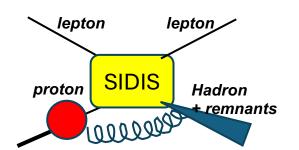
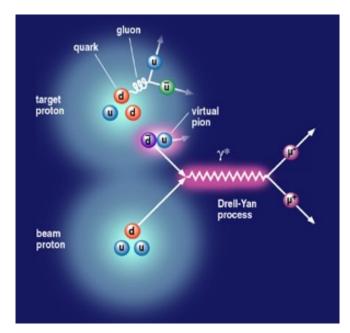
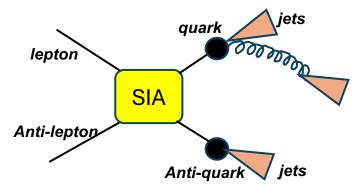
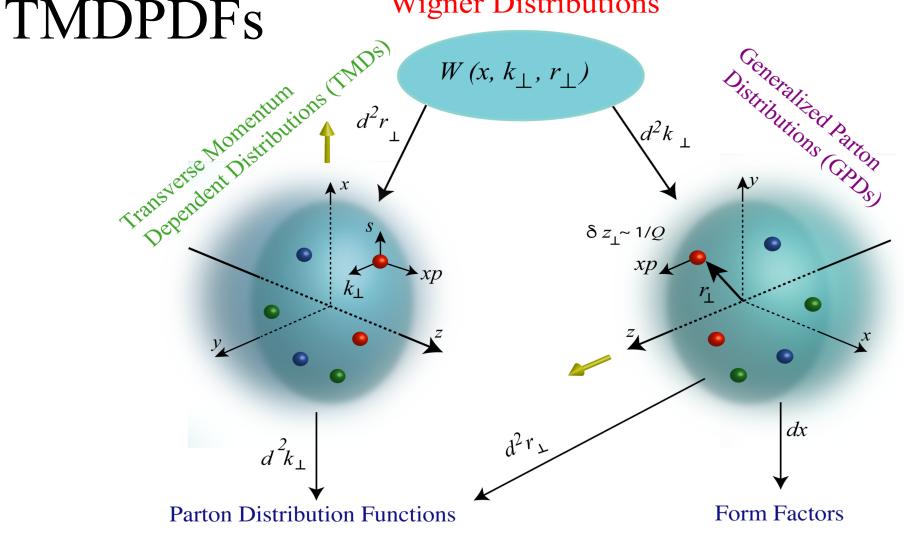
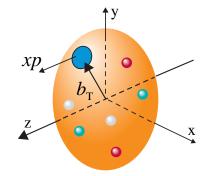
Spin 1 SIDIS Observables from Transversely Tensor Polarized Targets


Ishara Fernando and Dustín Keller


Tensor Collaboration Meeting
October 13, 2025
Jefferson Lab, Virginia







Wigner Distributions

$$\Phi(x, k_T; S) = \int \frac{d\xi^- d\xi_T}{(2\pi)^3} e^{ik.\xi} \langle P, S | \bar{\psi}(0) \mathcal{U}_{[0,\xi]} \psi(\xi) | P, S \rangle|_{\xi^+ = 0}$$

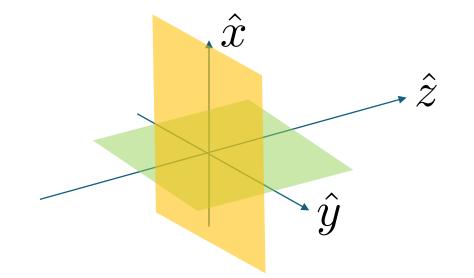
Spin 1 TMDPDFs

Leading Twist		Quark Polarization				
		Unpolarized [U]	Longitudinal [L]	Transverse [T]		
	U	f_1 Unpolarized		h_1^{\perp} Boer-Mulders		
larization	L		g_1 Helicity	h_{1L}^{\perp} Worm-gear 1		
Target Polarization	Т	$f_{1T}^{\perp} leftharpoons lapharpoons laph$	$g_{1T} \stackrel{\uparrow}{\bullet} - \stackrel{\downarrow}{\bullet}$	h_1 Transversity		
		Sivers	Worm-gear 2	h_{1T}^{\perp} Pretzelosity		
	TENSOR	$egin{aligned} f_{1LL}(x,oldsymbol{k_T^2})\ f_{1TT}(x,oldsymbol{k_T^2})\ f_{1LT}(x,oldsymbol{k_T^2}) \end{aligned}$	$egin{aligned} g_{1TT}(x,oldsymbol{k_T^2})\ g_{1LT}(x,oldsymbol{k_T^2}) \end{aligned}$	$egin{aligned} h_{1LL}^{\perp}(x,m{k_T^2}) \ h_{1TT}(x,m{k_T^2}) & h_{1TT}^{\perp}(x,m{k_T^2}) \ h_{1LT}(x,m{k_T^2}) & h_{1LT}^{\perp}(x,m{k_T^2}) \end{aligned}$		

