Bead-pulling Measurement Principle and Technique Used for the SRF Cavities at JLab

Instructor: Haipeng Wang, <u>haipeng@jlab.org</u>, (804)-836-0539 Assistant: Jiquan Guo, jguo@jlab.org, (650)-804-9662

Lab Place: TL-1009-1011 (RF Structure Lab) (757)-269-6473 -6475

Next Monday-Thursday, Jan. 26-30

Thomas Jefferson Lab, Newport News, VA 23606

January 21, 2015

U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology

Bead-pulling Measurement Curriculum

Bead-pull measurement

• Using a non-conducting wire (like a fishing line) to pull a bead (made of dielectric/metallic or ferromagnetic material) through a RF cavity to measure the electromagnetic fields distribution on resonance inside

Syllabus

• Principle of bead-pull

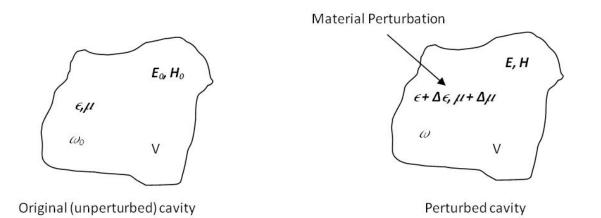
- 1. Perturbation theory
- 2. Form factors of metallic and dielectric ellipsoids
- 3. Calculations of EM field distribution and R/Q from SuperFish and bead-pulling data

• Measurement techniques

- 1. Methods and tricks
- 2. Bead-pull setup, bead selection, S parameters by VNA,
- 3. Comparison to simulation and error analysis
- 4. External Q measurement by S_{11} and S_{21} formula for FPC and FP setup

Advanced topics

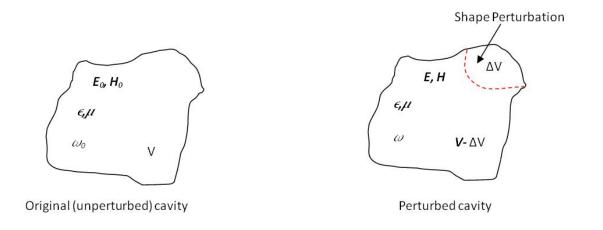
- 1. Multiple modes, HOMs bead-pull
- 2. Magnetic field extrapolation
- Homework given here is due on next Monday in Q&A session (01/26)


U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology

Cavity performance like resonance frequency f or quality factor Q can be changed by introducing a small perturbation to the resonance EM fields.

Bead-pull measurement involves two types of perturbations:

1. Small material perturbation, like a small dielectric bead enters a large volume of cavity. Although permittivity change from air to bead material could be large, the bead volume is small.



U.S. Particle Accelerator School

Perturbation of a Resonator – Cavity Shape Change

2. Small cavity volume change, like a small metallic bead enters a large volume of cavity. Although cavity volume change may or my not be on the wall, the bead "repelling" volume is small.

3. Bead material could be either dielectric $\varepsilon_r > 1$, or metallic $\sigma \rightarrow \infty$, or low σ ferromagnetic $\mu_r > 1$. A lossy material can be also used for the bead-pull as long as the cavity loaded Q_L is taking account into the frequency *f* change

U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology

Before the perturbation, the EM field inside of cavity can be described as:

$$E = E_0 e^{j\omega t} \qquad H = H_0 e^{j\omega t} \tag{1}$$

Here E_0 and H_0 are function of position before perturbation. After the perturbation, the field changes are E_1 and H_1 frequency change is $\Delta \omega$

$$E' = (E_0 + E_1)e^{j(\omega + \Delta\omega)t} \qquad H' = (H_0 + H_1)e^{j(\omega + \Delta\omega)t}$$
(2)

Here $E_1 << E_0$, and $H_1 << H_0$ are result of small perturbation or small volume 1st and 2nd Maxwell's equation:

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} \tag{3}$$
$$\nabla \times \boldsymbol{H} = \frac{\partial \boldsymbol{D}}{\partial t} \tag{4}$$

U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology

Apply (1) (2) to (3) :

$$\nabla \times E_0 = -j\omega B_0 \qquad (5)$$

$$\nabla \times (E_0 + E_1) = -j(\omega + \Delta \omega)(B_0 + B_1) \qquad (6)$$
Apply (6)-(5):

$$\nabla \times (E_1) = -j\omega B_1 - j\Delta \omega (B_0 + B_1)$$
(7)

Similarly apply (1)(2) to (4):

$$\nabla \times H_0 = j\omega D_0 \tag{8}$$

$$\nabla \times (H_0 + H_1) = j(\omega + \Delta \omega)(D_0 + D_1)$$
(9)

Apply (9)-(8):

$$\nabla \times (H_1) = j \big(\omega D_1 + \Delta \omega (D_0 + D_1) \big)$$
⁽¹⁰⁾

U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology

 H_0^* conjugated H_0 dot times (7):

 $H_0^* \cdot \nabla \times (E_1) = -j [\omega H_0^* \cdot B_1 + \Delta \omega H_0^* \cdot (B_0 + B_1)] \quad (11)$ $E_0^* \text{ conjugated } E_0 \text{ dot times (10):}$

$$\boldsymbol{E_0}^* \cdot \boldsymbol{\nabla} \times (\boldsymbol{H_1}) = \boldsymbol{j} \big[\boldsymbol{\omega} \boldsymbol{E_0}^* \cdot \boldsymbol{D_1} + \Delta \boldsymbol{\omega} \boldsymbol{E_0}^* \cdot (\boldsymbol{D_0} + \boldsymbol{D_1}) \big]$$
(12)

Apply (12)-(11):

$$E_{0}^{*} \cdot \nabla \times H_{1} - H_{0}^{*} \cdot \nabla \times E_{1}$$

= $j\omega (E_{0}^{*} \cdot D_{1} + H_{0}^{*} \cdot B_{1})$
+ $j\Delta\omega [(E_{0}^{*} \cdot D_{0} + H_{0}^{*} \cdot B_{0}) + (E_{0}^{*} \cdot D_{1} + H_{0}^{*} \cdot B_{1})]$ (13)

Use vector differential operation and (5) and (8) relationship:

$$\nabla \cdot \left(E_0^* \times H_1 - H_0^* \times E_1\right) \equiv H_1 \cdot \nabla \times E_0^* - E_0^* \cdot \nabla \times H_1 + E_1 \cdot \nabla \times H_0^* + H_0^* \cdot \nabla \times E_1 = j\omega H_1 \cdot B_0^* + j\omega E_1 \cdot D_0^* - \left(E_0^* \cdot \nabla \times H_1 - H_0^* \cdot \nabla \times E_1\right)$$

U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology

This leads to:

$$\begin{aligned} & \left(E_0^* \cdot \nabla \times H_1 - H_0^* \cdot \nabla \times E_1 \right) \\ &= j\omega \left(H_1 \cdot B_0^* + E_1 \cdot D_0^* \right) - \nabla \cdot \left(E_0^* \times H_1 - H_0^* \times E_1 \right) \end{aligned} \tag{14}$$

$$\begin{aligned} & \text{Apply (14) to (13):} \\ & j\omega \left(H_1 \cdot B_0^* + E_1 \cdot D_0^* \right) - \nabla \cdot \left(E_0^* \times H_1 - H_0^* \times E_1 \right) \\ &= j\omega \left(E_0^* \cdot D_1 + H_0^* \cdot B_1 \right) \\ &+ j\Delta \omega \left[\left(E_0^* \cdot D_0 + H_0^* \cdot B_0 \right) + \left(E_0^* \cdot D_1 + H_0^* \cdot B_1 \right) \right] \end{aligned} \tag{15}$$

