
ERR Task List & Run Plan

Elena Long

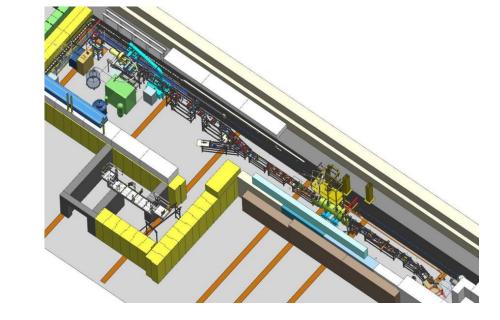
b1/Azz Tensor Collaboration Meeting

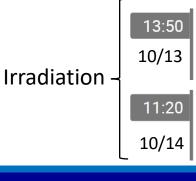
Oct. 13th, 2025

ERR Task List

3 Main Topics:

- Target Tasks
- Beamline Tasks
- Documentation Tasks


+ any additional tasks recommended from this morning's talks


Target Tasks

Target Tasks

Maximize ND₃ vector polarization

- The JLab Target Group is building a new test lab facility to irradiate ND3
 - Irradiation optimization studies with both dose & irrad.
 Temperature
- Cryostat being built
- Beamline needs shielding for 10uA @ 8 MeV operation
- Aiming for irradiation operations in Spring '26

Update on the Irradiation of Materials

Speaker: Chris Keith (Jefferson Lab)

Modeling the 2 paramegnetic centers in ND3

Speaker: Sujan Subedi (University of Virginia)

Speaker: Jordan Roberts (University of Virginia)

12:05 10/14 Material Preparation 6

Speaker: Eli Phippard (University of New Hampshire)

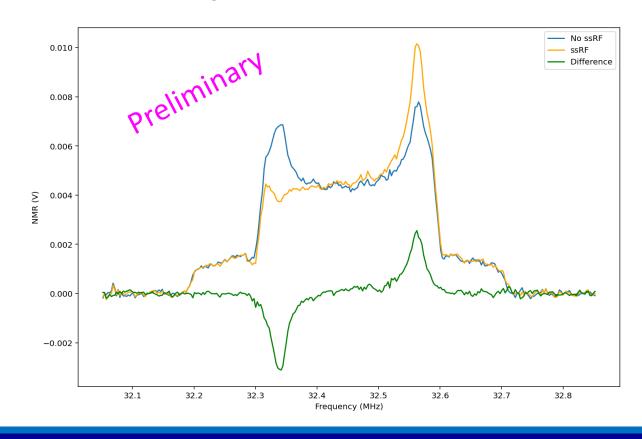
Target Tasks

Demonstrate Tensor Enhancement on ND₃

- Initial studies have been done on warm irradiated ND₃
 - Compared w/ d-butanol, ssRF is sharper
 & lasts significantly longer
 - Low vector pol. due to 84K irrad
- Cold (1-4K) irradiated ND₃ needed

10:45

10/13

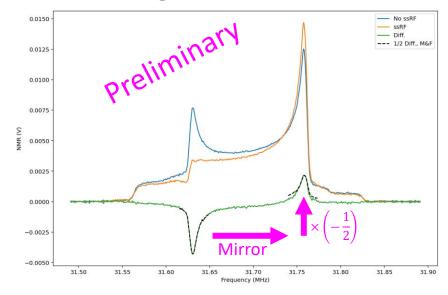

UNH Target Group Status and Goals

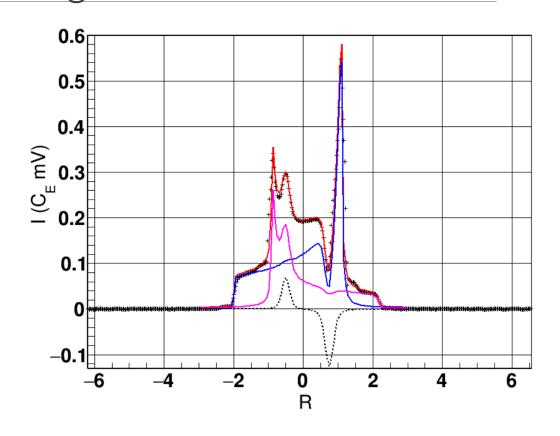
Speaker: Karl Slifer (University of New Hampshire)

