshape described by two peaks which form a doublet
function, where both peaks have an independent intensity but where
the shape of the peak is symmetric about zero in the frequency domain.
A single peak is described below with a dimensionless position in the
domain, R = !*!D

3!Q
, with ! being the probed frequency, `!D being the

deuteron Zeeman energy, and `!Q being the quadrupole energy [11].

The intensity in the NMR line as a function of R can be expressed as,
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1
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with

X2 =
˘

� 2 + (1 * ✏R * ⌘ cos 2�)2 (8)

Y =
˘

3 * ⌘ cos 2�

cos ↵ = (1 * ✏R * ⌘ cos 2�)
X2

where ✏ = ±1 determines whether the tip of the peak is to be right
or left of R = 0, respectively. � and ⌘ cos 2� are parameters that are
material dependent and are approximately 0.05 and 0.04 respectively.
These parameters are determined for ND3 from experimental data [16].

The absorption line intensities, written as I+(R) and I*(R), can be
used to describe the polarizations at any frequency position in the
line R, which represents the polarizations of the target sample at a
particular frequency. In this regard, the vector polarization can be
written as the sum of the intensities, P (R) = C(I+(R) + I*(R)), and the
difference describes the tensor polarization Q(R) = C(I+(R) * I*(R)).
Integrating over R gives the total polarizations which can be written
as,

P = C(I+ + I*) (9)

Q = C(I+ * I*), (10)

where C is a calibration constant and I± is the integrated value,
total area, of I±(R) over the two absorption lines in Boltzmann equi-
librium. The Boltzmann equilibrium connection between vector and
tensor polarization, approximated in Eq. (6), dictates both the ratio
of the intensities and the corresponding relations, Eq. (9) and (10).
In this equilibrium state, the two absorption lines in the signal result
from the distribution over the polar angle between the direction of the
electric field gradient and the local magnet field vectors [11,14,16],
preserving the general shape of the NMR line with only the scale of the
intensities I+ and I* changing with respect to one another for different
polarization values.

2.3. Polar angle dependence

It is critical to be able to describe certain parts of the absorption
lines in terms of specific frequencies or frequency bins. This is necessary
for the positions and bins in the polar angle between the electric field
gradient and the holding field ✓ as well. The intensities I+ and I*
can be more naturally described in terms of ✓, shown in Fig. 2. The
intensity as a function of frequency position R of the deuteron Pake
doublet, with ✓ = ⇡_2 corresponding to the spin orientation, where
the principal axis of the coupling interaction is perpendicular to the
magnetic holding field. This is in contrast to ✓ = 0, which corresponds
to the spin orientation in which the principal axis of the coupling
interaction is parallel to the magnetic holding field. The position R = 0
is the common angle to both intensities and corresponds to the angle
✓ = cos*1

˘

1_3. The total vector polarization is shown as the red line,
the sum of the blue and green lines. The total tensor polarization is the
difference between these two.

The two absorption lines for each intensity represent the orientation
of different spins, the common ✓ seen at R and *R in the signal
is indicative of a shared energy level by the spin population. The
population of these energy levels, shown in Fig. 3, or population density
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Fig. 1. The potential values of tensor polarization Qn as a function of vector
polarization Pn. The red line corresponds to the Boltzmann condition, while the blue
triangular area corresponds to all allowed polarizations for the spin-1 system.

conditions, the system is in Boltzmann equilibrium and Qn can be
calculated directly from Pn as,

Qn = 2 *
t

4 * 3P 2
n . (6)

This relationship is indicated in Fig. 1 by the red line. It is clear from the
figure that vector polarization should be as high as possible to achieve
high tensor polarization when the Boltzmann condition applies across
the frequency domain.

Typically, the scale of polarization enhancement from DNP depends
greatly on the material in use. High-vector polarizations are often
at odds with high beam intensity and radiation resistance. Beam-
heating effects reduce the polarization of the target. Some materials
can achieve high polarization but are only applicable as low-intensity,
low-temperature targets due to their poor radiation resistance.

Selective semi-saturating RF radiation (ss-RF) [1] can be used to
manipulate the energy levels by driving transitions at select positions
in the NMR line at predetermined degrees of saturation. This technique
can increase, decrease, or modulate the target’s tensor polarization.
It can also connect spin reservoirs to transfer polarization. Finally, it
can drive the polarization of one spin system to zero to eliminate the
contamination in a spin asymmetry measurement. An example of the
latter is NH3, where the nitrogen polarization can contribute to the
asymmetry of polarized proton measurement. Eliminating the nitrogen
polarization without depleting the proton polarization reduces the error
in the proton asymmetry and improves the overall figure of merit of the
experiment.

2.2. Deuteron lineshape

The deuteron (or any other spin-1 particle without cubic symmetry)
has an NMR lineshape described by two peaks which form a doublet
function, where both peaks have an independent intensity but where
the shape of the peak is symmetric about zero in the frequency domain.
A single peak is described below with a dimensionless position in the
domain, R = !*!D

3!Q
, with ! being the probed frequency, `!D being the

deuteron Zeeman energy, and `!Q being the quadrupole energy [11].

The intensity in the NMR line as a function of R can be expressed as,
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with
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where ✏ = ±1 determines whether the tip of the peak is to be right
or left of R = 0, respectively. � and ⌘ cos 2� are parameters that are
material dependent and are approximately 0.05 and 0.04 respectively.
These parameters are determined for ND3 from experimental data [16].

