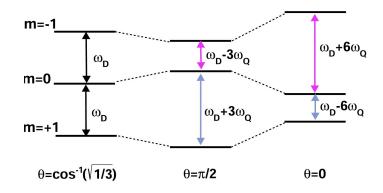
Hardware (AFP, ssRF)

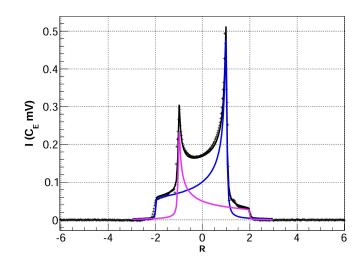
Forhad Hossain and Dustin Keller University of Virginia October 13, 2025

b1/Azz Tensor Collaboration Meeting

Outline

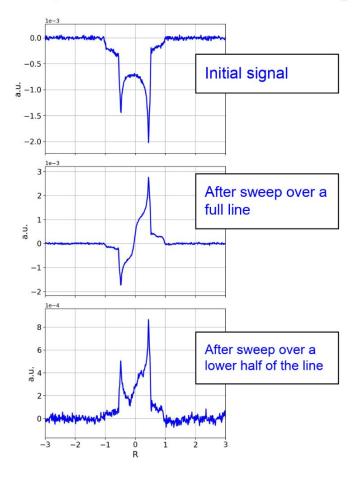

- 1. Spin 1 system (deuteron)
- 2. Vector and Tensor Polarizations
- 3. AFP and ssRF
- 4. Hardware Status
- 5. Summary

Spin-1 System (deuteron)

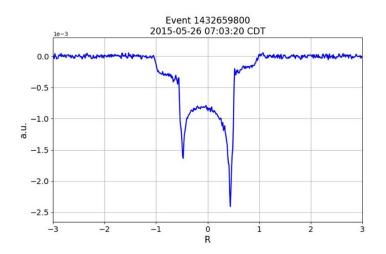

Energy level of a deuteron in a magnetic field

$$E_m = -m\hbar\omega_D + \hbar\omega_Q[(3\cos^2\theta - 1) + \eta\sin^2\theta\cos2\phi](3m^2 - 2),$$

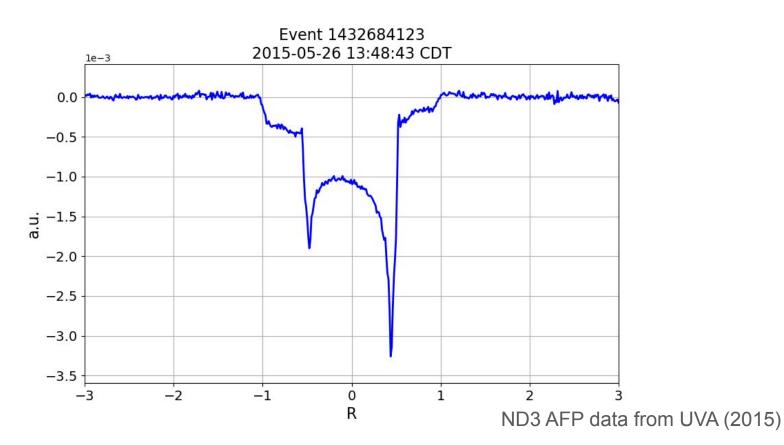
- $\hbar\omega_D$ is the deuteron Zeeman energy.
- $\hbar\omega_Q$ is the deuteron quadrupole energy.
- The red (blue) lines indicate the transitions from the magnetic sublevels $-1 \leftrightarrow 0 \ (0 \leftrightarrow 1)$.