Leading		g	Gluon Polarization				
Twist			Unpolarized	Circular	Linear		
n	Vector Polarized	U	f_1		h_1^\perp		
		L		g_1	h_{1L}^{\perp}		
Target Polarization		Т	f_{1T}^{\perp}	g_{1T}	h_{1T} h_{1T}^{\perp}		
arget Po	pəz	LL	f_{1LL}		h_{1LL}^{\perp}		
T	Tensor Polarized	LT	f_{1LT}	g_{1LT}	h_{1LT} h_{1LT}^{\perp}		
		ТТ	f_{1TT}	g_{1TT}	$egin{array}{cccc} oldsymbol{h_{1TT}} & h_{1TT}^{\perp} & h_{1TT}^{\perp\perp} \end{array}$		

$$\Phi = \Phi_U + \Phi_L + \Phi_T + \Phi_{LL} + \Phi_{LT} + \Phi_{TT}$$

The collinear correlators after integrating over the momentum,


$$\Phi(x; P, S, T) = \frac{1}{2} \left[\mathcal{P} f_1(x) + S_L \gamma_5 P g_1(x) + \frac{[\mathcal{B}_T, \mathcal{P}] \gamma_5}{2} h_1(x) + S_{LL} P f_{1LL}(x) + \frac{[\mathcal{B}_{LT}, P]}{2} i h_{1LT}(x, k_T^2) \right].$$

$$\begin{split} \Gamma^{ij} &= \Gamma_U^{ij} + \Gamma_L^{ij} + \Gamma_T^{ij} + \Gamma_{LL}^{ij} + \Gamma_{LT}^{ij} + \Gamma_{TT}^{ij} \\ \varPhi_g^{\alpha\beta}(x) &\equiv \int d^2p_T \varPhi_g^{\alpha\beta}(x,\vec{p}_T) \\ &= \frac{1}{2} \left[-g_T^{\alpha\beta} f_1^g(x) + i\epsilon_T^{\alpha\beta} S_L g_1^g(x) - g_T^{\alpha\beta} S_{LL} f_{1LL}^g(x) \right. \\ &+ S_{TT}^{\alpha\beta} h_{1TT}^g(x) \right] \end{split}$$
 Kumano et al (2020)

Deuteron Polarizations

The deuteron polarization density matrix

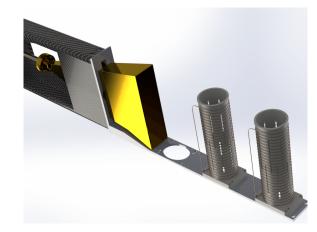
$$\rho(S,T) = \frac{1}{3} \left(I + \frac{3}{2} S^i \Sigma^i + 3T^{ij} \Sigma^{ij} \right)$$

 Σ_i are 3×3 spin matrices for the deuteron

$$\Sigma_i$$
 are 3×3 spin matrices for the deuteron

$$\boldsymbol{\varSigma_{x}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \boldsymbol{\varSigma_{y}} = \frac{i}{\sqrt{2}} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \quad \boldsymbol{\varSigma_{z}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad \boldsymbol{\varSigma_{ij}} = \frac{1}{2} \left(\boldsymbol{\varSigma_{i}} \boldsymbol{\varSigma_{j}} + \boldsymbol{\varSigma_{j}} \boldsymbol{\varSigma_{i}} \right) - \frac{2}{3} \boldsymbol{I} \delta_{ij}$$

$$\Sigma_{ij}$$
 are spin tensors


$$m{T} = rac{1}{2} \left(egin{array}{cccc} -rac{2}{3}S_{LL} + S_{ ext{TT}}^{xx} & S_{ ext{TT}}^{xy} & S_{LT}^{x} \ S_{ ext{TT}}^{xy} & -rac{2}{3}S_{LL} - S_{ ext{TT}}^{xx} & S_{LT}^{y} \ S_{LT}^{y} & S_{LT}^{y} & rac{4}{2}S_{LL} \end{array}
ight)$$