The absorption line intensities, written as I+(R) and I*(R), can be
used to describe the polarizations at any frequency position in the
line R, which represents the polarizations of the target sample at a
particular frequency. In this regard, the vector polarization can be
written as the sum of the intensities, P (R) = C(I+(R) + I*(R)), and the
difference describes the tensor polarization Q(R) = C(I+(R) * I*(R)).
Integrating over R gives the total polarizations which can be written
as,

P = C(I+ + I*) (9)

Q = C(I+ * I*), (10)

where C is a calibration constant and I± is the integrated value,
total area, of I±(R) over the two absorption lines in Boltzmann equi-
librium. The Boltzmann equilibrium connection between vector and
tensor polarization, approximated in Eq. (6), dictates both the ratio
of the intensities and the corresponding relations, Eq. (9) and (10).
In this equilibrium state, the two absorption lines in the signal result
from the distribution over the polar angle between the direction of the
electric field gradient and the local magnet field vectors [11,14,16],
preserving the general shape of the NMR line with only the scale of the
intensities I+ and I* changing with respect to one another for different
polarization values.

2.3. Polar angle dependence

It is critical to be able to describe certain parts of the absorption
lines in terms of specific frequencies or frequency bins. This is necessary
for the positions and bins in the polar angle between the electric field
gradient and the holding field ✓ as well. The intensities I+ and I*
can be more naturally described in terms of ✓, shown in Fig. 2. The
intensity as a function of frequency position R of the deuteron Pake
doublet, with ✓ = ⇡_2 corresponding to the spin orientation, where
the principal axis of the coupling interaction is perpendicular to the
magnetic holding field. This is in contrast to ✓ = 0, which corresponds
to the spin orientation in which the principal axis of the coupling
interaction is parallel to the magnetic holding field. The position R = 0
is the common angle to both intensities and corresponds to the angle
✓ = cos*1

˘

1_3. The total vector polarization is shown as the red line,
the sum of the blue and green lines. The total tensor polarization is the
difference between these two.

The two absorption lines for each intensity represent the orientation
of different spins, the common ✓ seen at R and *R in the signal
is indicative of a shared energy level by the spin population. The
population of these energy levels, shown in Fig. 3, or population density

3

Under normal DNP-enhancement, conditions, the system is in 
Boltzmann equilibrium and 𝑄𝑛 can be calculated directly from 𝑃𝑛 
 

Three Principles for Enhanced Tensor Polarization
v  Differential Binning
v  Spin Temperature Consistency
v  Rate Response

See Talks by Dustin, Forhad, Devin
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Fig. 11. The ss-RF is applied at the frequency position *R which depletes vector
polarization in the affected bins while also increasing the vector polarization at R.

We rewrite the above equation expressing the known transitions driving
from the m = 0 energy level to the m = *1. This is driven at a rate
proportional to the energy-level population and strength of the field
⇠. The parameter ⇠ is linearly dependent on the amplitude of the ss-RF
controllable through the RF generator. Here we leave out the redundant
argument *R for simplicity. The final intensity is then,

If* = C
⌅�

⇢0 * ⇠⇢0
�

*
�

⇢* + ⇠⇢0
�⇧

(31)

If* = C
⌅�

⇢0 * ⇢*
�

*
�

2⇠⇢0
�⇧

⌃ ÜI i*(*R) = *2C⇠⇢0.

A similar expression can be written for the I+ = C(⇢+ * ⇢0) intensity,
which again only drives the two energy levels to equalize. For a higher
population in the m = +1 energy level than in the m = 0 energy level,
the population is driven from +1 ô 0 with the resulting intensity If at
*R being,

If+ (*R) = Ii+(*R) + ÜI i+(*R) (32)

As the population ⇢+ decreases due to RF-driven transitions, the pop-
ulation ⇢0 increases at the same exact rate. Leaving out the redundant
argument *R for simplicity, the final intensity is,

If+ = C
⌅�

⇢+ * ⇠⇢+
�

*
�

⇢0 + ⇠⇢+
�⇧

(33)

If+ = C
⌅�

⇢+ * ⇢0
�

*
�

2⇠⇢+
�⇧

⌃ ÜI i+(*R) = *2C⇠⇢+.

These results are for the frequency position *R where the RF is applied,
but as previously outlined there are two frequency positions in R the
NMR line for a single ✓ bin. The corresponding R position for the
selected ✓ bin is opposite in sign to *R which we can write as just R.
The change in intensity at R also has two components I+ and I*. The
changes in these intensities are a direct result of the RF manipulation
at *R, such that at I*(*R) the RF-driven transitions result in a loss of
population in the m = 0 energy level which is seen as an increase in
intensity at I+(R) such that,

If+ (R) = Ii+(R) + ÜI i+(R). (34)

As the population, ⇢0 decreases due to RF-driven transitions, the inten-
sity in the opposing absorption line I+ = C(⇢+ * ⇢0) increases because

the population in ⇢0 is being reduced. Again leaving out the redundant
argument *R for simplicity, the final intensity is,

If+ = C
⌅�

⇢+
�

*
�

⇢0 * ⇠⇢0
�⇧

(35)

If+ = C
⌅�

⇢+ * ⇢0
�

+
�

⇠⇢0
�⇧

⌃ ÜI i+(R) = +C⇠⇢0.

