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Outline

• Polarization Extraction Methods (for ND3)

• Neural Networks 

• Preliminary results (for vector polarization)

• Tensor Polarization

• Observations & Outlook



Extracting Deuteron Polarization

• Can fit a signal by average the dependance on the azimuthal angle 

• 𝐹𝜖 𝑅, 𝐴, 𝜂 =
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• Polarization Approximated as

• 𝑃 =
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,  𝑟 =
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Extracting Deuteron Polarization

• Thermal Equilibrium (TE)
• When lattice (L-Helium) and the target material are at the same 

temperature, we have Boltzmann equilibrium → 𝑃𝑇𝐸 =
4

3
tanh(

ℏ𝜔𝑑

2𝑘𝑇
)

• Assuming linearity of Q-Meter system, relationship between area and 
polarization is linear, i.e.,:

• 𝑃 = 𝐶׬
𝜔𝑑𝑆 𝜔

𝜔
= 𝐶𝑃𝑇𝐸 , where 𝐶 is a calibration constant

• NMR Signal: 𝑆 𝜔 = ℜ 𝑉 𝜔, 𝜒 − 𝑉 𝜔, 0 𝜒′′ 𝜔 , 𝜒′′ 𝜔  is the absorption function 
and 𝜒 𝜔  is the magnetic susceptibility 
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Extracting Deuteron Polarization

• TE method comes with considerable error (~4% relative error but 
sometimes as much as 7% for standard spin-1 fitting)
• Error propagated from change in area of TE signal and fitted signal.

• TE state takes very long to reach (can take several hours, ie ND3).

• Dulya type fitting is prone to systematic errors and susceptible to signal-
to-noise.

• Dulya type fitting not possible for RF manipulated signal.
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Q-Meter Limitations

• Sources of error:

• ൗ𝑛λ
𝟐 cable length (Tuning errors)

• Calibration Constant

• Changes in RF environment

• Temperature Change

• Statistical errors dependent on DAQ
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Artificial Neural Networks
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ෝ𝒚 = 𝑿𝒘 + 𝑏, 𝑿, 𝒘 ∈  ℝd 

Loss Function: L(𝐰, b) (e. g. , MSE, MAE)

Minimize: w∗, b∗ =  argmin(L(𝐰, b))

w ← w −  η ෍

i ∈B

𝜕wL(i)(w, b) 

b ← b −  η ෍

i ∈B

𝜕bL(i)(w, b) 



Goals

• (Reduce fit errors) increase accuracy and precision (for spin ½ and 
1)

• Achieve reliable results even with large range of noise and shifts

• Develop flexible software that improves reliability even when 
working Q-meter outside its design specifications

• Enable real-time polarization readings

• Apply to ss-RF/AFP type manipulations
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Why Neural Networks?

• Most Flexible ML approach to regression problems (UAT)

• Very fast inference is possible (~ms scale updates with standard GPU)
▪ More accurate real-time polarization monitoring

• Can do more with multidimensional information

• Common libraries help to leverage basic hardware
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Data Generation
• Generated 1M data points varying over polarization and noise level (0% - 10% relative error 

per bin)

• 𝑆𝑁𝑅 =
|𝑀𝑎𝑥 𝐿𝑖𝑛𝑒𝑠ℎ𝑎𝑝𝑒 |

|𝑀𝑎𝑥 𝑁𝑜𝑖𝑠𝑒 |

• Deuteron lineshape generated by analytical function

• Baseline simulated from Q-Meter circuitry parameters 
• U: Voltage
• 𝑍𝑆𝑡𝑟𝑎𝑦: Stray capacitance 
• 𝐶(𝜔):  Capacitance
• 𝐼: Current
• 𝜙(𝜔): Phase
• 𝜂: Filling Factor (of coil)
• 𝜆/2: Cable length

• Data generated under various conditions of parameters to generalize
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Preliminary Results
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Results for P = 2% - 60%
Relative Error ~ 0 – 10% per bin

SNR ~ 1-2

Median RPE: 0.34%
Mean RPE: 0.54%

STD: 0.57%
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Results for P = 0.04% - 2%
Relative Error ~ 0 – 1% per bin

SNR ~ 1-2

Median RPE: 2.9%
Mean RPE: 5.13%

STD: 5.32%
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Tensor Polarization
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Semi-Saturated Radiofrequency (ss-RF)
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Relaxation Pathways

https://arxiv.org/abs/1707.07065



Principles of ss-RF

• Spin-Temperature Consistency
• Hole burning locally erases non-

equilibrium state biases by restoring 
partial equilibrium

• Burning acts as mirror image of DNP, 
driving spin transition in opposite 
direction

• Differential Binning
• Partitioning signal into frequency beams and 

manipulating/measuring each subset

• Rates Response
• Peak achieved from hole burning is ½ area of 

burned area (in high RF power limit)
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𝑟 =
𝐼+

𝐼−
 → 𝑟𝑖 =

𝐼+,𝑖

𝐼−,𝑖

𝑃𝑖 = 𝐶𝑖 𝐼+,𝑖 + 𝐼−,𝑖

𝑃𝑧𝑧,𝑖 = 𝐶𝑖(𝐼+,𝑖 − 𝐼−,𝑖)



Burning Simulation
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Applied Burn



Future Machine Learning Endeavors 
• 1D Case: 

• (bin P and Pzz in R domain only) to 
extract P and Pzz invariantly of RF 
manipulation

• 2D Case:
• Calculate P and Pzz along R and 𝜙

• → Train model with smaller, 
synchronized, phase-shifted 
tiemsteps

• → More information to train on!
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Thank you!
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Leftovers
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