17:00 10/13

SSRF decay rates, CAA Quasi-elastic analysis

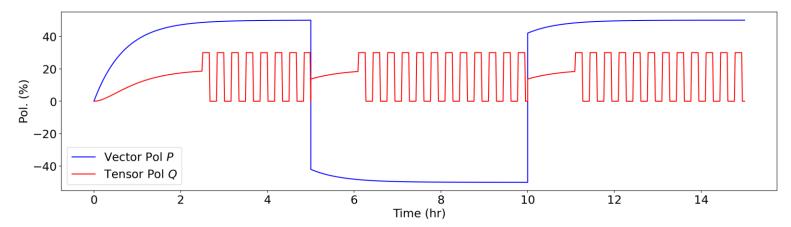
Speaker: Chhetra Lama (University of New Hampshire)




Target Tasks

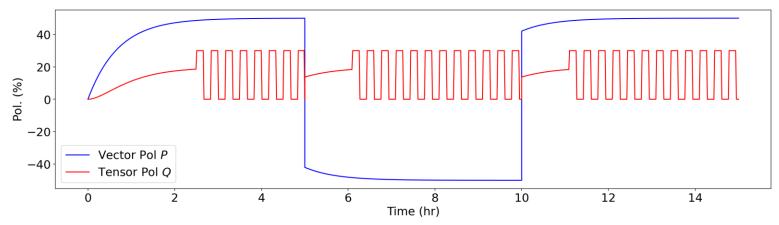
Complete

• Demonstrate $A_{lost} = 2 A_{gained} w/ssRF$


- UVA published results
 - D. Keller, EPJ A 53, 155 (2017)
 - J. Clements, D. Keller, NIM A 1050, 168177 (2023)
- UNH results in agreement

Target Tasks

- Demonstrate full polarization cycles (P & Q)
- Goal is to create the following plot w/ data:

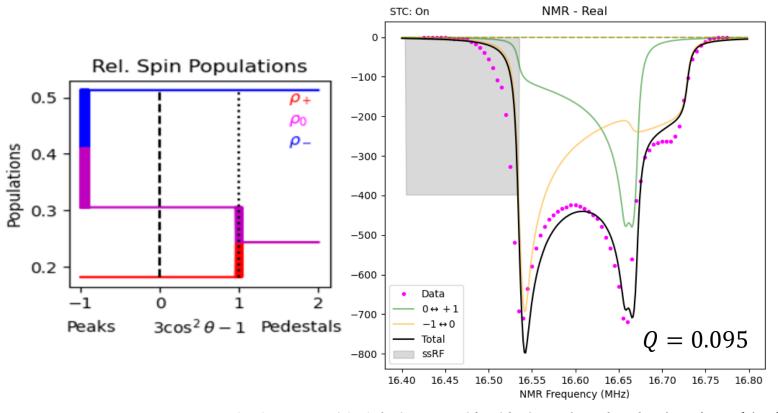


Currently working on optimizing & automating ssRF application/measurement cycles + AFP

Design & Optimization of AFP and ssRF

Goal is to create the following plot w/ data:

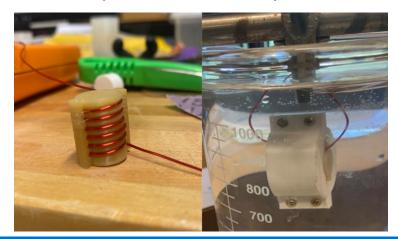

- Currently working on optimizing & automating ssRF application/measurement cycles + AFP
 - Hardware + Software



Near Complete

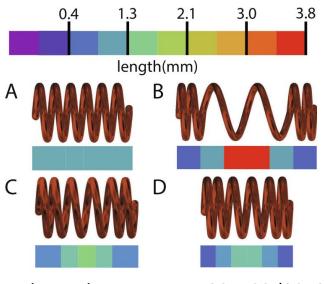
Target Tasks Revisit Triumf's Tensor Target Results

- No uncertainty listed for Q = 14%
- Scattering data uncertainty is large
 - No contradiction within uncertainty between either Q = 14% or Q = 11.5%



The measured polarization P = -0.206 deviates considerably from the value that is estimated in this analysis and, consequently, the result for the alignment could be affected by a large systematic error, which might be due to the neglect of the line broadening in this situation.

