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Established Procedures 

• Preparation of Cavity Surfaces 
– Mechanical Removal 

• Mechanical Grinding 
– Chemical Removal 

• Buffered Chemical Polish (BCP) 
• Electropolish (EP) Horizontal or 

Vertical  

• Surface Cleaning Methods 
– Ultrasonic Degreasing 
– High pressure water (HPR) 
– Nitrogen Gas Cleaning 

• Vacuum Treatments 
– Heat Treatment High Temperature 
– Low Temperature Baking 

Procedures Under Development 

– Centrifugal Barrel Polishing 
(CBP) 

– Nitrogen Doping 
– HF Free Chemistry 
– Dry Ice Cleaning (DIC) 
– Dry Chemistry 
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Cavity Preparation Steps 
for Performance 
Qualification 
 
• Baseline Processes 

• Typical steps taken for 
most cavities 

 
• Optional Paths 

• Multiple options are 
available and depend on 
the performance 
requirements 

 
• Alternative Processes 

• New processes 
underdevelopment that 
have shown good results 
and some benefits for the 
performance or cost 
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Peripheral Component 
Cleaning 
 
• Fabricated parts not clean 

• Descaling 
• Degreasing  
• Chip removal  

 
• Semi Clean Parts from Industry 

• Degreaseing  
• Removal of oxides 
• Removal of Particulates 

 
 

• Certified Clean Parts From 
Industry 

• Removal of Particulates 

Cleanroom 
Conditions 
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Guided Mechanical Grinding 

K. Watanabe, KEK 

• Articulated Rotary Tool 
 

• Abrasive Material 
 

• Camera and Light 
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Hand Grinding and Local Repairs 

3M Abrasive Wheels (scotch 
brite) 

Hand Held Rotary Tool 
 
 Compressed air 

 
 Electric  

 
 Part Held in Place  

 
 Light and Camera 
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Localized Mechanical Grinding is Effective! 

After grinding and 50µm EP 

Equator local grinding Iris local grinding 
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The Need For Material Removal 
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Niobium Material Removal by Chemistry 

Niobium surface after BCP Niobium surface after EP 
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Buffered Chemical Polish (BCP) 
Acid (Reagent Grade) 
  HF (49% w/w),  
HNO3 (65% w/w),  
H3PO4 (85% w/w) 
 
Reaction: 
Oxidation    
6 Nb + 10 HNO3 ↔ 3 Nb2O5 +10 NO+ 5 H2O 
Reduction   
3 Nb2O5 + 18 HF ↔ 3 H2 NbOF5  +  3 NbO2F + 6 H2O 
 
3 NbO2 F +12 HF ↔ 3 H2 NbOF5   + 3 H2O 
 
 

Forms NO2 , Orange Brown Gas 

Insoluble 

I. Malloch etal. ,  FRIB 

Typical Mixture 
1:1:1 etching subcomponents  
or 1:1:2 etching structures 
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What parameters are Important for 
Cavity Etching by BCP? 

• Temperature, Time 
• Acid Velocity and Distance from Inlet,  
• Grain Size and Grain Orientation  
• Gas Bubble Evolution and Control 
• Acid Contamination,  
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Use of BCP: 

• 1:1:1 still used for etching of subcomponents -  
Reduces Time (etch rates of 8-10 um/min) 

• 1:1:2 used for most cavity treatments 
– Mixing necessary  reaction products at surface 
– Acid is usually cooled to 10-15C (1-2um/min) to control 

the reaction rate and Nb surface temperatures (reduce 
hydrogen absorption) 
 
 

 

Dissolved Niobium in Acid (g/L)  

Etch rate 
(um/min) 

Acid Wasted After 15g/L Nb  



13 Managed by UT-Battelle 
 for the U.S. Department of Energy USPAS JAN 2015 

Liang Zhao etal.,  
College of William and 
Mary 
/Jefferson Lab 

BCP 1:1:2 

V. Palmieri, INFN 

Ternary Diagram of Etch Rate vs Percentages of 
Individual Acids 

Concentration effect on Etch Rate  
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Effects of BCP on The Niobium Surface 
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Polycrystalline Niobium Material  

Hui Tian, JLab 
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Acid Flow and Its Effects 