The other component to the change in intensity at R comes from I*.
The change in this intensity is a direct result of the RF manipulation at
*R, such that at I*(*R) the RF driven transitions from +1 ô 0 so the
loss of population in the m = +1 energy level is seen as an increase in
intensity at I*(R) such that,

If* (R) = Ii*(R) + ÜI i*(R). (36)

As the population, ⇢+ decreases due to RF-driven transitions the inten-
sity in the opposing absorption line I* = C(⇢0 * ⇢*) increases because
the population in ⇢0 has increased. The final intensity is then,

If* = C
⌅�

⇢0 + ⇠⇢+
�

*
�

⇢*
�⇧

(37)
If* = C

⌅�

⇢0 * ⇢*
�

+
�

⇠⇢+
�⇧

⌃ ÜI i*(R) = +C⇠⇢+.

The change in intensity at the RF-frequency position can be written
in terms of the change in intensity at the frequency position in the
opposing absorption lines provided by the above equations of motion
at *R and R such that,

ÜI+(R) = * 1
2
ÜI*(*R)

ÜI*(R) = * 1
2
ÜI+(*R).

This resulting set of equations tells us that the hole in the NMR
line at the frequency position where the RF is applied (*R) depletes
twice as fast as the intensity growth in the opposing absorption line
at (R). Integrating over the frequency positions R provides a direct
relationship between the area lost (Alost) at the RF location and the
area gained (Agained) in the opposing absorption lines.

Agained = 1
2Alost. (38)

Eq. (38) is an exact and simple expression that can be used to quickly
calculate the amount of enhancement expected from ss-RF given any
particular loss in an absorption line. This can be done for each ab-
sorption line separately or as a sum. These equations of motion could
then be used directly to calculate the exact relative loss and gain for
each absorption line for any ss-RF application. In the next section, we
introduce a method that, when combined with Eq. (38), eliminates the
need for the rate equations altogether.

5. Spin temperature consistence

All of the dashed relaxation pathways shown in Fig. 10 depolarize
the target to a bulk polarization that is in spin temperature equilib-
rium (TE) across the frequency domain. Similarly, microwaves produce
bulk polarization in spin temperature equilibrium across the frequency
domain. The target material is in conditions of low temperature and
high magnetic field, with some free radical scattered through its glassy
matrix structure. The low temperature and high magnetic field produce
high TE polarization of the unpaired electron in the radical. Thermal
equilibrium between two states of different energies allows the use of
microwaves at a frequency difference between the electron ESR fre-
quency and the nucleons’ (or nuclei) NMR frequency. The microwaves
drive transitions from the lower hyperfine state to the higher one.
The radical then rapidly de-excites to one of the lower states. If it
de-excites to the original lower level, another microwave photon can
excite it again. The nucleons (or nuclei) in the original state are
pumped into the other low hyperfine state, resulting in high nuclear
polarization. Without continuous microwaves or other RF pumping,
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29

FIG. 19. Drawing of the ss-RF cup and coil used for the set of experiments discussed. The microwaves come from the gold
plated horn shown on the target insert. The coils are designed to produce a homogeneous RF-field pointing orthogonal to the
holding field. These specialized coils can perform AFP and ss-RF and still allow the DNP microwave to penetrate the target
cell. Figure from Carlos Ramirez of UVA polarized target group.
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FIG. 20. The tensor polarization shown from the di↵erence of the intensities I+(R) and I�(R). Figure from [122].

Vector polarization is the sum of I+(R) and I�(R) over the frequency domain in R. Similarly, a tensor polarization plot is
shown in Figure 20 represents the di↵erence of I+(R) and I�(R) over the frequency domain in R. By selectively applying the
ss-RF, it is possible to reduce the regions in the Pzz line that drop below the x-axis. When this is done simultaneously over all
negative regions in the domain, the tensor polarization is enhanced.

5. Semi-Saturating RF Enhancement

To optimize the enhancement, the ss-RF excitation must minimize the negative tensor polarization for all R while minimizing
the reduction to the overall area of the NMR signal from the process. The two critical regions lie around R⇠⌥1 (✓ ⇡ ⇡/2) and
±1 < R < ±2 (✓ ⇡ 0). For positive vector polarization, the greatest integrated tensor polarization enhancement is achieved
through selective excitation to reduce the size of the smaller transition area with intensity I�. This can be thought of as
minimizing the negative parts of the tensor polarization, shown in Fig. 20. In both figures, the y-axis would normally be
millivolts scaled by a multiplicative factor CE , which is sensitive to the characteristics of the NMR coil, such as inductance,

Tensor Polarization Enhancement
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as the pretzelosity h
?
1T [58], but considerably less exists for the sea. Beyond this, there is essentially no experimental

information on any of the other functions. In Fig. 4, the list is shown of leading twist quark TMDs for the spin-1
target, which contain 3 additional T -even and 7 additional T -odd TMDs compared to spin-1/2 nucleons. The rows
indicate target polarization, and the columns indicate quark polarization. The bold-face functions survive integration
over transverse momenta.

