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What Is micrthonics?

e Microphonics is the time domain variation in cavity frequency
driven by external vibrational sources.

A 1.5 GHz structure 0.5 m long will change in frequency by 00
Hz if the length is changed 33 nm.

[t can be due to fixed frequency sources such as motors and
equipment.

* When the source is white noise the results shows up as the
natural vibrational frequencies or modes of the structure.

* \We measure the microphonics on each series of cryomoudles
and on a fraction of the cavities in the field.

* When we measured the first cryomodule installed in the
machine we found larger than expected microphonics noise.
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What is NOT microghonics?

 Static Lorentz force detuning

— Note: There are dynamic Lorentz force detuning effects
that can effect the cavity frequency shifts in time scales
consistent with vibrational modes of the cavities.
Proper gradient regulation can be used to address this.

* Low frequency pressure drifts with periods on the order of
minutes to hours.

— These can be addressed with your motor driven tuners.
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The math.

 Ignoring control loop gain and coupler bandwidth limitations
the steady state amplitude and phase controls needed for
microphonics Is given by:

b __B+DL
R 4BQL(r/Q)

5 2
{(E + IOQL(T/Q)COS<PB)2 + <2QLf_:E + IOQL(T/Q)Sin¢B> }

20, %E + IoQL(T/Q)Sin¢B>

= arcTan
VRE ( E + 1,0, (r/Q)cospg
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Modal Resgonse Testing

e A warm cavity was
instrumented with 9 triaxial
accelerometers

e Aseries of warm impulse
hammer response tests were
performed on structures ranging
from bare cavities to a fully
assembled cryomodule.

e This data was used in
combination with finite element
analysis to improve the design.
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Background Microphonics Testing

e Data taken using digital low level RF
system operated in a fixed frequency
mode at 1497 MHz

e The RF phase angles between the
incident power and the cavity field
probe readings were recorded at 1000
S/sec for 100 seconds.

e Phase angle and cavity loaded-Q used
to calculate the detune frequency

e 8channels of data
were acquired
synchronously.
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Microphonics Spectra as a function of Time
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Time Domain Data for Cavities 1 to4 and 5to 8
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Microphonics

e Design allows for 25 Hz Peak Microphonic C100-1 |C100-4
Detuning Detuning*
RMS (Hz) 2.985 1.524

» Actual peak detuning (21 Hz) was
higher than expected in first 6c(Hz) 17.91 9.14
cryomodules
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C100-1-5 deltaF
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Time Averaged Sgectra
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C50 Crxomodule I\/Iicrthonics
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FEL3-6 Microphonics
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FEL3-5 Tuner Running 2 steps/full step
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FEL3-5 Tuner Operations 128 microsteps/step
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DYNAMIC COUPLING BETWEEN CAVITIES

C100-4 Cavities 4, 6, 7, 8 responding to an applied PZT step control
voltage change from 52 to 39 volts (130 VoIt range) In cavity 5

Cavity 5 PZT moved
460 Hz.

Locked in GDR Mode

Because of 10 MV/m
operating point, the
klystron had the
overhead to keep
cavities locked

Stepper Motor operated &

to tune the cavities
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175
Curt Hovater, Tomasz Plawski,, Michael

Adjacent Cavity
coupling is ~ 10%
between 1-4 and
5-8 cavities

Cavities 4 and 5
have a “quasi”
mechanical
support between
them.

Ringing is the
21 Hz mechanical
Mode

Wilson, Rama Bachimanchi

4effergon Lab



CRM EXAMPLES
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Choosing Loaded-g

General equation
E

\/(Io(r/Q)COSWB) [ZQL

QI—‘MinPower

0

E+| (r/Q)sim//Bj

For an ERL with perfect energy recovery.
fO
QI—‘MinPower ~ 2QLéf
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Power Requirements As a Function of Loaded-Q
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Required RF Power Including Margins
As a function of Detune Allowance
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The Math of Measuring Micrthonics

» Neglecting coupler and control system bandwidths, etc. the RF power or voltage
necessary to sustain steady state operation are given by the following equations.

1 5 ?
Prp = 4,8(5L-(I_R/)Q) {(VC +1,Q.(R/Q)cospp)* + <2QL_fVC + IoQL(R/Q)SinQDB> }

0

. Zy(p+1)
Vrr =

4BQL(R/Q
Where @rf IS the relative phase between the RF drive signal a signal (e.g. field probe signal)
which is in phase and proportional to the cavity voltage. Thus as will be discussed later one

can use the relative phase between the RF drive signal and the cavity field probe signal to
calculate a relative value of §f. Assuming that the beam current is zero this reduces to:

— | Zy(B+1) of
Ve = J 4BOR/Q) {VC <1 Tl fo>}

){Vc(l + iTanggg) + IoQL(R/Q)(cospg + isingp)}
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Closed Loop RF Drive Requirements

« The bandwidth of the fundamental power coupler is given by the follow:

BW=&

QL

« Equation (1) is the steady state equation that does not take into account the time domain
nature of the beam loading or microphonics as well as the stored energy within the cavity.