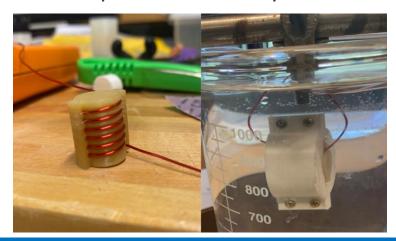
Target Tasks


Ensure NMR/ssRF coil uniformity

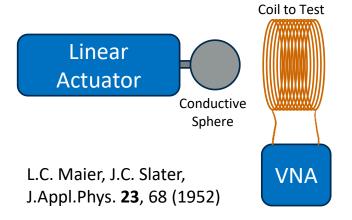
- Want to avoid <u>line-shape issues</u> encountered in Hall B RGC data
- b1/Azz will use NMR coils inside target cups, embedded in material
- Additional work:
 - 3D printing coil forms to improve uniformity

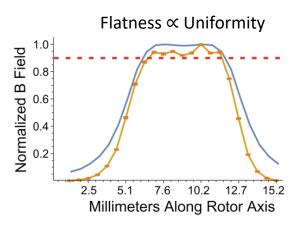
Variable pitch increases homogeneity J.Mag.Res. **50**, 281 (1982)

3D printing coil forms
J. Mag. Res. **305**, 89 (2019)



J.I.Kelz, et al, J. Mag. Res. **305**, 89 (2019)


Target Tasks


Ensure NMR/ssRF coil uniformity

- Want to avoid line-shape issues encountered in Hall B RGC data
- b1/Azz will use NMR coils inside target cups, embedded in material
- Additional work:
 - 3D printing coil forms to improve uniformity

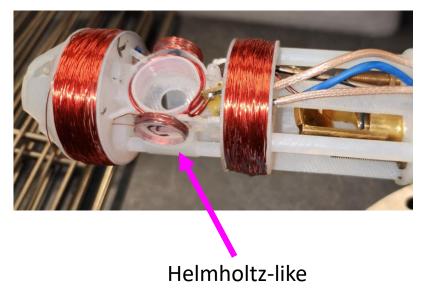
 Measuring coil uniformity w/ ball shift probe

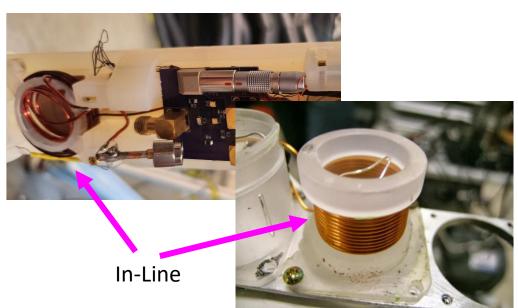
J.I. Kelz, et al, J. Mag. Res. **305**, 89 (2019)

Target Tasks

Near Complete

 Confirm annealing/material change estimates w/ Hall B RGC data


- Analysis of Hall B RGC data in progress
- Target CLAS Note expected in the near future

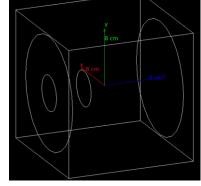


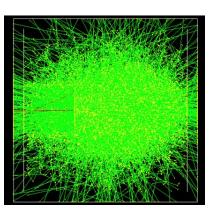
Target Tasks

Final Design of Target Ladder & Coils

- Will use target cups similar to g2p
- ssRF/AFP coil design and optimization in progress
 - Currently testing in-line and Helmholtz-like configurations

J. Pierce, et al, NIM A **738**, 54 (2014)


Beamline Tasks


Beamline Tasks:

Build Charge Monitoring Equipment

- Need to keep charge uncertainty below the 10⁻⁴ level
- Faraday cup being built & studied for this purpose
 - Recommissioned W-Cu calorimeter from Hall A

14:35

10/13

Systematics/Faraday Cup

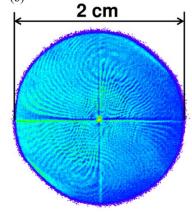
Speaker: David Mack (JLab)

16:45

10/14

Faraday Cup, JLAB NMR, CAA SIDIS analysis

Speaker: Hector Chinchay (University of New Hampshire)


Beamline Tasks: Commissioning of Slow Raster

Slow raster of electron beam required for DNP target

 $t^{1/2}$ \times sin(wt)

Magnet current waveform for the slow raster

Hall A slow raster for g2p P. Zhu, NIM A **808**, 1 (2016)

The 2D histogram of magnet current signals of slow raster

14:10 10/13

Beamline, Raster configuration, magnets. Relation to g2p2

Speaker: Dave Gaskell (Jefferson Lab)

Beamline Tasks:

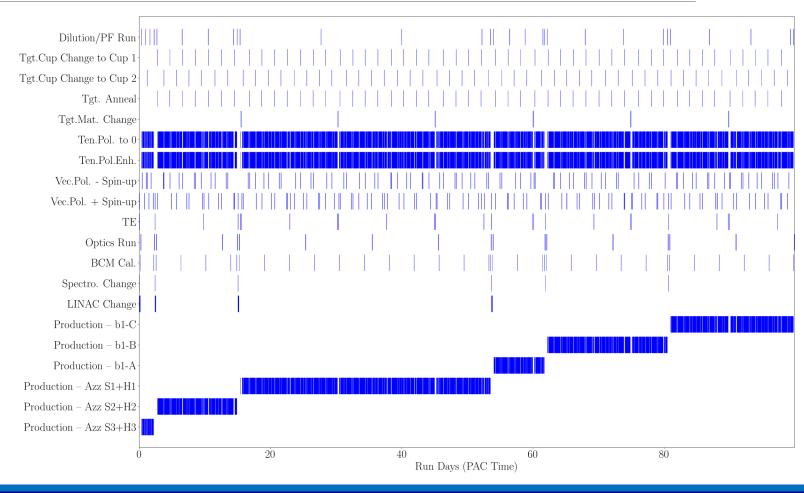
List Detector & Trigger Configuration

 Draft run plans have been created for both Azz and b1

ERR Tasklist / Runplan and Polarization Configuration

Speaker: Elena Long (University of New Hampshire)

Beamline, Raster configuraton, magnets. Relation to g2p2


Speaker: Dave Gaskell (Jefferson Lab)

Systematics/Faraday Cup

10/13 Speaker: David Mack (JLab)

15:00 DAQ

11:35

10/13

14:10

10/13

Beamline Tasks:

Confirm Beam Pol. & Measurement

- \circ b1/Azz need $P_b=0$
- Will integrate the helicity states of the pol. e-beam

Also potential for future datamining to extract beam-target double-spin vector
 & tensor asymmetries

$$\sigma(h_e, P, Q) = \sigma_u \Big[1 + h_e \big(A_e + P A_{ed}^V + Q A_{ed}^T \big) + P A_d^V + Q A_d^T \Big]$$
b1/Azz

13:50

Vector and beam/target asymmetries from b1/Azz data

10/14

Speaker: Elena Long (University of New Hampshire)

Documentation Tasks

Documentation Tasks

Workforce for running

Near Complete

Write EH&S Documents

Not Started

Complete ERR documentation

In Progress

17:15 → 18:00 Planning Session

10/13

Conveners: Ishara Fernando (University of Virginia), Karl Slifer (University of New Hampshire)

Run Plan

Overhead Assumptions (Real Time)

```
Based on
 Beam Assumptions:
                                                                       Target Polarization, TE, & PF/Dilution Run Assumptions:
                                                                                                                                Hall B RGC
   Beam Current: 85 nA
   Beam Efficiency: 0.5 (Scaled to 1)
                                                                          Time constant for vector pol. spin-up: 0:50:00
                                                                                                                                 Spin-Ups
                                                                          # of vector pol. time constants before beam: 3.91
 Target Configuration Assumptions:
                                                                          Time required for vector pol. spin-ups: 3:15:30
   Target Cup Radius: 1.5 cm
                                                                          Time between each vector pol. spin-up: 2 days, 0:00:00
   Target Cup Configuration: 2 cups
                                                                          Time required for target TE measurements for all 2 cups: 3:00:00
                                                                          Time between TEs: 15 days, 10:03:40 (2 b/w Each Material Change)
                Microwaves
                                                                          Time required for packing fraction/dilution runs: 3:00:00
                Prod. Mat.
       ND3
                                                                          # of packing fraction/dilution runs per kinematic setting: 5
       ND3
                Prod. Mat.
                                                    Based on data
                                                                          Time to Tensor Enhance: 0:00:30
               Optics
                                                                          Time to Tensor Unpol: 0:00:10 Based on UVA & UNH data
       EMP
                Empty Cell
                                                   from P.M. McKee.
                                                                          Time Between Tensor Pol/Unpol Cycles: 0:30:00
                                                    NIM A 526, 60
Target Annealing/Material Assumptions:
                                                                        Beamline & Hall Configuration Assumptions:
   Dose between anneals: 5.25e+15 e/cm^2
                                                         (2004)
                                                                          Time required for BCM calibration: 2:00:00
   Time Between Anneals for 2 Cups: 3 days, 5:42:46
                                                                          Beam time between BCM calibrations: 7 days, 12:00:00
   Time required for Anneal: 1:00:00
                                                                          Time required for each Optics run: 4:00:00
   Time required for Cup Change: 0:10:00
                                                                          Beam time between Optics runs: 20 days, 0:00:00
   Time Between Cup Changes: 1 day, 14:51:23
                                                                          Time required for each Linac change: 8:00:00
   Time required for target material change: 4:00:00
                                                                          Time required for each Spectrometer Momentum/angle change: 2:00:00
   Dose between target material changes: 5.00e+16 e/cm^2
   Time between target material changes for 2 Cups: 30 days, 20:07:20
```