Integration over whole volume of cavity V_0 on both sides of (15):

$$j\Delta\omega \iiint_{V_0} \left[\left(E_0^* \cdot D_0 + H_0^* \cdot B_0 \right) + \left(E_0^* \cdot D_1 + H_0^* \cdot B_1 \right) \right] dv$$

= $j\omega \iiint_{V_0} \left[\left(E_1 \cdot D_0^* - E_0^* \cdot D_1 \right) + \left(H_1 \cdot B_0^* - H_0^* \cdot B_1 \right) \right] dv$
 $- \oiint_{V_0} \nabla \cdot \left(E_0^* \times H_1 - H_0^* \times E_1 \right) dv$

Jefferson Lab

U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology US Particle Accelerator School, SRF Practices and Hands-on Measurements, Jan. 19-23, 2015

(16)

According to divergence theorem, second term of (16) can become the surface integration on the cavity inner wall S_0 where E_0 and H_0 vanish:

$$\iiint_{V_0} \nabla \cdot \left(E_0^* \times H_1 - H_0^* \times E_1 \right) d\nu = \oiint_{S_0} \left(E_0^* \times H_1 - H_0^* \times E_1 \right) \cdot d\mathbf{s} = 0 \quad (17)$$

So the (16) becomes:

$$\frac{\Delta\omega}{\omega} = \frac{\iiint_{V_0} \left[\left(E_1 \cdot D_0^* - E_0^* \cdot D_1 \right) + \left(H_1 \cdot B_0^* - H_0^* \cdot B_1 \right) \right] dv}{\iiint_{V_0} \left[\left(E_0^* \cdot D_0 + H_0^* \cdot B_0 \right) + \left(E_0^* \cdot D_1 + H_0^* \cdot B_1 \right) \right] dv}$$

$$(18)$$

Equation (18) is an exact expression of cavity relative frequency change due to the perturbations on cavity shape and medium. Its application to the bead-pull needs a further approximation. Since $|D_I| << |D_0|$ and $|B_I| << |B_0|$ or their contribution in V_I to the cavity volume V_0 integration is small, so the second term in (18)'s denominator is approximately zero. Also E_1 , D_1 and H_1 , B_1 in volume of V_0 - V_1 are nearly same to their values in volume V_0 as their subscripts change from 1 to 0. So in (18)'s numerator the volume integration can be approximately over volume V_1 only.

U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology

Perturbation of a Resonator – Frequency Change due to Shape Perturbation

$$\frac{\Delta f}{f} = \frac{\Delta \omega}{\omega} = \frac{ \iiint_{V_1} \left[\left(E_1 \cdot D_0^* - E_0^* \cdot D_1 \right) + \left(H_1 \cdot B_0^* - H_0^* \cdot B_1 \right) \right] dv}{ \iiint_{V_0} \left[\left(E_0^* \cdot D_0 + H_0^* \cdot B_0 \right) \right] dv}$$
(19)

If V_1 is a metallic volume, inside of V_1 :

$$E' = 0$$
 $D' = D_0$ $B' = 0$ $H' = H_0$ (20)

Then field changes inside of V_1 :

$$E_1 = E' - E_0 = -E_0$$
 $D_1 = D' - D_0 = 0$ (21)

$$B_1 = B' - B_0 = -B_0 \qquad H_1 = H' - H_0 = 0 \tag{22}$$

Apply (21) (22) to equation (19), the cavity frequency change due to a metallic boundary perturbation is:

$$\frac{\Delta f}{f} \cong \frac{ \bigoplus_{V_1} (H_0^* \cdot B_0 - E_0 \cdot D_0^*) dv}{ \bigoplus_{V_0} (E_0^* \cdot D_0 + H_0^* \cdot B_0) dv}$$

U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology US Particle Accelerator School, SRF Practices and Hands-on Measurements Jan. 19-23, 2015

(23)