 Ignoring the beam loading and stored energy effects and including the time domain
microphonics effects this equation can be written as:

— | ZB+1D (— . Of(t)
VRF_J‘WQL(R/Q) {VC(”‘ZQL o >}

It can be shown that any frequency dependence of §f(t) is maintained through the phase
rotation and that both I an Q must be processed as part of the fundamental power coupler
compensation.
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Closed LooE Drive Reguirements

e |f one assumes that;

5f (t) = wpsin(w,t)
* And that the relative phase shift between the source and the cavity is zero then:

— | Zo(B+1) | wpSsin(w,t)
Vep = \/4,8QL(R/Q) {VC <cos(a)0t) + 20, A Sm(wot)>}

* Rewriting this in complex form:

— | Z(B+1) (— , wpSsin(w,,t)
VRF‘JMQL(R/Q) {VC<1+]ZQL o >}
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Closed LooE Drive Reguirements

» Looking at the closed loop control system block diagram:

\ 4

Vv

— Cavity Cavity

Coupler

- f(,B; QL)
\ Vine 1+%/pw Vrr Ve
é/ C

VDRIVE LLRE VFP

N

* What you are really measuring is V;y. To understand what the cavity is actually doing you
must apply a low pass filter to the 1/Q data prior to processing.

» Conversely if one wants to understand the real RF power requirements one must model the

system with the predicted microphonics and a cavity model that includes the coupler
bandwidth.
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Microphonics Measurements when using a frequency tracking source

The goal is to come up with a way to calculate microphonics frequency from some
basic RF measurement that is insensitive to magnitude.

The equation for an RF signal that is frequency modulated at a frequency of o,
with a modulation depth (or frequency shift) of oy and an RF frequency of o, IS

given by:

m

w
V(t) = Vpegr Cos (a)ot + w,t + w—DSin(wmt)> = VpearCos(wot + @(t))

In this method one uses the concept that an RF signal at a frequency of w, can be
written in the form:

V = Vpeak (I(t)cos(a)ot) + Q(t)sin(wot))
Applying this to the above equation leads to:
V(t) = VPeakCOS(th + @(t))

V(t) = Vpeak COS(QD (t))COS(wo(t)) — Vpeak sin(go (t))sin(a)o(t))
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Microphonics Measurements when using a frequency tracking source
-

It can be shown that.
dl dQ R do(t)

==
dt ~dt  Peak gt
OR
1 dl dQ
7 (@~ 1) =f)
2nVioq \ dt  dt

Nominally Vp, . IS ¥2 the peak-to-peak value of the sine waveforms that are
collected in the | and Q data stream, that is achieved when acquiring the data using a
I/Q based receiver system. However, if the 1/Q receiver happens to be very close
(wo + wq) then I and Q will be DC or close to DC values (i.e. a full sine or cosine
waveform is not collected in the data set. In this case one needs to calculate the
magnitude of V/p,,; 0N a point by point basis as:

VZoar (t) = I2(t) + Q% (¢)
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Microphonics Measurements when using a frequency tracking source

If one has a discrete data stream the general form of the frequency shift is given by:

1 liya =1 Qip1 — O
= — .

Which can be reduced to:

(Ql i+1 IQl+1)
2nAt(QF +17)

fivr =

Another way to approach the problem is to look at just the | term in equation from two
slides ago which is:
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Microphonics Measurements when using a frequency tracking source
-

Another way to approach the problem is to look at just the | term in equation from two
slides ago which is:

1(t) = Vpearcos(p()) = +I2(t) + Q2(t)cos(¢(D))

_ I(t) >
#() = cos (wzwwzw

There is digital signal processing techniques known as a CORDIC algorithm [Lang,
Antelo] which allows one to calculate the inverse cosine function efficiently. This
would provide you with a sampled signal set of @ (t). If this is done then one can
calculate the frequency shift as.