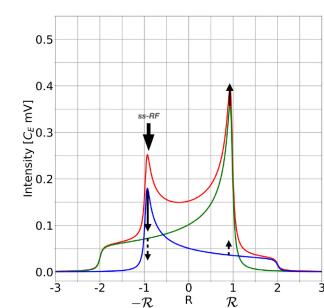
 $\boldsymbol{S} = (S_T^x, S_T^y, S_L)$

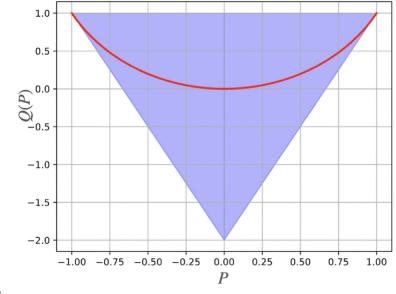
$$\rho(S,T) = \begin{pmatrix} \frac{1}{3} + \frac{S_L}{2} + \frac{S_{LL}}{3} & \frac{S_T^x - iS_T^y}{2\sqrt{2}} + \frac{S_{LT}^x - iS_{LT}^y}{2\sqrt{2}} & \frac{S_{TT}^{xx} - iS_{TT}^{xy}}{2} \\ \frac{S_T^{x+iS_T^y}}{2\sqrt{2}} + \frac{S_{LT}^x + iS_{LT}^y}{2\sqrt{2}} & \frac{1}{3} - \frac{2S_{LL}}{3} & \frac{S_T^x - iS_T^y}{2\sqrt{2}} - \frac{S_{LT}^x - iS_{LT}^y}{2\sqrt{2}} \\ \frac{S_{TT}^{xx} + iS_{TT}^{xy}}{2} & \frac{S_T^x + iS_T^y}{2\sqrt{2}} - \frac{S_{LT}^x + iS_{LT}^y}{2\sqrt{2}} & \frac{1}{3} - \frac{S_L}{2} + \frac{S_{LL}}{3} \end{pmatrix}$$

Tensor Polarization Enhancement

- ✓ DNP microwaves
- ✓ Additional RF: Semi-Saturating RF (ss-RF) irradiation → to maximize Tensor polarization
- ✓ Continuous Wave NMR (CW-NMR)
- ✓ The rate depends on the intensity level and the applied magnetic field strength of the RF power.

J. Clement and D. Keller (2023) [https://doi.org/10.1016/j.nima.2023.168177]


Under normal DNP-enhancement, conditions, the system is in Boltzmann equilibrium and Q_n can be calculated directly from P_n


$$Q_n = 2 - \sqrt{4 - 3P_n^2}$$

Three Principles for Enhanced Tensor Polarization

- Differential Binning
- Spin Temperature Consistency
- Rate Response

See Talks by Dustin, Forhad, Devin for more details

SIDIS Cross-Section for Deuteron Target

$$\begin{split} \frac{d\sigma_{\mathrm{Tens}}}{dx_d dy dz d\phi_h d\psi dP_{h\perp}^2} &= \frac{\alpha^2}{x_d y Q^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x_d}\right) \left\{ S_{LL} \left[F_{U(LL),T} + \varepsilon F_{U(LL),L} + \sqrt{2\,\varepsilon(1+\varepsilon)} \, \cos\phi_h \, F_{U(LL)}^{\cos\phi_h} + \varepsilon \cos(2\phi_h) \, F_{U(LL)}^{\cos^2\phi_h} + \lambda_e \, \sqrt{2\,\varepsilon(1-\varepsilon)} \, \sin\phi_h \, F_{L(LL)}^{\sin\phi_h} \right] \\ &+ |S_{LT}| \left[\cos\left(\phi_h - \phi_{LT}\right) \left(F_{U(LT),T}^{\cos\left(\phi_h - \phi_{LT}\right)} + \varepsilon F_{U(LT),L}^{\cos\left(\phi_h - \phi_{LT}\right)} \right) \right. \\ &+ \sqrt{2\varepsilon(1+\varepsilon)} \left(\cos\phi_{LT} F_{U(LT)}^{\cos\phi_{LT}} + \cos\left(2\phi_h - \phi_{LT}\right) F_{U(LT)}^{\cos\left(2\phi_h - \phi_{LT}\right)} \right) \\ &+ \varepsilon \left(\cos(\phi_h + \phi_{LT}) F_{U(LT)}^{\cos\left(\phi_h + \phi_{LT}\right)} + \cos(3\phi_h - \phi_{LT}) F_{U(LT)}^{\cos\left(3\phi_h - \phi_{LT}\right)} \right) \\ &+ \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \left(\sin\phi_{LT} F_{L(LT)}^{\sin\phi_{LT}} + \sin\left(2\phi_h - \phi_{LT}\right) F_{L(LT)}^{\sin\left(2\phi_h - \phi_{LT}\right)} \right) \\ &+ \lambda_e \sqrt{1-\varepsilon^2} \sin\left(\phi_h - \phi_{LT}\right) F_{L(LT)}^{\sin\left(\phi_h - \phi_{LT}\right)} \right] \end{split}$$