Perturbation of a Resonator – Frequency Change due to a Metallic Boundary Change

If V_1 is deformed in such a way that can be considered as a small perturbation, the new surface S_1 is parallel to the original surface S_0 , then metallic boundary volume of δV :

$$B_{0} = \mu H_{0} \qquad D_{0} = \varepsilon E_{0} \qquad (24)$$

$$\frac{\Delta f}{f} \approx \frac{ \iiint_{\delta V} (\mu |H_{0}|^{2} - \varepsilon |E_{0}|^{2}) d\nu}{ \iiint_{V_{0}} (\mu |H_{0}|^{2} + \varepsilon |E_{0}|^{2}) d\nu} \qquad (25)$$

1/4 of denominator in (25) r.s. is the cavity stored energy before the perturbation. 1/4 of numerator in (25) r.s. is the time averaged force like LFD.

- 1. The frequency change due to a perturbation of E field is going down, and is up due to the H field.
- 2. Pulling a metallic bead is actually measuring both E and H fields inside of cavity
- 3. To get an independent E and H field, one needs two types of bead, metallic and dielectric, by pulling them separately (advanced topic)

U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology

Perturbation of a Resonator – Frequency Change due to a Dielectric Bead

Homework (HW)1: After equation (18) to derive a frequency change due to the material medium perturbation:

$$\frac{\Delta f}{f} \cong -\frac{ \oiint_{\delta V} \left[(\mu_r - 1) \mu_0 H_1 \cdot H_0^* + (\varepsilon_r - 1) \varepsilon_0 E_1 \cdot E_0^* \right] dv}{ \oiint_{V_0} (\mu |H_0|^2 + \varepsilon |E_0|^2) dv}$$

(26)

1/4 of denominator in (26) r.s. is the cavity stored energy before the perturbation

- 1. Both E and H fields perturbation can cause the cavity frequency going down
- 2. Pulling a dielectric bead with $\varepsilon_r > 1$, $\mu_r = 1$ is actually measuring *E* field only.
- 3. High μ_r material can be used to make a bead to measure the *H* field, but it might be under preformed than a metallic bead
- 4. When $\varepsilon_r \gg 1$ or $\mu_r \gg 1$, E_I and H_I can not be approximated to zero

U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology

Sphere Shape Bead Perturbations

When a bead is introduced into cavity, the change in the stored energy will be equal to the work done in expanding the bead volume from zero to V_1 volume against the forces of the fields. A simple geometry of such bead is a sphere with a finite radius of **a**. If we assume the sphere to be small so that the fields can be regarded as uniform for an appreciable distance beyond the sphere, then we can use the potential function of a sphere introduced into an uniform E_0 and H_0 fields

HW2: Use static E/H potentials inside of metal sphere to derive the frequency change due to a metallic bead:

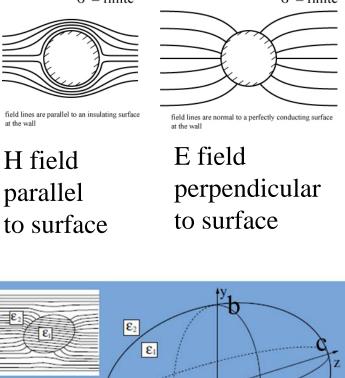
$$U\frac{\Delta f}{f} = \pi a^3 \left(\frac{\mu H_0^2}{2} - \varepsilon E_0^2\right) \tag{27}$$

HW3: Use static E/H potentials inside of dielectric sphere to derive the frequency change due to a dielectric bead:

$$U\frac{\Delta f}{f} = -\pi a^3 \left(\frac{\mu_r - 1}{\mu_r + 2}\mu_0 {H_0}^2 + \frac{\varepsilon_r - 1}{\varepsilon_r + 2}\varepsilon_0 {E_0}^2\right)$$
(28)

