

Types of Chemical and Mechanical Surface Processing for SRF Cavities

John Mammosser (ORNL/SNS)

USPAS Course: SRF Technology: Practices and Hands-On Measurements

January 2015

J. Mammosser

Established Procedures

- Preparation of Cavity Surfaces
 - Mechanical Removal
 - Mechanical Grinding
 - Chemical Removal
 - Buffered Chemical Polish (BCP)
 - Electropolish (EP) Horizontal or Vertical
- Surface Cleaning Methods
 - Ultrasonic Degreasing
 - High pressure water (HPR)
 - Nitrogen Gas Cleaning
- Vacuum Treatments
 - Heat Treatment High Temperature
 - Low Temperature Baking

Procedures Under Development

- Centrifugal Barrel Polishing (CBP)
- Nitrogen Doping
- HF Free Chemistry
- Dry Ice Cleaning (DIC)
- Dry Chemistry

Cavity Preparation Steps for Performance Qualification

- Baseline Processes
 - Typical steps taken for most cavities
- Optional Paths
 - Multiple options are available and depend on the performance requirements
- Alternative Processes
 - New processes underdevelopment that have shown good results and some benefits for the performance or cost

Peripheral Component Cleaning

- Fabricated parts not clean
 - Descaling
 - Degreasing
 - Chip removal
- Semi Clean Parts from Industry
 - Degreaseing
 - Removal of oxides
 - Removal of Particulates
- Certified Clean Parts From Industry
 - Removal of Particulates

Guided Mechanical Grinding

USPAS JAN 20

- Articulated Rotary Tool
- Abrasive Material
- Camera and Light

K. Watanabe, KEK

Hand Grinding and Local Repairs

3M Abrasive Wheels (scotch brite)

Hand Held Rotary Tool

- Compressed air
- Electric
- Part Held in Place
- Light and Camera

Localized Mechanical Grinding is Effective!

ILC- TB9AES003 - Q vs E

The Need For Material Removal

250

250

 8 Managed by UT-Battelle for the U.S. Department of Energy

Niobium Material Removal by Chemistry

Niobium surface after BCP

Niobium surface after EP

Buffered Chemical Polish (BCP)

Acid (Reagent Grade) HF (49% w/w), HNO₃ (65% w/w), H₃PO₄ (85% w/w)

Typical Mixture 1:1:1 etching subcomponents or 1:1:2 etching structures

Reaction:Forms NO_2 Orange Brown GasOxidationOxidation6 Nb + 10 HNO3 \leftrightarrow 3 Nb2O5 +10 NO+ 5 H2OReduction3 Nb2O5 + 18 HF \leftrightarrow 3 H2 NbOF5 + 3 NbO2F + 6 H2OInsoluble3 NbO2F +12 HF \leftrightarrow 3 H2 NbOF5 + 3 H2O

I. Malloch etal., FRIB

What parameters are Important for Cavity Etching by BCP?

- Temperature, Time
- Acid Velocity and Distance from Inlet,
- Grain Size and Grain Orientation
- Gas Bubble Evolution and Control
- Acid Contamination,

Use of BCP:

- 1:1:1 still used for etching of subcomponents -Reduces Time (etch rates of 8-10 um/min)
- 1:1:2 used for most cavity treatments
 - Mixing necessary \rightarrow reaction products at surface
 - Acid is usually cooled to 10-15C (1-2um/min) to control the reaction rate and Nb surface temperatures (reduce hydrogen absorption)

Temperature effect - Etching rate

Concentration effect on Etch Rate

Ternary Diagram of Etch Rate vs Percentages of Individual Acids

 Etching rate – etching time curves exhibit power relation.
Etching rate, R = kt^{-0.2}

Temperature C	k
0	0.8
10	1.7
20	3.3
30	3.4

for the U.S. Department of Energy

USPAS JAN 2015

Effects of BCP on The Niobium Surface

Polycrystalline Niobium Material

Grain orientation & mis-orientation deviation map(1.5 mm * 1.5 mm)

Acid Flow and Its Effects

Important factors with vertically etching of SRF cavities:

- Temperature gradient forms from bottom to top which gives an increased material removal in the direction of flow
- Higher flow velocities increase etch rate
 - Therefore Iris etches more than equator by a factor of 1.3-2.0 times EQ
 - EQ has very little mixing and therefore increases temperature

BCP Temperature and Etch Time Effect On Surface Topography 400X Magnification

10 C 1min

7min

20min

22 C

Etching Rate is Grain Orientation Dependent

Liang Zhao etal., College of William and Mary /Jefferson Lab

(BCP) Systems for Cavity Etching:

- Bulk & Final chemistry
 - Bulk removal of (100-200um)
 - Final removal of (5-20um) to remove any additional damage from QA steps and produce a fresh surface

Implementation:

- Cavity held vertically
- Closed loop flow through style process, some gravity fed system designs
- Etch rate 2X on iris then equator
- Temperature gradient causes increased etching from one end to the other
- Manually connected to the cavity but process usually automated

Electropolish (EP)

Electrolyte = 1 part HF(49%), 9 parts H_2SO_4 (96%)

Reaction: Oxidation $2Nb +5SO_4^{2-} + 5H_2O \rightarrow Nb_2O_5 + 10H^+ + 5SO_4^{2-} + 10e^-$

Reduction Nb₂O₅ + 6HF \rightarrow H₂NbOF₅ + NbO₂F 0.5H₂O + 1.5H₂O

 $NbO_2F 0.5H_2O + 4HF \rightarrow H_2NbOF_5 + 1.5H_2O$

These are not the only reactions that take place!

19 Managed by UT-Battelle for the U.S. Department of Energy

Nb Surface Effects After EP

Basic Concepts of EP

 0-V1- Concentration Polarization occurs, active dilution of niobium, electrolyte resistance

• V2-V3 – Limiting Current Density, viscous layer on niobium surface

>V3 Additional Cathodic
Processes Occur, oxygen gas
generated

Cavity IV Curve not easy to interpret

22 Managed by UT-Battelle for the U.S. Department of Energy

USPAS JAN 2015

Hydrogen Gas Shielding Experiment

Surface Roughness of Niobium

Surface Topography of Niobium Samples after BCP/EP Treatment

Electropolishing of 9-cell Resonators (Nomura Plating & KEK)

Electropolishing Systems JLAB

Electropolishing Systems DESY

Cornell University Laboratory for Elementary-Particle Physics

Vertical Electropolish Proven Effective

- We have demonstrated gradients >35 MV/m in individual cells of two 9cell cavities processed with vertical EP.
- In each test the π-mode was limited by quench.

²⁹ MRongliaGengergy

Vertical EP Surfaces after EP without Stirring

- H₂ bubbles directly hit and remove sticking bubbles quickly from the top sample surface to make the surface smoother.
- Bubbles might remain at surface of the side top sample with a longer residence time to make it rougher. This was also observed after VEP done with rod cathode.

Issues With Vertical EP

S. Kato, KEK

Vertical EP or a HB Dressed Cavity JLab

LEWIS MIGHTY

WERNER.

MADE IN U.S.A.

Centrifugal Barrel Polishing

10

1

28

1

Individual Barrels rotate 115 RPM in opposite direction to main shaft

MFI

A. Prudnikava, Uni Hamburg

34

3. CPB of a Cavity to a Mirror Like Surface

C. Cooper, FNAL

Ra = 0.0139 μ m +/- 0.00216 μ m Rz = 0.139 μ m +/- 0.0242 μ m

Typical finish achieved by fine polishing.

Notice reflection of graph paper and — writing

Single Cell Polished to Mirror Finish

Cavity Improved Results after CBP compared to EP – ACC002

Cavity tested many times after baseline EP processing and reprocessing techniques. Best baseline results shown. Cavity improved greatly after CBP.

C. Cooper, FNAL

How much chemistry needed to remove artifacts of CBP with Mirror Finish?

38 Managed by UT-Battelle for the U.S. Department of Energy

USPAS JAN 2015

A. Prudnikava, Uni Hamburg

Coupon surface after different steps

39

A. Prudnikava, Uni Hamburg **Removal rates**

Tube

Step	Tube	Equator
1	3 um/h	9 um/h
2	1 um/h	2.5 um/h
3	0.1 um/h	0.7 um/h
4	<0.1 um/h	<0.1 um/h

Step 4 mirror polishing

Ţ

What are we trying to accomplish?

Particulates are still the limitation in the form of field emission

Fig. 11 Example of a scratch and a particle on a niobium surface.

Ni

43 Managed by UT-Battelle for the U.S. Department of Energy

V

Example of Field Emitters

Stainless steel

National Laboratory

Ultrasonic Cleaning

- Process of generating ultrasound (high frequency pressure) in a cleaning solvent to remove contamination by cavitation bubbles
 - Typically 20-400kHz
 - Solvent is DI water
 - Detergents: Micro-90 or Liqui-nox, reduce surface tension (1%)
 - Solvent mixture is heated to increase removal
 - The higher the frequency the smaller the nodes between cavitation points

Important factors

- Where the part contacts the tank surface, will strongly reduce the effectiveness there (no cavitation)
- Forces on the surface can be a high as 20kpsi, one must be careful of coatings and thin films such as copper plating