Dose Between Anneals & Mat. Changes

Analyzed data from P.M. McKee, NIM A 526, 60 (2004)

Positive *P*

Subset #	$d \left(\times 10^{15} \frac{e^{-}}{\text{cm}^2} \right)$		
1	3.265		
3	6.02		
5	4.548		
7	4.188		
9	4.2964		
11	4.139		
12	3.5597		
13	3.998		
15	2.3091		

Positive $d_{ave}=4.04\times 10^{15}~\frac{e^-}{\mathrm{cm}^2}$

Negative P

Subset #	$d \left(\times 10^{15} \frac{e^{-}}{\text{cm}^2} \right)$		
2	5.35		
4	5.86		
6	6.52		
8	6.967		
10	3.5		
12	3.641		
14	3.9454		

Negative
$$d_{ave} = 5.11 \times 10^{15} \frac{e^-}{\text{cm}^2}$$

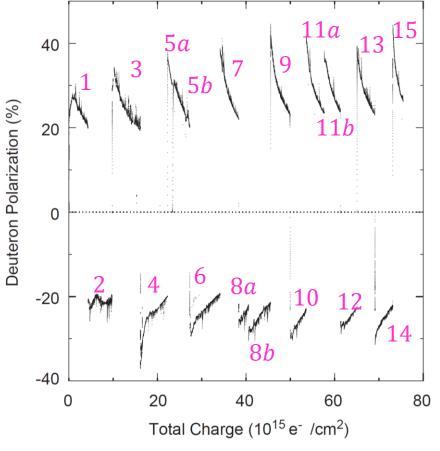
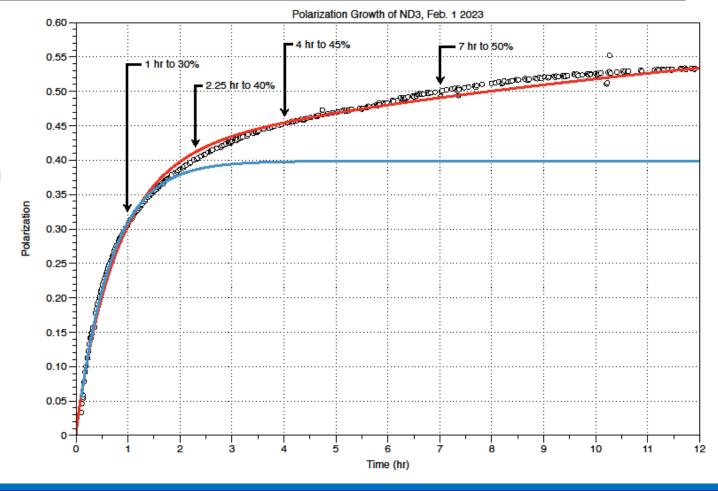
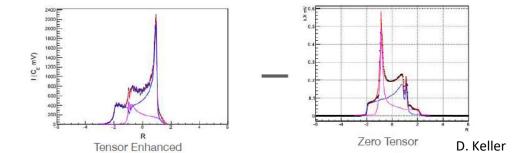



Fig. 1. History of one batch of ¹⁵ND₃.

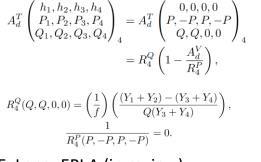
Hall B RGC Spin-Up

- \circ ~ 4 hours to P = 45%
- AFP will be used between spin-flips to significantly reduce flip time

11:15 10/13


PbPT cross checks, CAA b1 analysis

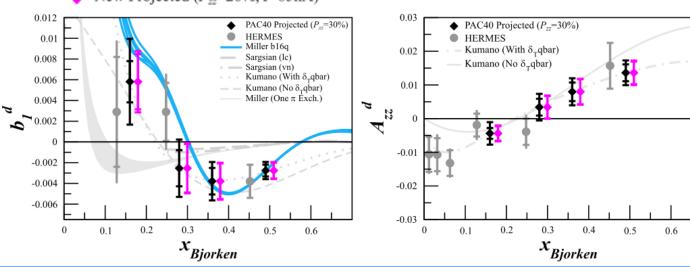
Speaker: Muhammad Farooq (University of New Hampshire)