With Transversely Tensor Polarized Target

$$+ |S_{TT}| \cos(2\phi_{h} - 2\phi_{TT}) \left(F_{U(TT),T}^{\cos(2\phi_{h} - 2\phi_{TT})} + \varepsilon F_{U(TT),L}^{\cos(2\phi_{h} - 2\phi_{TT})} \right)$$

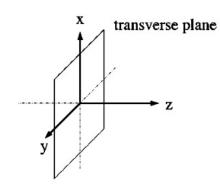
$$+ \sqrt{2\varepsilon(1+\varepsilon)} \left(\cos(\phi_{h} - 2\phi_{TT}) F_{U(TT)}^{\cos(\phi_{h} - 2\phi_{TT})} + \cos(3\phi_{h} - 2\phi_{TT}) F_{U(TT)}^{\cos(3\phi_{h} - 2\phi_{TT})} \right)$$

$$+ \varepsilon \left(\cos(2\phi_{TT}) F_{U(TT)}^{\cos(2\phi_{TT})} + \cos(4\phi_{h} - 2\phi_{TT}) F_{U(TT)}^{\cos(4\phi_{h} - 2\phi_{TT})} \right)$$

$$+ \lambda_{e} \sqrt{2\varepsilon(1-\varepsilon)} \left(\sin(\phi_{h} - 2\phi_{TT}) F_{L(TT)}^{\sin(\phi_{h} - 2\phi_{TT})} + \sin(3\phi_{h} - 2\phi_{TT}) F_{L(TT)}^{\sin(3\phi_{h} - 2\phi_{TT})} \right)$$

$$+ \lambda_{e} \sqrt{1-\varepsilon^{2}} \sin(2\phi_{h} - 2\phi_{TT}) F_{L(TT)}^{\sin(2\phi_{h} - 2\phi_{TT})} \right]$$

Structure functions related to Transversely Tensor Polarized Targets


With Unpolarized Beam

With Longitudinally Polarized Beam

$$\begin{split} F_{U(TT),T}^{\cos(2\phi_h-2\phi_{LT})} &= \mathcal{C} \bigg[-\frac{2(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T)^2 - \boldsymbol{p}_T^2}{M^2} f_{1TT} D_1 \bigg], \\ F_{U(TT),L}^{\cos(2\phi_h-2\phi_{LT})} &= 0, \\ F_{U(TT)}^{\cos(\phi_h-2\phi_{TT})} &= \frac{2M}{Q} \mathcal{C} \bigg\{ \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \big(x f_{TT} D_1 - \frac{M_h}{M} h_{1TT} \frac{\tilde{H}}{z} \big) \\ &+ \frac{(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T) \boldsymbol{p}_T^2 - 2(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T) \big(\boldsymbol{k}_T \cdot \boldsymbol{p}_T \big)}{2M^2 M_h} \bigg[\bigg(x h_{TT} H_1^{\perp} - \frac{M_h}{M} g_{1TT} \frac{\tilde{G}^{\perp}}{z} \bigg) \\ &+ \bigg(x h_{TT}^{\perp} H_1^{\perp} - \frac{M_h}{M} f_{1TT} \frac{\tilde{D}^{\perp}}{z} \bigg) \bigg] \bigg\}, \\ F_{U(TT)}^{\cos(3\phi_h-2\phi_{TT})} &= \frac{2M}{Q} \mathcal{C} \bigg\{ \frac{3(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T) \big(2(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T)^2 - \boldsymbol{p}_T^2 \big)}{2M^3} \bigg(x f_{TT}^{\perp} D_1 + \frac{M_h}{M} h_{1TT}^{\perp} \frac{\tilde{H}^{\perp}}{z} \bigg) \\ &+ \frac{4(\boldsymbol{h} \cdot \boldsymbol{k}_T) (\boldsymbol{h} \cdot \boldsymbol{p}_T)^2 - 2(\boldsymbol{h} \cdot \boldsymbol{p}_T) (\boldsymbol{k}_T \cdot \boldsymbol{p}_T) - (\boldsymbol{h} \cdot \boldsymbol{k}_T) \boldsymbol{p}_T^2}{2M^2 M_h} \\ &\times \bigg[\bigg(x h_{TT}^{\perp} H_1^{\perp} + \frac{M_h}{M} f_{1TT} \frac{\tilde{D}^{\perp}}{z} \bigg) - \bigg(x h_{TT} H_1^{\perp} + \frac{M_h}{M} g_{1TT} \frac{\tilde{G}^{\perp}}{z} \bigg) \bigg] \bigg\} \\ F_{U(TT)}^{\cos(2\phi_{TT})} &= \mathcal{C} \bigg[\frac{\boldsymbol{k}_T \cdot \boldsymbol{p}_T}{M M_h} h_{1TT} H_1^{\perp} \bigg], \\ F_{U(TT)}^{\cos(4\phi_h-2\phi_{TT})} &= \mathcal{C} \bigg[- \bigg(\frac{4(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T) (\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T) \boldsymbol{p}_T^2 - 8(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T) (\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T)^3}{2M^3 M_h} \\ &+ \frac{4(\boldsymbol{k}_T \cdot \boldsymbol{p}_T) (\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T)^2 - (\boldsymbol{k}_T \cdot \boldsymbol{p}_T) \boldsymbol{p}_T^2}{2M^3 M_h} h_{1TT}^{\perp} H_1^{\perp} \bigg], \end{split}$$