Liquinox

Physical Data - Typical value pH (as is) - 8.5 Specific gravity (g/ml) - 1.07 Density (lbs./gal.) - 8.9 Vapor pressure (mm Hg) - 10.5 Flash Point (degrees F) - None Phosphate Content (as Phosphorus) - 0% Organic Carbon (% calculated w/w) - 21% Fragrance Content - 0% Surface Tension 1% Sol'n (Dyne/cm) - 32 Color: Pale Yellow Form: Liquid Solubility in Water: Completely soluble in all proportions Hard Water Effectiveness: Highly Effective Biodegradability: Biodegradable Foam Tendency: High Foaming Shelf Life: Two years from the date of manufacture

Chemical Description:

Liquinox consists primarily of a homogeneous blend of sodium linear alkylaryl sulfonate, sodium xylene sulfonate, alkanolamide, and ethoxylated alcohol. Liquinox is anionic in nature.

Small Part Ultrasonic Cleaning Stations

- Rinse tank out
- Fill with DI water
- Add Liquid Detergent
 - Liquinox
 - Micro-90
 - Few percent by volume
- Ultrasonic agitation
 - 15-60 minutes
- Remove and rinse parts with DI water
- Blow dry ionized N2

Cavity and Large Component Ultrasonic cleaning

CREST

High Pressure Rinsing:

• This is still the best cleaning method against field emission!

- The need for HPR surface cleaning:
 - Entire surface contaminated after chemistry, early field emission will result if not performed
 - Effective at removing particulates on the surface after assembly steps

ISSUES:

- HPR systems are still not optimized for the best surface cleaning performance , must be optimized for each cavity shape and HPR system
- Surface left in a vulnerable state, wet

for th 3/27/06 OPS-

HPR spray heads needs to be optimized for a particular geometry!

Very effective on irises

Equator fill with water \rightarrow too high flow rate

For a given pump displacement the nozzle opening diameter and number of nozzles sets the system pressure and flow rate

DESY/XFEL Retreatments of Cavities

Before

After

Usable gradient (MV/m)

	Before	After
Tests	81	82
G _{AVG} (M∨/m)	18.5	26.6
G _{RMS} (M∨/m)	6.3	6.8
yield @ 20M∨/m	40%	83%
yield @ 26M∨/m	10%	56%
yield @ 28MV/m	7%	50% R

- Analysis of ~80 cavities after first re-treatment => typically HPR
- Reasons for re-treatment:
 - mostly field emission (61 cavities)
 - quench at "low" gradient (7 cavities)
 - low Q-value at low gradient (6 cavities)
 - leak (2 cavities)
 - other (6 cavities)

Preliminary data; results are not published

Average Particle Count vs Cavity Accelerating Gradient SNS High β Cavities

Heat treatment (600-800C)

Details		
Temperature of hot zone	Low end 600C	Typical 800C
Vacuum	Start 1e-7 Torr	End 1e-5 Torr
Cavity cleaning	Typically - degreasing	Sometimes- Chemistry and HPR
Support structure	Moly rails or rods	
Automated controls	RGA, PLC	
Process time	6-12 hrs or more	

Helium Processing

- Variation of RF processing
- Keep pressure below discharge condition
- Run cavity in the field emission regime
- Push the gradient as high as the system allows
- The process in details is unknown
 - Electron spraying from FE → bombard surface → ionization of helium at around surface → destroy field emitter???
 - Controlled processing is difficult
 - Relying on field emitter locations and responses
 - Uniformity??

HF Free Electropolish is on the way

- Several Recipes Currently Under Development
- Sulfuric and Water with Bipolar Waveform (Faraday Technology)
 - Results very promising on single cells
- Choline Chloride, at High Temperature (INFN)
 - Small samples successful now working on cavities
- Other recipes tried with some success

What is bipolar EP?

Bipolar EP Surface Details

TE1DESYB5—20 um bipolar EP.

TE1NR001 >120 um bipolar EP.

Unmasked cathode:

3:1 removal ratio beamtube/iris:equator

Partially masked cathode:

2.5:1 removal ratio beamtube/iris:equator

‡ Fermilab

Allan Rowe, SRF2013, TUIOC02, Paris, France.

TE1AES007 Performance Results Bipolar EP Q-disease Studies

Plasma processing for SRF cavities

- Plasma is a rich and reactive environment
 - Ions, electrons, neutrals, excited neutrals, molecules, radicals, UV...
- Plasma processing is a versatile technique used in many industries for various purposes
 - Cleaning, activation, deposition, crosslinking, etching....
- In-situ plasma processing developed at the SNS to increase accelerating gradients
 - Reactive plasma used to clean hydrocarbons from top surface
 - Increase work function and reduce field emission