Direction of 
flow and 
increasing 
temperature 

Direction of 
flow and 
increasing 
temperature 

Important factors with vertically 
etching of SRF cavities: 
 
• Temperature gradient forms 

from bottom to top which 
gives an increased material 
removal in the direction of 
flow 
 

• Higher flow velocities 
increase etch rate 
 

• Therefore Iris etches 
more than equator by a 
factor of 1.3-2.0 times 
EQ 
 

• EQ has very little mixing 
and therefore increases 
temperature  

With a 
Flow 
Diverter 
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BCP Temperature and Etch Time Effect On Surface 
Topography 

Liang Zhao etal.,  
College of William and Mary 
/Jefferson Lab 

400X Magnification 

Etching Rate is Grain Orientation Dependent 
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(BCP) Systems for Cavity Etching: 

• Bulk & Final chemistry 
– Bulk removal of (100-200um) 
– Final removal of (5-20um) to 

remove any additional damage 
from QA steps and produce a 
fresh surface 

  Implementation:  

•  Cavity held vertically 

•  Closed loop flow through style process, some gravity fed system 
designs 

•  Etch rate 2X on iris then equator 

•  Temperature gradient causes increased etching from one end to 
the other 

•  Manually connected to the cavity but process usually automated 

BCP Cabinet JLab 
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Electropolish (EP) 

 Electrolyte  = 1 part HF(49%),  9 parts H2SO4 (96%) 
 
 
Reaction: 
Oxidation 
 2Nb +5SO4

2- + 5H2O  Nb2O5 +10H+ +5SO4
2- +10e- 

 
Reduction 
 Nb2O5 + 6HF  H2NbOF5 + NbO2F 0.5H2O + 1.5H2O 
 
 NbO2F 0.5H2O + 4HF  H2NbOF5 + 1.5H2O 
  

Hydrogen Gas 

These are not the only reactions that take 
place! 
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Nb Surface Effects After EP 
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Basic Concepts of EP 
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•  0-V1- Concentration Polarization 
occurs, active dilution of niobium, 
electrolyte resistance 
 

•  V2-V3 – Limiting Current Density, 
viscous layer on niobium surface 
 

•   >V3 Additional Cathodic 
Processes Occur, oxygen gas 
generated 
 

Al 

Nb 

I-V Curve 

DC Power Supply 
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Cavity IV Curve not easy to interpret 
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Hydrogen Gas Shielding Experiment  
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50 µm 50 µm 

BCP EP 

Surface Roughness of Niobium 
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Surface Topography of Niobium Samples after 
BCP/EP Treatment 

Profilometry 

AFM 

 Lateral scale of surface feature 
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Electropolishing of 9-cell Resonators  
(Nomura Plating & KEK) 
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Electropolishing Systems JLAB 
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Electropolishing Systems DESY 
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Vertical EP S. Kato, KEK 
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Issues With Vertical EP S. Kato, KEK 
Fl

ow
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Cathode 

Bubbles 
Collect Here 
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Vertical EP on  
a HB Dressed 
 Cavity JLab 
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Individual Barrels 
rotate 115 RPM 
in opposite 
direction to main 
shaft 
 C. Cooper, FNAL 

Centrifugal Barrel Polishing 
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Centrifugal Barrel Polishing 

A. Prudnikava, Uni Hamburg 
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C. Cooper, FNAL 
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Cornell JLab 

RRCAT 
DESY 
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Gigi's program (using the approximate BCS theory) gives a residual surface 
resistance of 1.34 ± 1.19 nano-Ohms  after CBP/20micron EP                                    
Testing by J. Ozelis 

Cavity tested many times after baseline EP processing and reprocessing techniques. 
Best baseline results shown.  Cavity improved greatly after CBP. 

C. Cooper, FNAL 
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C. Cooper, FNAL 

ACC002 – HF Rinse & 20 Micron EP 

AES005 – 10 Micron EP 

ACC002 – HF Rinse Only 
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A. Prudnikava, Uni Hamburg 
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A. Prudnikava, Uni Hamburg 
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What are we trying to accomplish? 