Rapid Tensor Flips: 4 State Measurement

- Rapid tensor enhancement/suppression while maintaining large vector polarization
 - Highly suppresses drift effects on systematics
 - 1 cycle/hour instead of 1 cycle/day

$$\circ~\delta A_{zz}^{drift} \propto rac{1}{\sqrt{N_{flips}}} \, \mathrm{improved} \; \mathrm{by} \, rac{1}{\sqrt{24}}$$

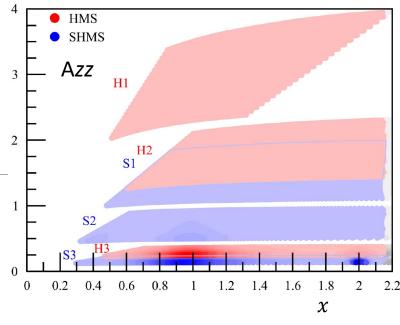
- ▶ PAC40 Projected (P_{zz}=30%, I=115nA)
- New Projected (P_{zz} =26%, I=85nA)

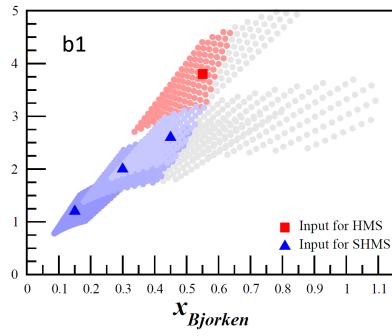


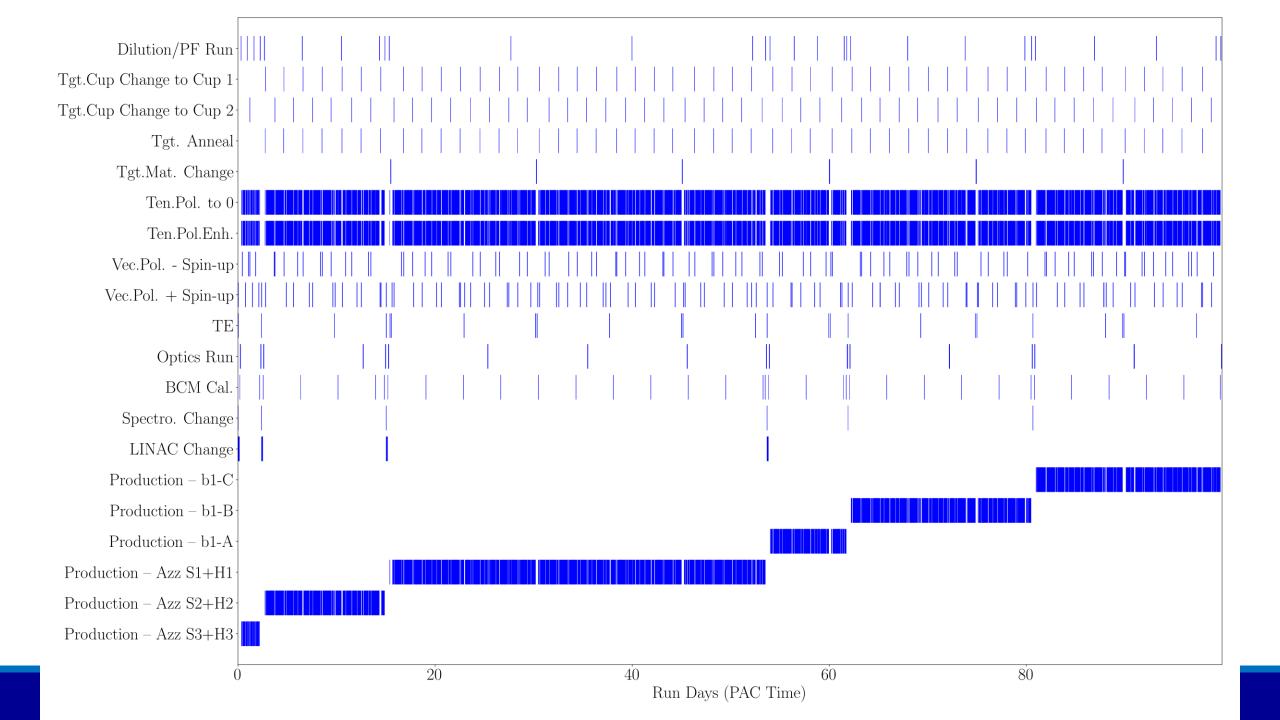
E. Long, EPJ A (in review)

