

Measurement of Meson Electroproduction Differential Cross Sections for η' , ω , and ρ^0 (E'OR) in the Threshold Region Using HKS-HES Setup

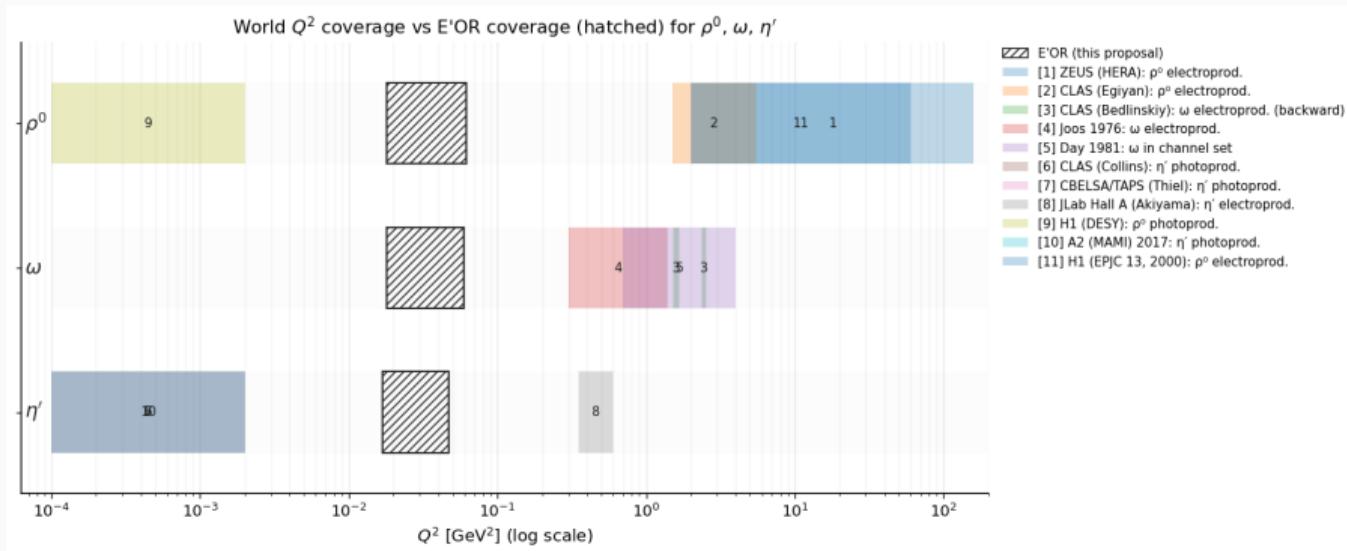
A PROPOSAL FOR THE HKS COLLABORATION IN HALL C

Ralph Marinaro

February 13, 2026

Christopher Newport University

1. Context and Goal for this Presentation

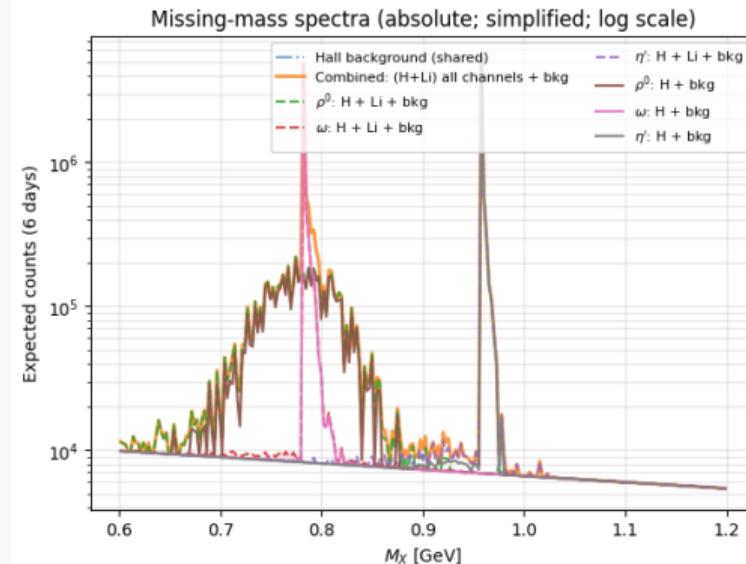

- **E'OR main concept:** HES measures the scattered electron; HKS measures the scattered proton in coincidence.
- **Exclusive final states via missing mass:** for three mesons η' , ω , and ρ^0 .
- **Operational model:** E'OR runs in *dedicated time blocks* (not overlapping but complementary to hypernuclear running).
- **Purpose:** to confirm E'OR feasibility within the HKS program and align on what collaboration support is needed.

Key message:

E'OR experiment is a low-disruption, valuable set of measurements that uses existing infrastructure with provided MC-based simulated projections to validate feasibility.