FIG. 4. The list of leading twist quark TMDs for the spin-1 target, which contain 3 additional T -even and 7 additional T -odd
TMDs (all T -odd are shown in red) compared to spin-1/2 nucleons. The blue indicates collinear PDFs. Here, the rows indicate
target polarization, and the columns indicate quark polarization. The bold-face functions survive integration over transverse
momenta.

To zero in on some observables of interest, we can integrate over transverse momenta and force many functions to
vanish. The collinear correlator can then be parametrized as,

�(x;P, S, T ) =
1

2


6 Pf1(x) + SL�5Pg1(x) +

[ 6 BT , 6 P ] �5
2

h1(x)

+SLLPf1LL(x) +
[ 6 BLT , P ]

2
ih1LT

�
x, k

2
T

��
.

(23)

So, even for the spin-1 target (deuteron), the quark PDFs for the spin-1/2 constituents are easiest to access. They,
of course, represent the distribution of quarks in the longitudinal momentum space of unpolarized f1, longitudinally
polarized g1, and transversely polarized h1 quarks in the proton and neutron. For the polarized cases, the neutron
dominates in its contribution to the observables, as it caries more than 90% of the deuteron polarization.
Then, there are the extra collinear functions from the tensor polarization contributions f1LL and h1LT . For quarks,

there is a measurement of f1LL [59] indirectly as the b1 structure function in DIS. This observable deserves its own
Drell-Yan experimental e↵ort (mentioned later). Information on sea-quark f1LL specifically is needed [60, 61]. This is
also an attractive function because it contains non-nucleonic degrees of freedom that are detectable in nuclei. There
is also the tensor polarized observable h1LT , which is T -odd and simultaneously survives integration over transverse
momenta. At first order, the function h1LT vanishes due to the gauge link structure and the behavior under naive
time reversal transformations. In any case, these tensor polarized observables are mitigated when the spin-1 target
has zero tensor polarization but some finite vector polarization.
Naturally, valence quarks have been the focus for the last few decades. There has also been considerable theoret-

ical e↵ort in the last several years to understand the gluonic content of hadrons. Gluon observables can be easily
overwhelmed by the valence quarks depending on the target and the kinematics available at the facility. However,
the structure and dynamics produced by the gluons and the quark sea are turning out to be critical to answer many
pressing questions, and they must be studied in detail.
There is a clear need for sea-quark specific experiments; however, the information on gluon distributions is far more

scarce and essentially restricted to the collinear gluon PDFs for spin-1/2 targets. Gluon TMDs are mostly unknown
because it is generally very challenging to access the relevant kinematic regions for a spin-1/2 target. What little
information that is available on gluons comes from the LHC at CERN.
Little GPD or TMD information is available on spin-1 targets, and absolutely no experimental information is

available on the tensor polarization contributions in TMDs. However, the interest in the gluon content of nuclei is
growing, even if restricted to the collinear quantities. The collinear structure function for gluons in spin-1 targets was

Reference: EIC white paper
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I. INTRODUCTION

How is the quantum spin built in composite systems? This is the quintessential question of Spin Physics. E↵orts
to answer this question have resulted in the realization that hadrons and nuclei have an increasingly complex internal
structure, likely involving quark orbital angular momentum (OAM) as well as gluonic and sea-quark contributions.
The depth of this structure and these dynamics is just more recently beginning to be realized, due in large part to
novel experimentation. The next generation of Spin Physics experiments is now driven by a modern understanding of
spin and must leverage the techniques and technology developed in recent years to acquire new data with a broader
physics reach.
The spin of nucleons and nuclei is well known, but how the internal mechanisms of motion and conservation manifest

to preserve this fixed quantized spin is still not clear. What is clear is that spin, like mass, appears to be an emergent
quantity based on constituent movement and interaction with the vacuum. Since the pivotal results provided by the
EMC collaboration [1], the particle physics community has striven to make sense of experimental results, leading to
extensive theoretical development. Decades of experimental studies on high-energy polarized-hadron reactions have
been performed to clarify the origin of spin mainly through longitudinally-polarized structure functions, sparking
considerable work on how to decompose the nucleon spin, see reviews [2–6].
Studying the spin structure of the nucleon and nuclei is a complex subject, as the internal motion of the partons

is relativistic, and it is non-trivial to define the angular momenta. In addition, gluon spin is generally thought to be
gauge dependent [7], but there are investigations into quark-gluon spin components and OAM contribution in a gauge
invariant way [8]. Considering the nonpeturbative nature of these studies, calculations based solely on first principles
of QCD are prohibitively challenging. The parton model [9] illustrates the nucleon as a collection of quasi-free quarks,
antiquarks, and gluons, with longitudinal momentum distributions described by parton densities. The formalism of
collinear factorization directly connects these concepts to QCD and provides the foundational framework needed in
Spin Physics, but only quantifies structure in a single spatial dimension.
To investigate partons in the plane transverse to the direction of motion of its parent nucleon requires the Generalized