13:50 10/14

Vector and beam/target asymmetries from b1/Azz data


Speaker: Elena Long (University of New Hampshire)




b1/Azz Kinematics Running

Draft run plan from smallest beam/detector energies to highest

Kinematics Settings:							
Setting Name	Spec.	E0 (GeV)	Q^2 (GeV^2)	E' (GeV)	Theta (deg)	Run Time (PAC)	Run Time (Real)
Azz-A 	SHMS HMS	2.2	0.2 0.3	2.15 2.11	10.9 14.9	1 day, 0:00:00	2 days, 0:00:00
Azz-B	SHMS HMS	6.6	0.7 1.8	6.35 5.96	7.5 12.3	8 days, 0:00:00	16 days, 0:00:00
Azz-C 	SHMS HMS	8.8	1.5 2.9	8.36 7.26	8.2 12.2	25 days, 0:00:00	50 days, 0:00:00
b1-A 	SHMS HMS	11	1.21 3.81	6.70 7.31	7.35 12.5	6 days, 0:00:00	12 days, 0:00:00
b1-B 	SHMS HMS	11	2.00 3.81	7.45 7.31	8.96 12.5	9 days, 0:00:00	18 days, 0:00:00
b1-C 	SHMS HMS	11	2.58 3.81	7.96 7.31	9.85 12.5	15 days, 0:00:00	30 days, 0:00:00

Thank you!

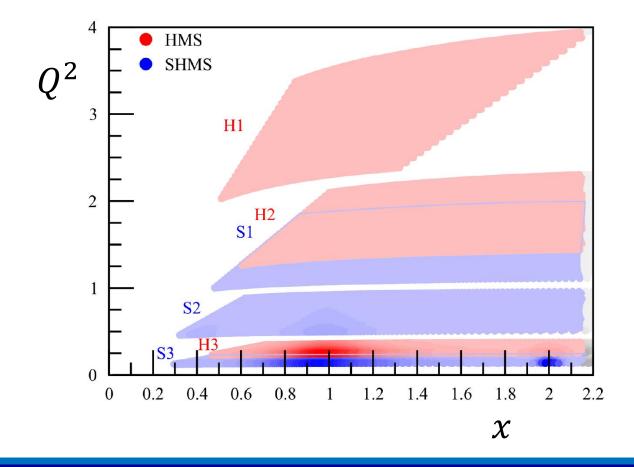
Specific for this review

- While the C1 conditional status has been lifted, the review panel reminded the collaboration that the bar for passing the Experimental Readiness Review will be significantly higher.
- The next review will include the original charge elements:
- 1. What technique(s) will be used to produce "a tensor polarization of 30% under standard experimental conditions"
- 2. How will the tensor polarization be measured and with what uncertainty? What crosschecks or auxiliary measurements can be made to validate the results? Will this uncertainty be sufficient to achieve meaningful physics results?
- 3. What assumptions are made regarding the vector polarization of the target? How is the tensor polarization expected to respond as the vector polarization decays in beam?
- 4. What is the current experimental situation? What is the maximum tensor polarization that has been achieved under the anticipated polarizing conditions of 5 T and 1 K?

but will now incorporate an additional critical element focused on risk mitigation and scientific impact.

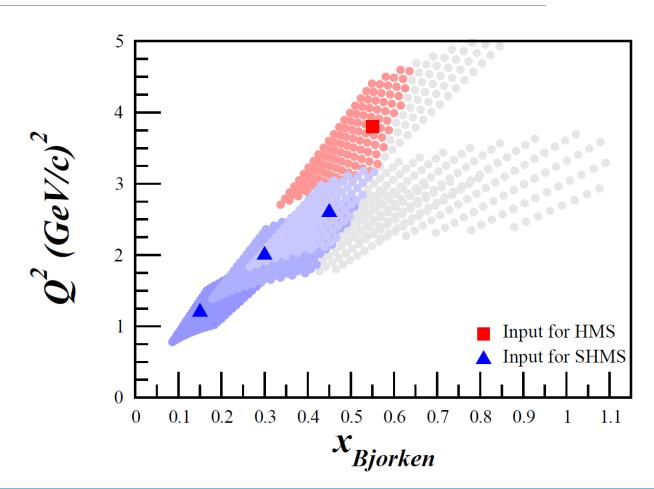
The collaboration must prepare to address the following new contingency planning questions:

- 5. What is the detailed plan if the average polarization of 30% is not reached?
- 6. Can the experiments still be run under those lower-polarization conditions?
- 7. What is the precise impact on the final scientific results (e.g., uncertainties, statistical significance) if the 30% polarization goal is not met?