$$\begin{split} F_{L(TT)}^{\sin(\phi_h-2\phi_{TT})} &= \frac{2M}{Q} \mathcal{C} \bigg\{ \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \bigg(x g_{TT} D_1 + \frac{M_h}{M} h_{1TT} \frac{\tilde{E}}{z} \bigg) \\ &- \frac{(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T) \boldsymbol{p}_T^2 - 2(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T) (\boldsymbol{k}_T \cdot \boldsymbol{p}_T)}{2M^2 M_h} \bigg[\bigg(x e_{TT} H_1^{\perp} - \frac{M_h}{M} f_{1TT} \frac{\tilde{G}^{\perp}}{z} \bigg) \\ &- \bigg(x e_{TT}^{\perp} H_1^{\perp} - \frac{M_h}{M} g_{1TT} \frac{\tilde{D}^{\perp}}{z} \bigg) \bigg] \bigg\}, \end{split}$$

$$F_{L(TT)}^{\sin(3\phi_h-2\phi_{TT})} &= \frac{2M}{Q} \mathcal{C} \bigg\{ - \frac{3(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T) \big(2(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T)^2 - \boldsymbol{p}_T^2 \big)}{2M^3} \bigg(x g_{TT}^{\perp} D_1 + \frac{M_h}{M} h_{1TT}^{\perp} \frac{\tilde{E}}{z} \bigg) \\ &+ \frac{4(\boldsymbol{h} \cdot \boldsymbol{k}_T) (\boldsymbol{h} \cdot \boldsymbol{p}_T)^2 - 2(\boldsymbol{h} \cdot \boldsymbol{p}_T) (\boldsymbol{k}_T \cdot \boldsymbol{p}_T) - (\boldsymbol{h} \cdot \boldsymbol{k}_T) \boldsymbol{p}_T^2}{2M^2 M_h} \\ &\times \bigg[\bigg(x e_{TT} H_1^{\perp} + \frac{M_h}{M} f_{1TT} \frac{\tilde{G}^{\perp}}{z} \bigg) + \bigg(x e_{TT}^{\perp} H_1^{\perp} + \frac{M_h}{M} g_{1TT} \frac{\tilde{D}^{\perp}}{z} \bigg) \bigg] \bigg\}, \end{split}$$

Deuteron Polarization Orientations

$$S_{LL} = \frac{-}{2} + \leftarrow -$$

$$S_{LT}^x =$$

$$S_{LT}^{y} =$$

$$S_{TT}^{xy} =$$

$$S_{TT}^{xx} =$$

The prospective (tentative) plan with transversely tensor polarized ND₃ target

$$\frac{d\sigma_{(TT)}(l+d\rightarrow l'+h+X)}{dxdyd\phi_hd^2\mathbf{P}_{h\perp}} = \frac{y\alpha^2}{2(1-\epsilon)xQ^2}\left(1+\frac{\gamma^2}{2x}\right)^{S_{TT}^{xy}} = \mathbf{S}_{TT}^{xy} = \mathbf{S}_{TT}^{yy} = \mathbf{S}$$

$$\times \left[\underbrace{\left(F_{U(TT)}^{\cos{(2\phi_h - 2\phi_{TT})}} + F_{U(TT)}^{\cos{(\phi_h - 2\phi_{TT})}} + F_{U(TT)}^{\cos{(3\phi_h - 2\phi_{TT})}} + F_{U(TT)}^{\cos{(2\phi_{TT})}} + F_{U(TT)}^{\cos{(4\phi_h - 2\phi_{TT})}} \right) \right]$$

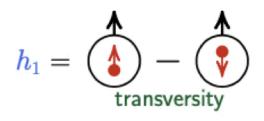
with unpolarized lepton beam

$$+\underbrace{\left(F_{L(TT)}^{\sin{(\phi_h-2\phi_{TT})}}+F_{L(TT)}^{\sin{(3\phi_h-2\phi_{TT})}}+F_{L(TT)}^{\sin{(2\phi_h-2\phi_{TT})}}\right)}_{\text{with longitudinally polarized lepton beam}$$