Parton Distributions (GPDs) and Transverse Momentum Distributions (TMDs) [10]. For both GPDs and TMDs, the
relevant scales are in the non-perturbative domain, in contrast to the longitudinal momentum fractions on which all
types of parton distributions depend. Subject to kinematics, the TMDs and GPDs can contain much more information
on non-perturbative phenomena and are critical to the interpretation of spin dependent hadron-hadron and lepton-
hadron collisions, providing the advantage of a multi-dimensional exploration of the structure of nucleons and nuclei.
Through this avenue, Spin Physics studies of the strong force in its non-perturbative domain and beyond can also
provide insight into color confinement as well as the origin of dynamic mass and charge density. The culmination
of Spin Physics has yet to come, but, ultimately, experiments will reveal exactly how partonic interactions manifest
into hadronic and nuclear degrees of freedom. The spin decomposition using lattice QCD (LQCD) [11–15] also

FIG. 1. Graphical representation of the shape of the deuteron for two specified equidensity surfaces. Here, the deuteron is in
the MJ = 1 spin state. The same is similar for MJ = �1. Image from Argonne National Lab.

provides a guiding light. E↵orts have been made recently to obtain x-dependent parton distributions from LQCD [16].
Calculations of the nucleon spin from first principle simulations are beginning to provide results with control over all
systematics [17]. The best determined contributions so far are ⌃q(

1
2�q), the quark intrinsic spin contribution with

quark flavor (q = u, d, s, c); Jq, the quark total angular momentum; Jg, the gluon total angular momentum;
and Lq, the OAM of the quarks. The PNMDE [18] collaboration have published results for ⌃q(

1
2�q) and find

Sea-quark Transversity
in the Deuteron 4

FIG. 2. Graphical representation of the shape of the deuteron for two specified equidensity surfaces. Here the deuteron is in
the MJ = 0 spin state. Image from Argonne National Lab.

⌃q = 0.143(31)(36), consistent with the COMPASS value 0.13< 1
2�⌃<0.18 obtained at 3 GeV2 [19]. The ETMC

[20] collaboration has presented first results for Jq, Jg, and Lq [21] for the OAM of quarks. Within the next several
years, improved high performance computing resources will allow much higher precision LQCD calculations, which will
require much more experimental information as a basis for comparison. In fact, the greatest opportunity to deepen
our understanding will come from the intersection of consistent results from LQCD, phenomenology, and experiments
over a broad range of kinematics.
The next generation of experiments must attempt to measure gluon-spin and partonic OAM contributions and

further explore spin on a composite level by studying nuclei. To extract and understand this information, we need
to investigate both the longitudinal spatial structure and the transverse momentum structure using novel methods.
Though significant experimental progress has been made adding to the understanding of the spin structure of hadrons,
the data frequently leaves more questions to be answered. To understand the spin configuration of the nucleon and
nuclei in terms of quarks and gluons remains one of the most challenging and critical open problems in nuclear
physics [22, 23]. Vital experimental information is missing, especially around the transversely-polarized structure [24–
28], with only minimal studies on quark transversity distributions [29]. The transverse polarized target observables
provide unique and crucial details on the 3D picture. The internal workings of these observables are distinct from
those of the longitudinal structure, as the quark transversity distributions are decoupled from the gluon transversity
in the Q2 evolution [30–32] for polarized nuclei with spin �1, such as the deuteron, due to the helicity-flip (chiral-odd)
property.
The deuteron is the simplest spin-1 system and o↵ers a vast array of observables to explore as we begin to build the

composite spin picture of nuclei. The deuteron initially appears as a loosely bound pair of nucleons with spins aligned
(spin triplet state). However, the existence of the small quadrupole moment implies that these two nucleons are not
in a pure S-state of relative orbital angular momentum and that the force between them is not central. Taking into
account total spin and parity, an additional D-wave component is allowed. There are several layers to understanding
this system, starting with the tensor force. The deuteron would simply not be bound without the tensor force, and
there are geometric implications of this force on the deuteron structure which have yet to be explored on the quark
and gluon level. The spin configuration and alignment of the deuteron is a tool yet to be taken full advantage of. If a
deuteron can be aligned in such a fashion that it is in a MJ = ±1 magnetic substate (Fig. 1), where J is the spin of the
deuteron, then the deuteron can have two separate equidensity surface lobes depending on the energy density. This
configuration is associated with the standard spin-up and spin-down common to the spin-1/2 nucleon, but, for spin-1,
it is distinctly referred to as vector polarization. On the other hand, if the deuteron is in the MJ = 0 magnetic substate
(Fig. 2), then the equidensity surfaces that enclose the deuteron are toroidal in shape [33]. The hole in the torus is due
to the repulsive core of the N–N interaction, and the overall shape is largely governed by the tensor force. It is only
recently that the highly controlled manipulation of a solid-polarized target spin ensemble has allowed access to the
optimally aligned high density deuteron targets, allowing increased sensitivity to the correlations between geometric
properties and partonic degrees of freedom. The use of the Transverse Momentum Distribution functions (TMDs) of
polarizable nuclei o↵ers the necessary connective bridge, allowing us to explore how these geometric properties emerge
from quark and gluon dynamics.
We propose the first ever Spin-1 TMD measurements using a polarized deuteron target, including a direct mea-

surement of gluon transversity, while also for the first time measuring the sea-quark transversity distribution of the
deuteron/neutron. The gluon transversity was first mentioned in regards to Deep Inelastic Scattering [34]. Contribu-

Gluon Transversity
in the Deuteron 
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Ø The deuteron is the simplest spin-1 system and offers a vast array of observables to explore as we begin to build the 
composite spin picture of nuclei. 