Azz Kinematics & Overhead

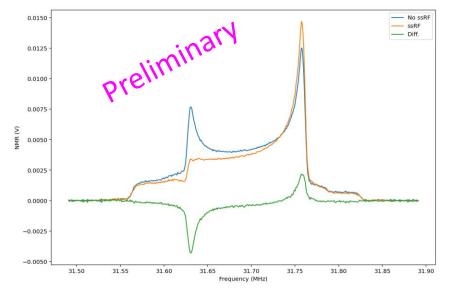
		E_0	Q^2	$E' \mid \theta_{e'} \mid$		Rates	PAC Time
		(GeV)	(GeV^2)	(GeV)	(°)	(kHz)	(Days)
SHMS	(S1)	8.8	1.5	8.36	8.2	0.38	30.5
HMS	(H1)	8.8	2.9	7.26	12.2	0.04	30.5
SHMS	(S2)	6.6	0.7	6.35	7.5	3.57	9.7
HMS	(H2)	6.6	1.8	5.96	12.3	0.09	9.7
SHMS	(S3)	2.2	0.2	2.15	10.9	10.5	1.2
HMS	(H3)	2.2	0.3	2.11	14.9	3.23	1.2

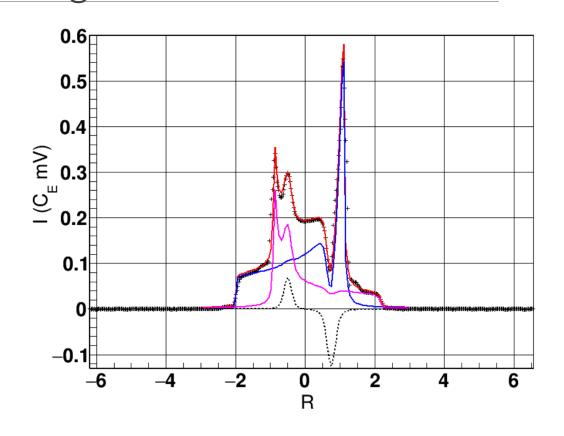

Overhead	PAC Time
Vector Polarization/Depolarization	7 days, 13 hours
Packing Fraction/Dilution Runs	22.5 hours
Target T.E. Measurements	21 hours
Optics Runs	20 hours
BCM Calibration Runs	18 hours
Target Anneals	13 hours
Linac Changes	12 hours
Tensor Pol. Spin Flips	11 hours
Target Cup Changes	4 hours
Target Material Changes	4 hours
Momentum/Angle Changes	3 hours
	11.4 days

b1 Kinematics & Overhead

		\overline{x}	$\overline{Q^2}$	\overline{W}	P_0	θ	Rates	time
			(GeV ²)	(GeV)	(GeV)	(deg.)	(kHz)	(days)
Α	SHMS	0.15	1.21	2.78	6.70	7.35	1.66	6
В	SHMS	0.30	2.00	2.36	7.45	8.96	0.79	14.65
С	SHMS	0.452	2.58	2.00	7.96	9.85	0.38	15
A+B+C	HMS	0.55	3.81	2.00	7.31	12.50	0.11	35.65

Overhead	PAC Time
Vector Polarization/Depolarization	7 days, 6 hours
Target T.E. Measurements	22.5 hours
Packing Fraction/Dilution Runs	22.5 hours
BCM Calibration Runs	18 hours
Optics Runs	16 hours
Target Anneals	15 hours
Tensor Pol. Spin Flips	9.5 hours
Target Cup Changes	5 hours
Target Material Changes	4 hours
LINAC Changes	4 hours
Momentum/Angle Changes	3 hours
	11.7 days




Target Tasks

Complete

• Demonstrate $A_{lost} = 2 A_{gained} w/ssRF$

- UVA published results
 - D. Keller, EPJ A **53**, 155 (2017)
 - J. Clements, D. Keller, NIM A 1050, 168177 (2023)
- UNH results in agreement