2. Physics Motivation: Why η' , ω , and ρ^0 ?

- ρ^0 and ω : benchmark exclusive electroproduction channels, and help constrain exchange mechanisms and flavor structure.
- η' : sensitivity to singlet/gluonic dynamics and mixing systematics in phenomenological descriptions.
- **Valuable results:** limited precision coverage in low- Q^2 , moderate $-t$ phase space for electroproduction, relatively unexplored region



3. Experimental Concept: (e,e'p) Missing-Mass Reconstruction

- Reaction: $ep \rightarrow e' p' X$
- X reconstructed from missing mass:

$$M_X^2 = (k + p - k' - p')^2$$

- **HES:** scattered electron e'
- **HKS:** scattered proton p' (PID and proton trigger in coincidence)
- Expected shape:
 - ω, η' presents as sharp peaks
 - ρ^0 displays as a broader spectrum

Li and hall background are modeled and subtracted out for final yield extraction

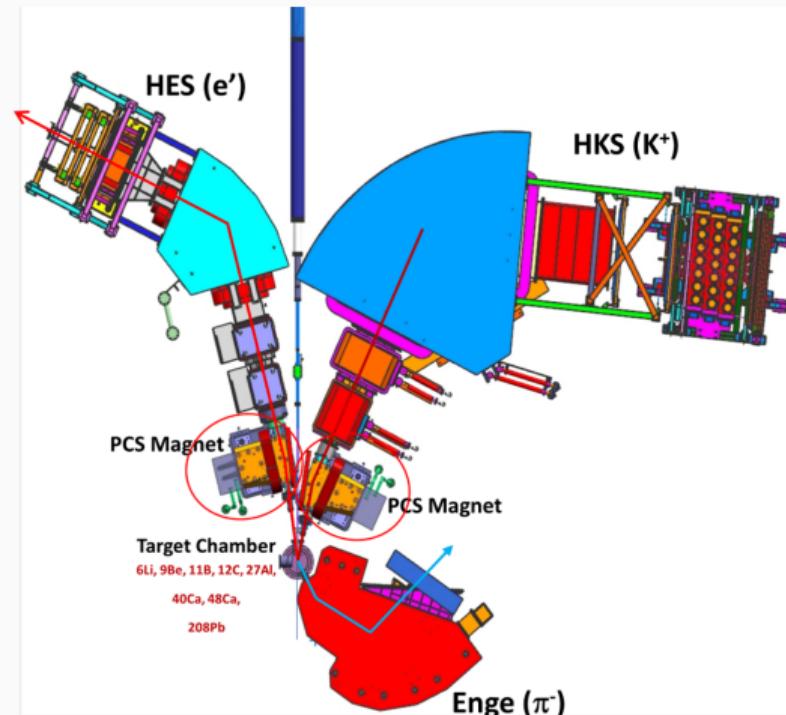
4. Fit Within the HKS Program: Dedicated E'OR Running

- HKS will be normally configured for kaon (K) arm in hypernuclear running; instead E'OR uses HKS as a **scattered-proton arm**.
- **E'OR is not concurrent**, but complimentary with the other HKS experiments:
 - A dedicated proton trigger is needed.
 - proton PID via Cherenkov + TOF used for event selection.
- **Operational philosophy:** minimize interference with approved HKS program by isolating E'OR into defined blocks.

Implementation note (for data acquisition)

Trigger/DAQ changes require ability to switch between kaon trigger \leftrightarrow proton trigger

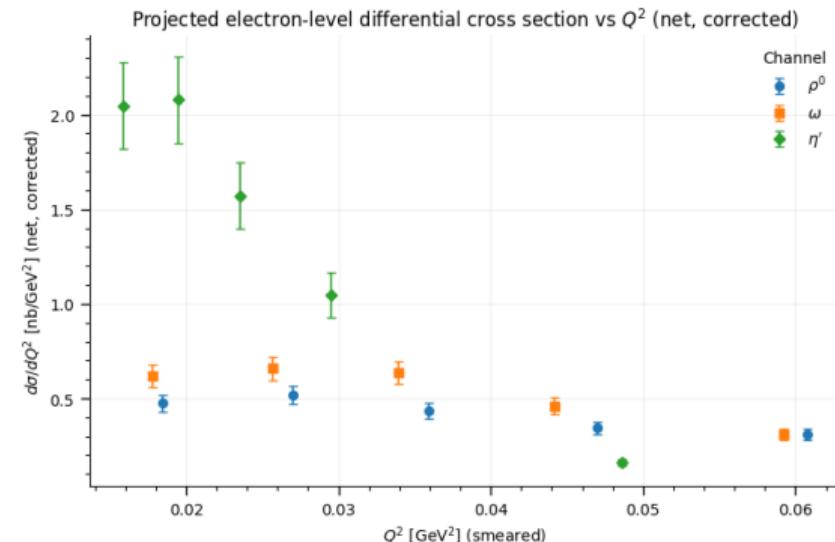
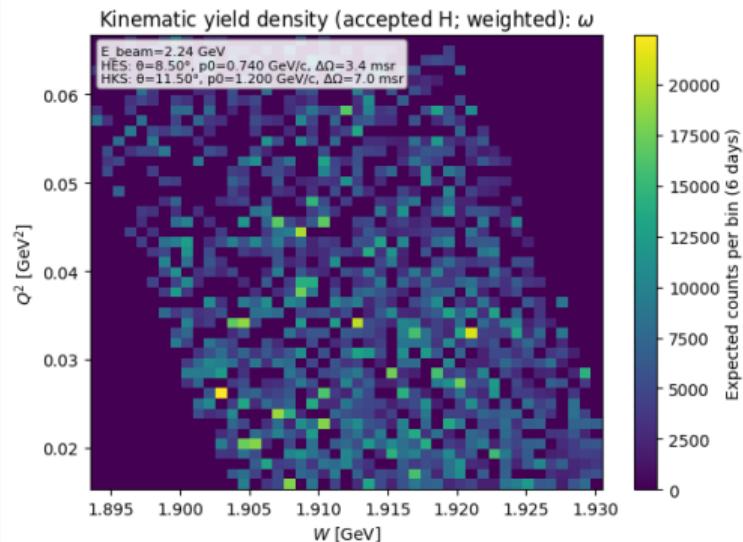
5. Baseline Kinematics and Spectrometer Settings (Authoritative)