Solving for ¢(t)

Pi+1 — @i
Af =
f 2T At
One can also take the derivative of the inverse cosine function above and show that:
(Qili+1—1;Qi41)
2nAt(Q? + 17)

fi+1 -

T. Powers, USPAS Jan. 2015 Jeffer"gon Lab




Approaches to Acquiring I/Q Data Stream

There are two basic approaches to acquiring a digital I/Q data stream. In the first,
called synchronous acquisition, the RF signal is down converted to an intermediate
frequency and sampled at a frequency that is either 4, 1/1.25, 1/2.5, 1/5 . . . times the
nominal IF frequency. When this is done and the actual IF frequency the sampled
points are as shown below:

+11 +2 +11 +12

1 T
\\cm /"{ \\caz # - VAL ARSI WAL YA,
N N VARVARVARVARVARVARVARYA

-11 12 -11 -12

Sampled at 4 times the IF frequency Sampled at 1/1.25 times the IF frequency.
Using this approach provides a data stream v,, V,, V3, ... and | and Q are given by:

I;= Vap — Vg2 and Qp = Vggs1 — Vag+3

T. Powers, USPAS Jan. 2015 Jefferi':.’on Lab



Approaches to Acquiring I/Q Data Stream

If the RF IF frequency is not precisely related to the sample frequency by the ratio 4,
1/1.25,1/2.5,1/5 . . . the I and Q signals will have the form:

I(t) = Vpearcos(wit + ¢(t)) Q(t) = —Vpeaxsin(wit + ¢(t))

Where w, is the difference frequency between the ideal IF frequency and the actual IF
frequency. One can implement such a system using a simple mixer to down convert the RF
signal to an IF frequency as shown below to collect the data.

FREQUENCY
TRACKING
RF SOURCE

FIXED

FREQUENCY
RF SOURCE

RF

LO

IF

Example Parameters:
IF =400 kHz,

ADC clock = 320 kHz
Filter BW = 200 kHz

ADC_CLK

BPE We will try this next week.
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Approaches to Acquiring I/Q Data Stream

If the RF IF frequency is not precisely related to the sample frequency by the ratio 4,
1/1.25,1/2.5,1/5 . . . the I and Q signals will have the form:

I(t) = Vpearcos(wit + ¢(t)) Q(t) = —Vpeaxsin(wit + ¢(t))

Where w, is the difference frequency between the ideal IF frequency and the actual IF
frequency. One can implement such a system using a simple mixer to down convert the RF
signal to an IF frequency as shown below to collect the data.

Example Parameters
CEBAF 12 GeV Field Control Chassis:

FREQUENCY IF =70 MHZ’
TRACKING L FED ADC clock =56 MHz
RE SOURCE Filter BW = 5 MHz

" ADC_CLK DSP filter bandwidths = 30 kHz variable

RF IF/—\

We will also use one of these next week.
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Approaches to Acquiring I/Q Data Stream

Alternately one can use an analog cavity resonance monitor.

I dl
) dt

do(t

K @(t)

w o
AN~
Veos(wot + () RF@ Lo L L “ 1 kHz
, l ;[ LPF —O
10 dB @ z
o= > w0 | STANERF it |0
LIMITER
%0 %
) W W T “

« The front end circuitry requires careful tuning to ensure precise 1/Q demodulation.

« The limiting amplifier is used to stabilize the gain in the system. Without it a separate
power measurement would have to be made in order to calibrate the output signals.

L

» The analog baseband electronics provides the mathematical function of: (Q % — IZ—(Z)
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AEEIication of Filters

Wp
VBaseband (t) = Vpear Cos (wlt + a)—Sln(a)mt)>

m

This is the formula for an FM modulated signal. The solution has the form of Bessel
functions.

V(t)

VPeak

= cos(wqt) |Jo(m) + 2 2(—1)k]2k(m)cos(2kwmt)
I k=1

+sin(w4t) 2 Z(—l)k]2k+1(m)cos((2k + 1)a)mt)]
! k=0

Where:
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ExamEIe Sgectra for FM Modulation
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Effect of Saml:_)le Rate In Digitized sttem
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Lorentz Force Effect on Cavity Frequency as a Function of Gradient
and for Different Instabilities in the Gradient with M=2
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ImEuIse ResEonse Test Math
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Math

Transfer Function.

Complex FFT is performed of the excitation and response signals. Because both
real and imaginary information is included the transformed data contains all of the
information in the original signal.

The transfer function is calculated in the frequency domain and both phase and
amplitude are plotted.

Coherence
» Coherence is an indication that the system response is caused by the excitation.

» Coherence is calculated on a point by point basis in the frequency domain.
» Coherence is used to distinguish between responses that are driven by the
excitation and the system response. If the system has vibrational characteristics

that are driven by outside sources the coherence value will be less than one.

» Coherence REQUIRES averaging.

T. Powers, USPAS Jan. 2015 Jeffer"gon Lab
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