Ø  We proposed the first ever Spin-1 TMD measurements using a polarized deuteron target, including a direct 
measurement of gluon transversity, while also for the first time measuring the sea-quark transversity distribution of the 
deuteron/neutron (at FNAL). 

Ø  We are going to propose a complementary measurement with SIDIS process at JLab, and a follow up series of 
experiments as a collaborative effort of this Tensor Collaboration!

Distribution of 
transversely polarized 
quarks (or gluons) in a 
transversely polarized 
nucleon.

Transversity PDF distributions



The differential cross-section from the longitudinal tensor polarized contribution is assumed to be negligible compared to 
the transversely tensor polarized contribution
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The cross section sum of these same two polarization directions provides the necessary numerator to construct a gluon
transversity asymmetry which can be written as,

AExy =
d� (Ex � Ey) / (d�dxBdzhdy)

d� (Ex + Ey) / (d�dxBdzhdy)
. (44)

The generalized experimental gluon transversity asymmetry can then be written as,

AExy =
1

fPzz

�
Ex
ed!e0⇡X � �

Ey

ed!e0⇡X

�
Ex
ed!e0⇡X + �

Ey

ed!e0⇡X

, (45)

where Pzz is the target ensemble tensor polarization, f is the correction for the presence of unpolarized nuclei the
beam interacts with and N is the number of counts in that spin state. We point out here that �Ex can be measured
with either a purely tensor polarized target or as the di↵erence between a enhanced tensor polarized target with high
tensor polarization and some vector polarization polarization subtracted from a purely vector polarized target. A
purely vector polarized target is significantly easier to make as previously described as compare to a purely tensor
polarized target, so this is our preferred method. This term in the asymmetry then becomes,

1

Pzz

N
Ex =

1

P 0N
E±,Ex �

1

P
N

E± . (46)

Here P
0 represents the vector polarization when the target is tensor enhance using the ss-RF method (see Section

IIIA). This is a di↵erent vector polarization value than when the tensor polarization is mitigated in the subtracted
term. In that case we label the vector polarization P . Both P

0 and P should be as high as possible to optimize
statistical significance.
As mentioned previously the quark transversity is easiest to measure in the neutron/deuteron by mitigating any

contribution from the tensor polarization. The best possible target system would then alternate between vector
polarized, tensor polarized and unpolarized. With the UVA RF technology it is possible to start with a target that
is in Boltzmann equilibrium which has both tensor and vector polarization, then on the scale of milliseconds, use the
selective RF in the NMR frequency domain to remove tensor polarization in the target ensemble and the RF back
to the original tensor enhanced state. These alterations to the target spin configurations can be done continuously
allowing data collection in the di↵erent spin states while minimizing time dependant false asymmetries.
The polarized target system planned for SoLID can already accommodate most of the needs of this proposal. Only

slight modification must be made to the target cell to add the selective RF manipulation coil and adapt the polarization
measuring NMR system to be optimized to function with the two competing RF sources. Target material ND3 can be
used to provide the transversely polarized neutron target. Here the dilution factor is higher (0.3) than that of NH3,
with a maximum vector polarization of up to 50% with a tensor polarization of 20% under Boltzmann equilibrium.
This target can be RF manipulated to have a tensor polarization of over 35% or 0%. The ND3 target materiel
is highly radiation resistant and has been a go to target for decades yet there are still new target systems being
developed to leverages its full potential. The ND3 is our source for tensor observables as the spin-1 system but also
our source for neutron vector polarized observables. The neutron polarization is always 91% of the vector polarization
of the deuteron. This means the deuteron target is a very good source of neutron polarized TMDs when the tensor
polarization is negated.

A. The Polarized Target

While the magnetic moment of the deuteron is too small to lead to a sizable polarization in a 5 T field through the
Zeeman e↵ect, electrons in that field at 1 K are better than 99% polarized. By doping a suitable solid target material
with paramagnetic radicals to provide unpaired electron spins, one can make use of the highly polarized state of the
electrons. The dipole-dipole interaction between the nucleon and the electron leads to hyperfine splitting, providing
the coupling between the two spin species. By applying a suitable microwave signal, one can populate the desired
spin states. As mentioned, we will use frozen deuterated ammonia beads [113, 114] (ND3) as the target material and
create the paramagnetic radicals (roughly 1019 spins/ml) through irradiation with a high intensity electron beam at
NIST. The cryogenic refrigerator, which works on the principle of liquid 4He evaporation, can cool the bath to 1
K, by lowering the 4He vapor pressure down to less than 0.118 Torr. The polarization will be measured with NMR
techniques with three NMR coils per cell, placed inside each target cell. The maximum polarization achieved with
the deuteron target is around 50% vector polarization with a packing fraction of about 60%. In our estimate for the
statistical precision, we have assumed an average of 32% vector polarization. The polarization dilution factor, which is
the ratio of free polarized deuterons to the total number of nucleons, is 3/10 for ND3, due to the presence of nitrogen.
The target material will need to be replaced approximately every 8-10 days in all three target cells, due to the beam

Gluon Transversity

• There are several ways to build a gluon transversity asymmetry using different quantization axes and 
polarized target configurations

•          can be measured with either a purely tensor polarized target or as the difference between a 
enhanced tensor polarized target and a purely vector polarized target. 