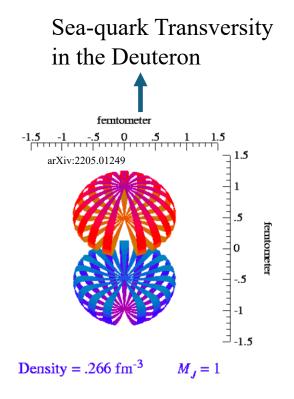
The dominant/leading contribution
Will be from this Structure function
Where as the other terms suppressed
By the higher twist and order 1/Mn

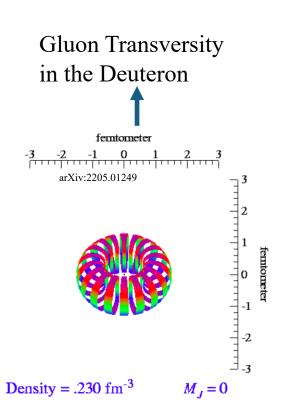
$$F_{U(TT),T}^{\cos{(2\phi_h-2\phi_{LT})}} = \mathcal{C}igg[-rac{2(\hat{m{h}}\cdotm{p}_T)^2-m{p}_T^2}{M^2}f_{1TT}D_1igg]$$

Tensor-Cahn like quadrupole


$$F_{U(TT)}^{\cos{(2\phi_{TT})}} = \mathcal{C}igg[rac{m{k}_T\cdotm{p}_T}{MM_h}h_{1TT}H_1^otigg]$$

Tensor Transversity


$$F_{L(TT)}^{\sin{(2\phi_h-2\phi_{TT})}} = \mathcal{C}igg[-rac{2(\hat{m{h}}\cdotm{p}_T)^2-m{p}_T^2}{M^2}g_{1TT}D_1igg]$$


Worm gear type / helicity counter-part

Transversity PDF distributions

Distribution of transversely polarized quarks (or gluons) in a transversely polarized nucleon.

- ➤ The deuteron is the simplest spin-1 system and offers a vast array of observables to explore as we begin to build the composite spin picture of nuclei.
- ➤ We proposed the first ever Spin-1 TMD measurements using a polarized deuteron target, including a direct measurement of gluon transversity, while also for the first time measuring the sea-quark transversity distribution of the deuteron/neutron (at FNAL).
- We are going to propose a complementary measurement with SIDIS process at JLab, and a follow up series of experiments as a collaborative effort of this Tensor Collaboration!

Gluon Transversity

$$\frac{2\pi d\sigma \left(lH^{\uparrow} \rightarrow l'hX\right)}{d\phi dx_B dz_h dy}(E_x-E_y) = \frac{2\alpha^2(1-y)}{Q^2y}\cos(2\phi_h)h_{1TT}^g(x_B,Q^2)H_1^{\perp}(z_h)$$

The differential cross-section from the longitudinal tensor polarized contribution is assumed to be negligible compared to the transversely tensor polarized contribution

The generalized experimental gluon transversity asymmetry can then be written as,

$$A_{E_{xy}} = \frac{1}{f P_{zz}} \frac{\sigma_{ed \to e'\pi X}^{E_x} - \sigma_{ed \to e'\pi X}^{E_y}}{\sigma_{ed \to e'\pi X}^{E_x} + \sigma_{ed \to e'\pi X}^{E_y}},$$

$$\frac{1}{P_{zz}}N^{E_x} = \frac{1}{P'}N^{E_{\pm},E_x} - \frac{1}{P}N^{E_{\pm}}.$$
 where P_{zz} is the target ensemble tensor polarization pertaining to the tensor polarized cross-section events N^{E_x}

- There are several ways to build a gluon transversity asymmetry using different quantization axes and polarized target configurations
- σ^{E_x} can be measured with either a purely tensor polarized target or as the difference between a enhanced tensor polarized target and a purely vector polarized target.
- A purely vector polarized target is significantly easier to make compared to a purely tensor polarized target, so this is our preferred method: access to sea-quark transversity as well.

RGH Status

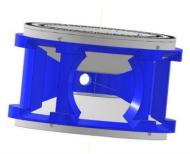
PAC39 2012	C39 2012					
Experiment	Contact	Title	Rating	PAC days	observables in	
C12-11-111	M. Contalbrigo	Transverse spin effect in SIDIS at 11 GeV with a transversely polarized target using CLAS12	Α	110	SIDIS hadron	
C12-12-009	H. <u>Avakian</u>	Measurement of transversity with di- hadron production in SIDIS with a transversely polarized target	Α	110	SIDIS Di-hadron	
C12-12-010	L. Elouadrhiri	Deeply Virtual Compton scattering at 11 GeV with transversely polarized target using the CLAS12 detector	Α	110	DVCS	
ll RGH experim	ents selected amor	ng the high impact JLab measurement	s P	AC42 [2014]	Gather unprecedent information on Transversity	
RGH experiment with C1 condition	Tensor charge Sivers, $h_{1T}^{\perp},~g_{1T}^{\perp},H$					
		uring jeopardy process) to properly evalu			GPD E	