Quantity	Beam / Target	HES (electron)	HKS (hadron)
Beam energy	2.24 GeV	–	–
Central angle	–	8.5°	11.5°
Central momentum	–	0.740 GeV/c	<i>channel-dependent</i>
Solid angle	–	3.4 msr	7.0 msr
Momentum bite	–	±4%	±6%
Target (baseline)		LiH, 150 mg/cm ² , 30 μA (estimated)	

What this slide establishes

The geometry/acceptances used in MC are aligned to this intended baseline spectrometer configuration.

6. Two HKS Momentum Settings: ρ^0/ω vs η'



- ρ^0 and ω share a common proton momentum setting:
 - HKS $p_0 \approx 1.20 \text{ GeV}/c$
 - **6 days** dedicated running
- η' requires a lower central proton momentum:
 - HKS $p_0 \approx 0.75 \text{ GeV}/c$ via change in magnet current
 - **6 additional days** dedicated running
- Total E'OR request: **12 days** ($6 + 6$), less days for beam current $>30 \mu\text{A}$.

7. MC Overview: What It Includes and What It Delivers

- **Event generation:** two-body reaction in CM frame, boosted to lab frame.
- **Acceptance modeled:** (θ, ϕ, p) windows for HES and HKS consistent with settings.
- **Detector effects:** track smearing, efficiency slightly varying with Q^2 , and simple radiative tail model.
- **Physics content:** extracted differential cross sections $(-t, Q^2, W)$, subtracted out background and Li contributions.
- **Outputs used for projections:**
 - kinematic coverage plots (Q^2 vs. W) as heat maps
 - $-t$ ranges separated into bins with corresponding yields
 - missing-mass spectra including signals vs background vs Li contribution)
 - binned yields used to calculate projected differential cross sections, with corrections for efficiency, acceptance, bin centering, radiative tail.

8. Kinematic Coverage and Cross Sections

Example Q^2 vs W heat map for ω meson projected yields

Projected cross sections for E'OR particles, binning dependent on requested days and beam current

9. Primary Considerations Before Submission to PAC54

- **Finalize LiH target:** parameters, implementation, and production capabilities:
 - **Beam-current/areal-density:** assuming numbers for now until real target is made.
 - **Risks:** handling and chemical stability, not melting
 - LiH is water reactive and must be well sealed/handled in controlled conditions
 - Encapsulation integrity (vacuum compatibility, leak tightness),
 - Thermal conduction path to target frame, raster size and verified spot stability
- **Data Acquisition Trigger Rates:** estimates may need better verification
 - Current anticipated raw proton acceptance rate ~ 500 Hz
 - Estimate total DAQ trigger rate with HKS-HES coincidence $\sim 300\text{-}350$ Hz
- Final determination for number of requested days (target dependent), identify spokespersons, further develop simulation and analysis integration, re-write of the proposal (previous version now out-of-date)


10. Run Plan, Collaboration Needs, and Next Steps

Run plan (baseline, adjustable)

- 6 days: $\rho^0 + \omega$ @ HKS $p_0 \approx 1.20 \text{ GeV}/c$
- 6 days: η' @ HKS $p_0 \approx 0.75 \text{ GeV}/c$

Collaboration Needs

- Contingency plans, retuning HKS magnet
- Proton trigger and proton PID using Cherenkov + TOF
- Agree on schedule and consider student theses (one per reaction channel?)

Decision and Discussion

Confirm the HKS collaboration support to proceed with E'OR submission for JLab PAC54 in April.