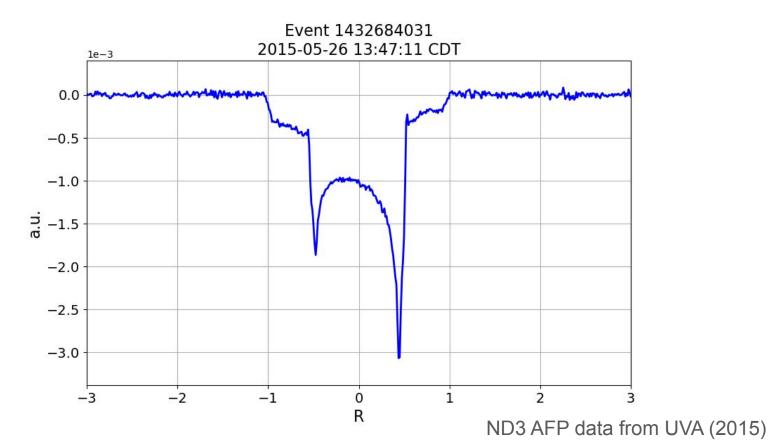


The energy level diagram (not to scale) for deuterons



Ref: https://arxiv.org/abs/1707.07065


AFP (Adiabatic Fast Passage)


- Technique to rapidly reverse the direction of nuclear spin polarization.
- The spin system is placed in a strong magnetic field (H₀) and exposed to an RF field (H₁) perpendicular to it.
- The sweeping time should less than the relaxation time
- 4. AFP sweep rate needs to optimized to minimize the polarization loss in AFP.

More AFP

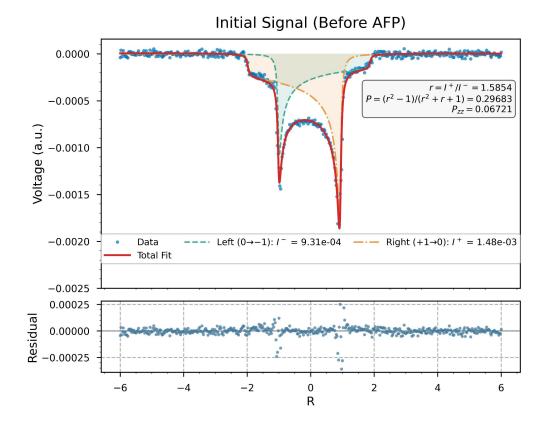
More AFP

AFP efficiency

- •AFP was performed on different target materials.
- •Spin-flip efficiencies for different materials are shown below ($\delta p = pol.$ ratio before and after spin-flip)

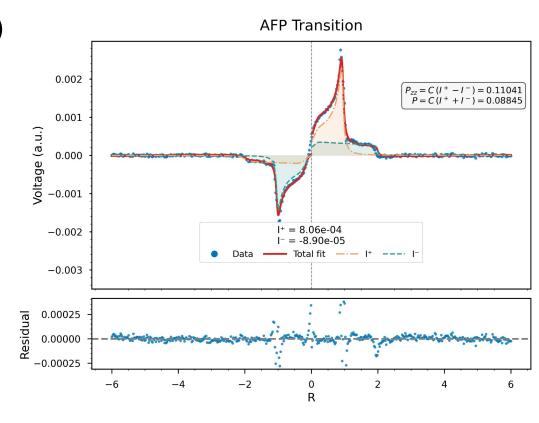
Nuc.lei	Dopant	Spins/g	δρ
NDз	Irr.	2x10 ¹⁷	-0.88
NHз	Irr.	2X10 ¹⁷	-0.57
D-but.	Irr.	1X10 ¹⁷	-0.77

Slide is taken from D. Keller Ref: https://twist.phys.virginia.edu/work/D rellYan2017/DrellYan2016.pdf

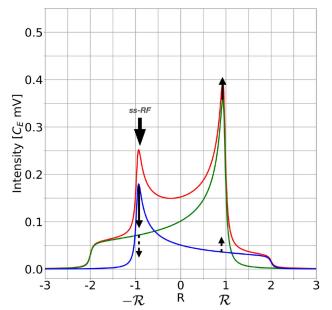

Results from AFP experiments with various nuclei in different target materials

Nuclei	Substance dopant	e conc. (spins/g)	δP^{\max}
H	1-butanol EHBA-Cr(V)	2.0×10 ¹⁹	-0.76
⁷ Li ¹ H	⁷ LiH (irradiated)	low	-0.90 -0.90
¹⁹ F ¹ H	8-fluoro-1-pentanol TEMPO	1×10^{20}	-0.37 -0.40
² H	1-butanol-d ₁₀ EHBA-Cr(V)-d ₂₂	$2.36 \times 10^{19} \\ 6.35 \times 10^{19}$	$-0.92 \\ -0.90$