• A purely vector polarized target is significantly easier to make compared to a purely tensor polarized 
target, so this is our preferred method: access to sea-quark transversity as well.
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This provides the necessary numerator to construct a gluon transversity asymmetry, which can be written as,

AExy
=

d�pd!µ+µ�X (Ex � Ey) /
�
d⌧dq

2
T d�dy

�

d�pd!µ+µ�X (Ex + Ey) / (d⌧dq2T d�dy)
. (51)

Based on the polarization vector di↵erence, an equivalency can be derived using the unpolarized combination vector ~Ex + ~Ey +
~Ez := U , resulting is zeros for all terms in the spin polarization vector and tensor. We can then write ~Ex � ~Ey ⌘ 2 ~Ex + ~E0 �U

and ~Ex + ~Ey ⌘ U � ~E0. If we use f
g

1LL
⇡ 0 for gluons [61] such that the di↵erential cross-section from the longitudinal tensor

polarized part is small compared to the transverse tensor polarized part, we can write,
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The generalized experimental gluon transversity asymmetry can then be written as,
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where Pzz is the target ensemble tensor polarization pertaining to the tensor polarized cross-section events N
Ex , f is the

correction for the presence of unpolarized nuclei the beam interacts with, and N is the number of counts in that spin state. There
are several ways to build a gluon transversity asymmetry using di↵erent quantization axes and polarized target configurations,
but this equivalence provides a way to compare directly with predictions and requires the same polarized target magnet and
orientation already in place in the SpinQuest experimental hall. We point out here that �

Ex can be measured with either a
purely tensor polarized target or as the di↵erence between a enhanced tensor polarized target with high tensor polarization
and some vector polarization subtracted from a purely vector polarized target. A purely vector polarized target is significantly
easier to make compared to a purely tensor polarized target, so this is our preferred method. This term in the asymmetry then
becomes,

1
Pzz

N
Ex =

1
P 0N

E±,Ex
�

1
P
N

E± . (53)

Here, P 0 represents the vector polarization when the target is tensor enhanced using the ss-RF method (see Section IVC). This
is a di↵erent vector polarization value than when the tensor polarization is mitigated in the subtracted term. In that case, we
label the vector polarization P . Both P

0 and P should be as high as possible to optimize statistical significance.
Also, due to the cos2� term in Eq. 49, it is possible to extract a tensor polarization contribution in the azimuthal angle

produced by gluon transversity. This would show up even from the ~Ex polarized state alone, and the di↵erence between a target
with some tensor polarization and with no-tensor polarization can be use to measure the whole coe�cient while exploring any
azimuthal dependence.

As mentioned previously, the quark transversity is easiest to measure in the neutron/deuteron by mitigating any contribution
from the tensor polarization. The best possible target system would then alternate between vector polarized, tensor polarized,
and unpolarized. With the UVA RF technology, it is possible to start with a target that is in Boltzmann equilibrium, which has
both tensor and vector polarization, and then, on the scale of milliseconds, use the selective RF in the NMR frequency domain
to remove tensor polarization in the target ensemble, as well as to create an unpolarized target and then flip back to the original
spin state. These alterations to the target spin configurations can be done between beam spills, allowing data collection in the
di↵erent spin states while minimizing time dependant false asymmetries.

As pointed out earlier, the SpinQuest polarized target system can already accommodate most of the needs of this proposal.
Only slight modification must be made to the target cell to add a selective RF manipulation coil and adapt the polarization
measuring NMR system to be optimized to function with the two competing RF sources. For the purpose of the proposed
measurements, one needs to separately measure di↵erent target spin configurations but with the field always pointing transverse
vertical as it is now for SpinQuest. The experimental setup and data taking approach we will follow is similar to that used
previously by experiments E866, E906, and E1039.
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This provides the necessary numerator to construct a gluon transversity asymmetry, which can be written as,
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Based on the polarization vector di↵erence, an equivalency can be derived using the unpolarized combination vector ~Ex + ~Ey +
~Ez := U , resulting is zeros for all terms in the spin polarization vector and tensor. We can then write ~Ex � ~Ey ⌘ 2 ~Ex + ~E0 �U

and ~Ex + ~Ey ⌘ U � ~E0. If we use f
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polarized part is small compared to the transverse tensor polarized part, we can write,
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where Pzz is the target ensemble tensor polarization pertaining to the tensor polarized cross-section events N
Ex , f is the

correction for the presence of unpolarized nuclei the beam interacts with, and N is the number of counts in that spin state. There
are several ways to build a gluon transversity asymmetry using di↵erent quantization axes and polarized target configurations,
but this equivalence provides a way to compare directly with predictions and requires the same polarized target magnet and
orientation already in place in the SpinQuest experimental hall. We point out here that �

Ex can be measured with either a
purely tensor polarized target or as the di↵erence between a enhanced tensor polarized target with high tensor polarization
and some vector polarization subtracted from a purely vector polarized target. A purely vector polarized target is significantly
easier to make compared to a purely tensor polarized target, so this is our preferred method. This term in the asymmetry then
becomes,
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Here, P 0 represents the vector polarization when the target is tensor enhanced using the ss-RF method (see Section IVC). This
is a di↵erent vector polarization value than when the tensor polarization is mitigated in the subtracted term. In that case, we
label the vector polarization P . Both P

0 and P should be as high as possible to optimize statistical significance.
Also, due to the cos2� term in Eq. 49, it is possible to extract a tensor polarization contribution in the azimuthal angle

produced by gluon transversity. This would show up even from the ~Ex polarized state alone, and the di↵erence between a target
with some tensor polarization and with no-tensor polarization can be use to measure the whole coe�cient while exploring any
azimuthal dependence.