From Marco's slides:

RGH Status

RGH Target & Magnet

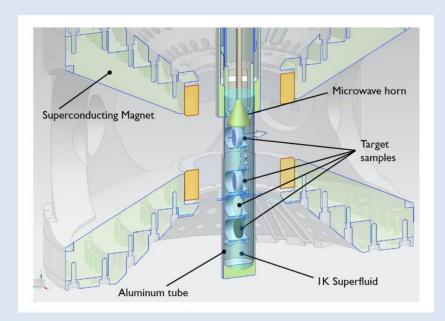
Most viable solution to prioritize physics

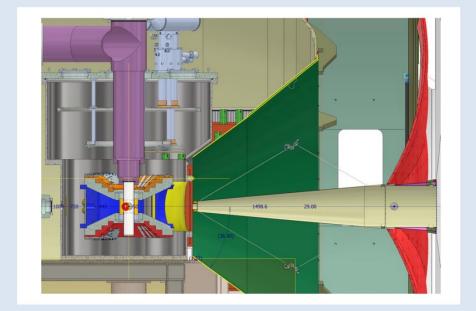

Consolidated dynamically polarized NH₃ technology

Designed based on already successful realizations

Hall-A G2p-Gep target (replica optimized for HTCC)

Hall-C E12-15-005 magnet (replica optimized for recoil detection)





5T dipole acceptance:

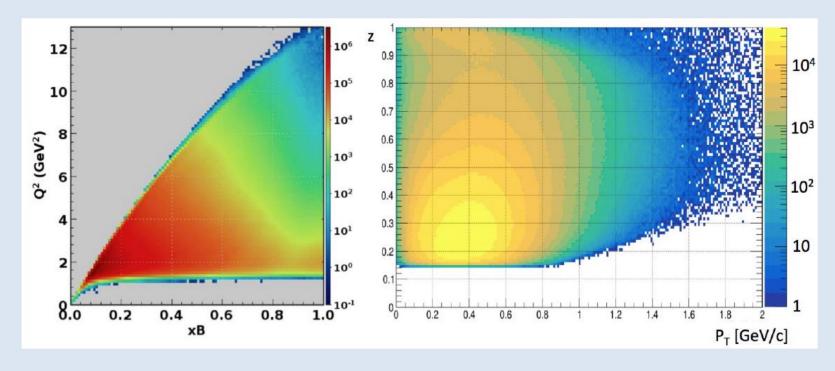
+ 25° vertical

± 65° horizontal

M. Contalbrigo

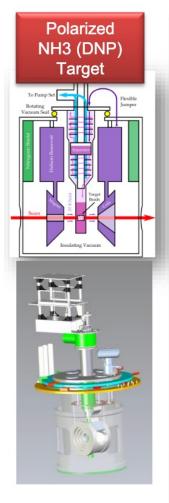
JLab PAC53 Meeting – 23rd July 2025

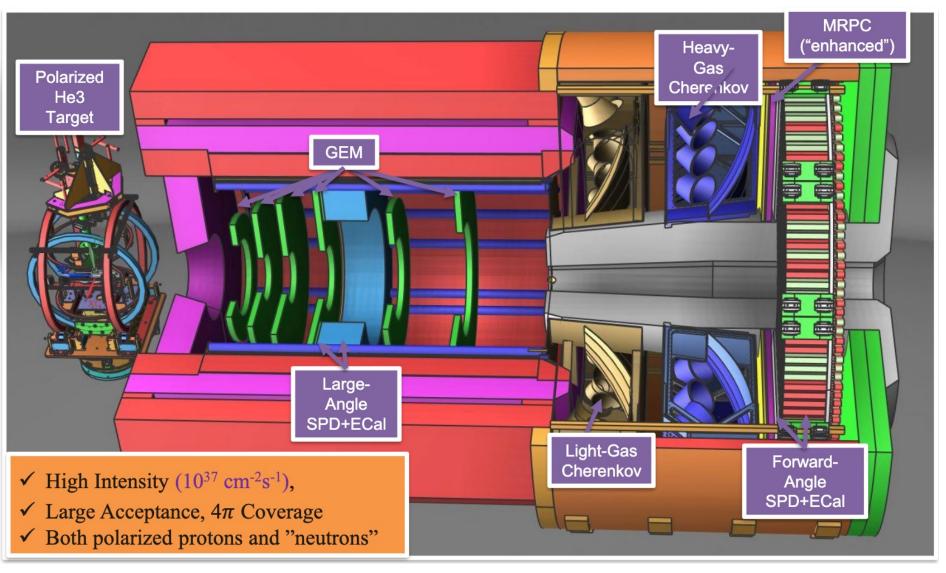
LU


From Marco's slides:

RGH Status

CLAS12 Kinematic Reach


Features: wide phase space cover, excellent PID and statistics optimized for a multi-D analysis


- disentangle kinematical correlations
- verify expected dependences (e.g. in Q²) and isolate peculiar regimes (e.g. in z)
- study transition regions (e.g. in P_T)

M. Contalbrigo JLab PAC53 Meeting – 23rd July 2025 9

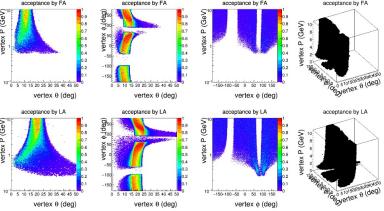
Prospective Plans with SoLID (Hall A)

Prospective Plans with SoLID (Hall A)

SoLID SIDIS NH3 Setup

- E12-10-008: SIDIS pion on transversely polarized proton (NH₃), 120 days, rated A
- SIDIS kaon and dihadron as run groups

SoLID (SIDIS NH3)

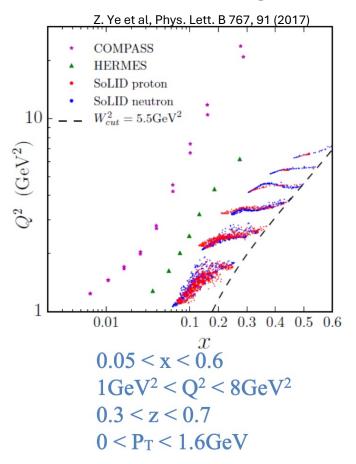

Detection is similar to He3 setup

Coverage is similar to He3 setup except some distortion from the target field

5T transverse target field High radiation sheet of flame areas need to be cut away or shielded

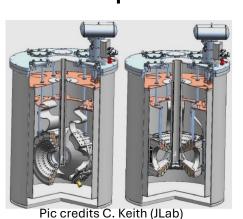
Polarized lumi $\sim 1e^{35}/cm^2/s$ Unpolarized lumi ~6e³⁵/cm²/s

> e- acceptance shown π -acceptance is similar π^+ acceptance is reversed along phi=0 plane



+ ND3 Setup

Kinematic Coverage



From the slides by Haiyan Gao and Zhiwen Zhao:

The prospective (tentative) plan with transversely tensor polarized ND₃ target

Proposals for JLab PAC (2026)

$$F_{U(TT),T}^{\cos{(2\phi_h-2\phi_{LT})}} = \mathcal{C}igg[-rac{2(\hat{m{h}}\cdotm{p}_T)^2-m{p}_T^2}{M^2}f_{1TT}D_1igg]$$

$$F_{L(TT)}^{\sin{(2\phi_h - 2\phi_{TT})}} = \mathcal{C}igg[-rac{2(\hat{m{h}}\cdotm{p}_T)^2 - m{p}_T^2}{M^2}g_{1TT}D_1igg]$$

$$F_{U(TT)}^{\cos{(2\phi_{TT})}} = \mathcal{C}igg[rac{m{k}_T\cdotm{p}_T}{MM_h}h_{1TT}H_1^otigg]$$
 Exploring

First Generation Tensor Experiments

Using lower temps and lower intensity: 1K and 5T

To run sequentially after the data taking for $F_{U,(LL)}$ @ Hall C (see Nathaly's talk)

needs to be discussed with JLab Target group

- Proposals (2027<)
 - * An addition to RGH (Hall B) program: Gluon Transversity in SIDIS

Note: Complementary to the measurement with DY (FNAL)

Needs to be discussed with RGH

[Stage 1 Approval (March 2025) https://pac.fnal.gov/wp-content/uploads/2025/04/PAC

* Hall A (SoLID)

Needs to be discussed with SoLID Collaboration

$$F_{U(TT),T}^{\cos{(2\phi_h-2\phi_{LT})}} = \mathcal{C} \left[-rac{2(\hat{m{h}}\cdotm{p}_T)^2 - m{p}_T^2}{M^2} f_{1TT} D_1
ight] \qquad F_{L(TT)}^{\sin{(2\phi_h-2\phi_{TT})}} = \mathcal{C} \left[-rac{2(\hat{m{h}}\cdotm{p}_T)^2 - m{p}_T^2}{M^2} g_{1TT} D_1
ight]$$

$$F_{L(TT)}^{\sin{(2\phi_h-2\phi_{TT})}} = \mathcal{C}igg[-rac{2(\hat{m{h}}\cdotm{p}_T)^2-m{p}_T^2}{M^2}g_{1TT}D_1igg]$$

Thank you

Office of Science