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Ref: https://arxiv.org/abs/1707.07065



nuclear spin polarization.
2. The spin system is placed in a strong
magnetic field (Ho) and exposed to an RF
L Initial signal field (H) perpendicular to it.
. 3. The sweeping time should less than the
relaxation time
4. AFP sweep rate needs to optimized to

AFP (Adiabatic Fast passage) 1. Technique to rapidly reverse the direction of
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More AFP
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AFP efficiency

*AFP was performed on different Results from AFP experiments with various nuclei in different
target materials. target materials
*Spin- fI||p efficiencies for different Nuclei  Subishitics € Foic. apm
materials are shown below (6 dopant (spins/g)
ratio before and after spln-fllp H 1-butatiol 2.0%x10" ~0.76
EHBA-Cr(V)
"Li "LiH low ~0.90
'H (irradiated) —-0.90
. . PF 8-fluoro-1-pentanol 1x 10 —0.37
Nuc.lei Dopant Spins/g dp 'H TEMPO —0.40
ND Irr. 2x10Y  -0.88 )
: = “H l-butanol-dm 236 X 1019 —0.92
Nbis I 2x10™  -0.57 EHBA-CHV)-d , 635x101  —0.90
D-but. . 1X10"  -0.77

Slide is taken from D. Keller
Ref:https://twist.phys.virginia.edu/work/D
rellYan2017/DrellYan2016.pdf

Ref: NIM A 356 (1995) 108



https://twist.phys.virginia.edu/work/DrellYan2017/DrellYan2016.pdf
https://twist.phys.virginia.edu/work/DrellYan2017/DrellYan2016.pdf
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Initial Signal (Before AFP)

AFP (Adiabatic Fast Passage) .. |
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1. At thermal equilibrium, the vector and 3 —o0010

tensor polarizations of the deuteron &

signal are measured before performing S 00015 -

the AFP process.
2. The calibration constant obtained 002017 ¢ e e T eOnTIT =8 3le0d e RiGht(HS0kIT ~ 148003

from this initial state is then used 0,002

to determine the vector and tensor .

polarizations during AFP Z 000000 4

operation. & ~0.00025 - | | | | . | |
3. Fit function Dulya like (Dulya et al., -6 —4 -2 0 2 4 6

NIM A 398, 109 (1997)), using
area rather than height (Eur. Phys.
J.A(2017) 53: 155). 8



AFP (Adiabatic Fast Passage) AFP Transition
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1. After sweep over a full line, we
calculate the vector and tensor AR
polarizations, where we already
know the calibration constant from
the initial signal. v

2. The central region appears R o § %i?gi{é?& o
rounded rather than sharp, as ~0.003
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ss-RF (Selective Semi-Saturating RF)
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1. Locally drives transitions at specific NMR frequencies to
reshape or enhance vector/tensor polarization.

2. ss-RF acts selectively on local bins in frequency
domain, allowing non-uniform spin-temperature
manipulation.

3. When ss-RF is applied at a frequency region R, it

depletes the signal intensity there while simultaneously
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increasing the intensity at the opposite region —R at half
s & & - the rate.
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Ref: NIM A 1050 (2023) 168177
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RF modulations on NH3 Baseline: Setup

Computer NI Analog Signal ZM-2 ATU AFP/ssRF
P Board Generator Tuner coil
Pick-ucr:) i(lNMR) 1 NMR System

e  The max update rate of NI PCle-6321 is 900k samples/s.

o Itis fast enough for AFP.
The min dwell time of Agilent N5181Ais 1 ms. It is not fast enough
for AFP.




RF modulations on NH3 Baseline: Test

Computer NI Analog Signal ZM-2 ATU AFP/ssRF
P Board Generator Tuner coil
Pick-up (NMR) | | (R System
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Summary

e The AFP method can be highly efficient, especially for achieving spin reversal. At UVA, this
technique has been successfully applied to NH3, ND3, and deuterated butanol (D), with high
efficiency.

e The ss-RF technique is a powerful complementary method and can be used to enhance
tensor polarization.

We are analyzing the AFP data taken from 2015.
Hardware and Software Progress:
o Developing the LabView software for RF Control Coil.
o  Optimizing AFP parameters.
o Integrating the new AFP cup into the target system.
o Planning to test AFP with NH3/ND3 this winter.