11 

10 

9 

8 
0 25 50 MV/m 

Accelerating Field 

Residual losses 

Multipacting 

Field emission 

Thermal breakdown 

Quench 

Ideal 

RF Processing 

10 

10 

10 

10 

Q 



43 Managed by UT-Battelle 
 for the U.S. Department of Energy USPAS JAN 2015 

Particulates are still the limitation in 
the form of field emission  

V 

Ni Ni 
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C, O, Na, In Al, Si 

Stainless steel 

Melted 

Melted 

Melted 

Example of Field Emitters 
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Ultrasonic Cleaning 
• Process of generating ultrasound (high frequency 

pressure) in a cleaning solvent to remove contamination 
by cavitation bubbles 
– Typically 20-400kHz 
– Solvent is DI water 
– Detergents: Micro-90 or  Liqui-nox, reduce surface tension (1%) 
– Solvent mixture is heated to increase removal 
– The higher the frequency the smaller the nodes between cavitation 

points 
• Important factors 

– Where the part contacts the tank surface, will strongly reduce the 
effectiveness there (no cavitation) 

– Forces on the surface can be a high as 20kpsi, one must be careful 
of coatings and thin films such as copper plating 
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Liquinox 
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Small Part Ultrasonic Cleaning Stations 
• Rinse tank out 
• Fill with DI water 
• Add Liquid 

Detergent 
– Liquinox 
– Micro-90 
– Few percent by 

volume 
• Ultrasonic 

agitation 
– 15-60 minutes 

• Remove and rinse 
parts with DI 
water 

• Blow dry ionized 
N2 
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Cavity and Large Component 
Ultrasonic cleaning 
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High Pressure Rinsing: 

• The need for HPR surface 
cleaning: 
– Entire surface contaminated after 

chemistry, early field emission will 
result if not performed 

– Effective at removing particulates 
on the surface after assembly 
steps 

 
 

ISSUES: 

•  HPR systems are still not optimized for 
the best surface cleaning performance , 
must be optimized for each cavity shape 
and HPR system 
•  Surface left in a vulnerable state, wet  

• This is still the best 
cleaning method against field 
emission! 

 



50 Managed by UT-Battelle 
 for the U.S. Department of Energy USPAS JAN 2015 

HPR spray heads needs to be optimized 
for a particular geometry! 

Very effective on irises Equator fill with water  too high flow 
rate 

For a given pump displacement the nozzle opening diameter and 
number of nozzles sets the system pressure and flow rate 
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DESY/XFEL Retreatments of Cavities 
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Average Particle Count vs Cavity Accelerating Gradient 
SNS High β Cavities
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Heat treatment (600-800C) 
Details 

Temperature 
of hot zone 

Low end 600C Typical 800C 

Vacuum Start 1e-7 Torr End 1e-5 Torr 

Cavity 
cleaning 

Typically - 
degreasing 

Sometimes- 
Chemistry and 
HPR 

Support 
structure  

Moly rails or 
rods 

Automated 
controls 

RGA, PLC 

Process time 6-12 hrs or 
more 
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Helium Processing  

• Variation of RF processing 
• Keep pressure below discharge condition 
• Run cavity in the field emission regime 
• Push the gradient as high as the system allows 
• The process in details is unknown 

– Electron spraying from FE  bombard surface  ionization of helium at around 
surface  destroy field emitter??? 

– Controlled processing is difficult 
• Relying on field emitter locations and responses  

– Uniformity?? 
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HF Free Electropolish is on the way 
• Several Recipes Currently Under Development 

 
• Sulfuric and Water with Bipolar Waveform (Faraday 

Technology) 
– Results very promising on single cells 

 
• Choline Chloride, at High Temperature (INFN) 

– Small samples successful now working on cavities  
 

• Other recipes tried with some success 
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Plasma processing for SRF cavities 
• Plasma is a rich and reactive environment 

• Ions, electrons, neutrals, excited neutrals, molecules, radicals, UV…  

• Plasma processing is a versatile technique used in many industries for various purposes 

• Cleaning, activation, deposition, crosslinking, etching…. 

• In-situ plasma processing developed at the SNS to increase accelerating gradients 
• Reactive plasma used to clean hydrocarbons from top surface 

• Increase work function and reduce field emission 

Base 
material

contaminants
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