Ref: NIM A 356 (1995) 108


AFP (Adiabatic Fast Passage)

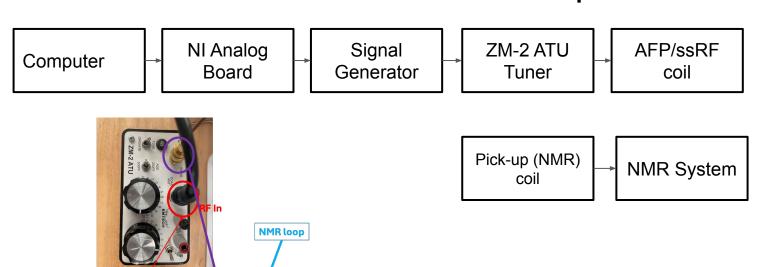
- At thermal equilibrium, the vector and tensor polarizations of the deuteron signal are measured before performing the AFP process.
- The calibration constant obtained from this initial state is then used to determine the vector and tensor polarizations during AFP operation.
- Fit function Dulya like (Dulya et al., NIM A 398, 109 (1997)), using area rather than height (Eur. Phys. J. A (2017) 53: 155).



AFP (Adiabatic Fast Passage)

- 1. After sweep over a full line, we calculate the vector and tensor polarizations, where we already know the calibration constant from the initial signal.
- The central region appears rounded rather than sharp, as predicted by the line-shape theory, because during AFP operation an additional ss-RF effect occurs, burns some area down—particularly in the center.

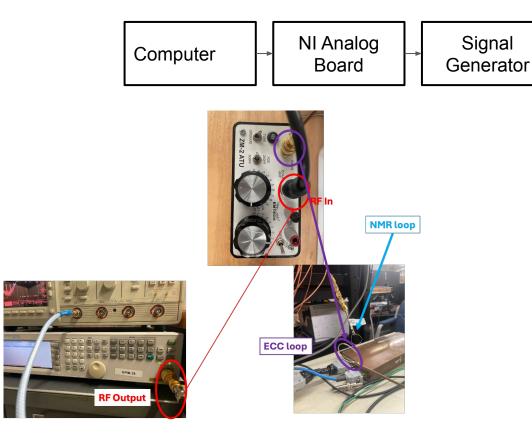
ss-RF (Selective Semi-Saturating RF)

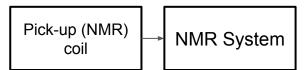


Ref: NIM A 1050 (2023) 168177

- 1. Locally drives transitions at specific NMR frequencies to reshape or enhance vector/tensor polarization.
- 2. ss-RF acts selectively on local bins in frequency domain, allowing non-uniform spin-temperature manipulation.
- 3. When ss-RF is applied at a frequency region R, it depletes the signal intensity there while simultaneously increasing the intensity at the opposite region −R at half the rate.

RF modulations on NH3 Baseline: Setup


AFP Loop



RF Output

- The max update rate of NI PCIe-6321 is 900k samples/s.
 - It is fast enough for AFP.
- The min dwell time of Agilent N5181A is 1 ms. It is not fast enough for AFP.

RF modulations on NH3 Baseline: Test

AFP/ssRF

coil

ZM-2 ATU

Tuner

With mod frequency 400 kHz

Summary

- The AFP method can be highly efficient, especially for achieving spin reversal. At UVA, this
 technique has been successfully applied to NH3, ND3, and deuterated butanol (D), with high
 efficiency.
- The ss-RF technique is a powerful complementary method and can be used to enhance tensor polarization.
- We are analyzing the AFP data taken from 2015.
- Hardware and Software Progress:
 - Developing the LabView software for RF Control Coil.
 - Optimizing AFP parameters.
 - Integrating the new AFP cup into the target system.
 - Planning to test AFP with NH3/ND3 this winter.