As mentioned previously, the quark transversity is easiest to measure in the neutron/deuteron by mitigating any contribution
from the tensor polarization. The best possible target system would then alternate between vector polarized, tensor polarized,
and unpolarized. With the UVA RF technology, it is possible to start with a target that is in Boltzmann equilibrium, which has
both tensor and vector polarization, and then, on the scale of milliseconds, use the selective RF in the NMR frequency domain
to remove tensor polarization in the target ensemble, as well as to create an unpolarized target and then flip back to the original
spin state. These alterations to the target spin configurations can be done between beam spills, allowing data collection in the
di↵erent spin states while minimizing time dependant false asymmetries.

As pointed out earlier, the SpinQuest polarized target system can already accommodate most of the needs of this proposal.
Only slight modification must be made to the target cell to add a selective RF manipulation coil and adapt the polarization
measuring NMR system to be optimized to function with the two competing RF sources. For the purpose of the proposed
measurements, one needs to separately measure di↵erent target spin configurations but with the field always pointing transverse
vertical as it is now for SpinQuest. The experimental setup and data taking approach we will follow is similar to that used
previously by experiments E866, E906, and E1039.



RGH Status
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From Marco’s slides:
https://www.fe.infn.it/~mcontalb/JLAB12/TALKs/PAC53/rgh_250723.pdf

https://www.fe.infn.it/~mcontalb/JLAB12/TALKs/PAC53/rgh_250723.pdf
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From Marco’s slides:
https://www.fe.infn.it/~mcontalb/JLAB12/TALKs/PAC53/rgh_250723.pdf

RGH Status

https://www.fe.infn.it/~mcontalb/JLAB12/TALKs/PAC53/rgh_250723.pdf
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From Marco’s slides:
https://www.fe.infn.it/~mcontalb/JLAB12/TALKs/PAC53/rgh_250723.pdf

RGH Status

https://www.fe.infn.it/~mcontalb/JLAB12/TALKs/PAC53/rgh_250723.pdf
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Prospective Plans with SoLID (Hall A)

From the slides by Haiyan Gao and Zhiwen Zhao:
https://indico.phy.anl.gov/event/51/sessions/89/#20240619 + Tensor Polarized ND3

https://indico.phy.anl.gov/event/51/sessions/89/
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Prospective Plans with SoLID (Hall A)

From the slides by Haiyan Gao and Zhiwen Zhao:
https://indico.phy.anl.gov/event/51/sessions/89/#20240619 

+ ND3 Setup

Kinematic Coverage
Z. Ye et al, Phys. Lett. B 767, 91 (2017)

https://indico.phy.anl.gov/event/51/sessions/89/


The prospective (tentative) plan with 
transversely tensor polarized ND3 target

•  Proposals for JLab PAC (2026)

•  Proposals (2027<)
 * An addition to RGH (Hall B) program: Gluon Transversity in SIDIS

 * Hall A (SoLID)
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To run sequentially after the 
data taking for        
@ Hall C (see Nathaly’s talk)

<latexit sha1_base64="z97BGBYDO6hCPz/ptlz+K8tuBu0=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahgpREinosCuKhhwqmLbahbLabdulmE3Y3Qgn9F148KOLVf+PNf+O2zUFbHww83pthZp4fc6a0bX9buZXVtfWN/GZha3tnd6+4f9BUUSIJdUnEI9n2saKcCepqpjltx5Li0Oe05Y9upn7riUrFIvGgxzH1QjwQLGAEayM93vZS96xcr59OesWSXbFnQMvEyUgJMjR6xa9uPyJJSIUmHCvVcexYeymWmhFOJ4VuomiMyQgPaMdQgUOqvHR28QSdGKWPgkiaEhrN1N8TKQ6VGoe+6QyxHqpFbyr+53USHVx5KRNxoqkg80VBwpGO0PR91GeSEs3HhmAimbkVkSGWmGgTUsGE4Cy+vEya5xXnolK9r5Zq11kceTiCYyiDA5dQgztogAsEBDzDK7xZynqx3q2PeWvOymYO4Q+szx8kc4/u</latexit>

FU,(LL)

Note: Complementary to the measurement with DY (FNAL) 
[Stage 1 Approval (March 2025) https://pac.fnal.gov/wp-content/uploads/2025/04/PAC_Report_March_2025_Public.pdf  

With high statistics

First Generation Tensor Experiments

Needs to be discussed with RGH

Needs to be discussed with SoLID Collaboration

Exploring
(needs to be discussed with JLab Target group

Using lower temps and lower intensity: 1K and 5T

Pic credits C. Keith (JLab)

https://pac.fnal.gov/wp-content/uploads/2025/04/PAC_Report_March_2025_Public.pdf
https://pac.fnal.gov/wp-content/uploads/2025/04/PAC_Report_March_2025_Public.pdf
https://pac.fnal.gov/wp-content/uploads/2025/04/PAC_Report_March_2025_Public.pdf
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