U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology

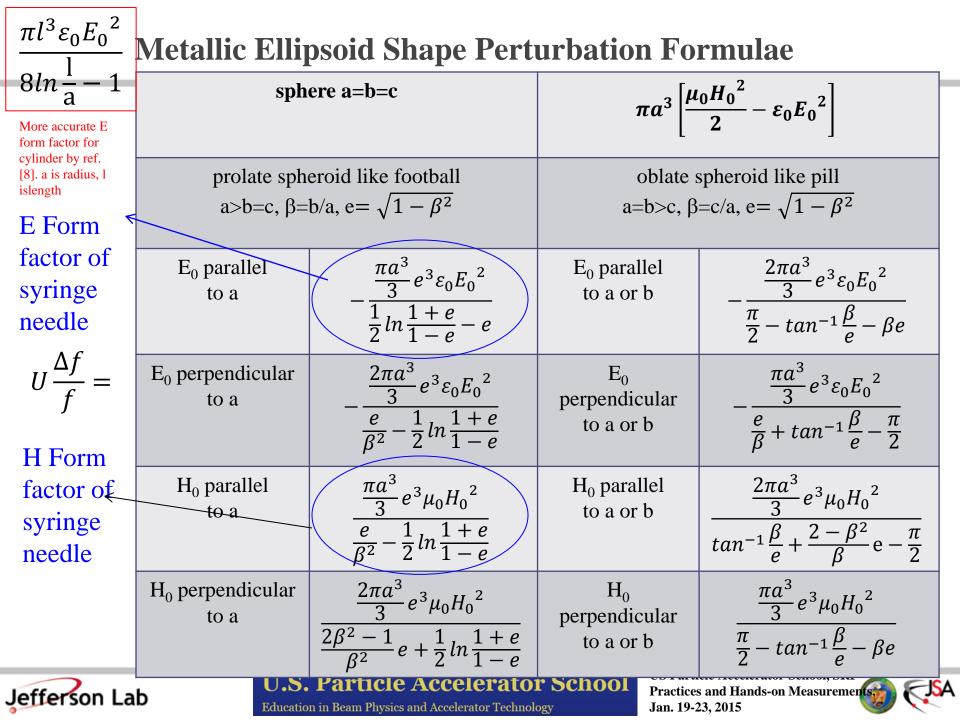
In order to obtain the orientation of the fields, an elongated body must be used for bead-pull. $\sigma = finite$ $\sigma = \text{finite}$

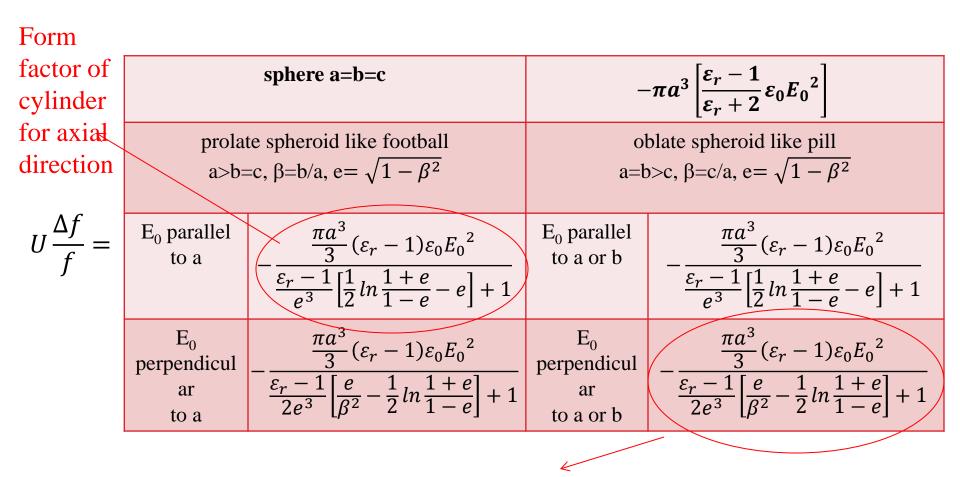

Metallic Ellipsoids:

The potential functions of metallic ellipsoids are derived although ellipsoidal coordinates and and elliptic integrations are involved [7], it is possible to calculate the work done when an ellipsoid is expanded from zero to a finite volume for the fields aligns its various axes.

Dielectric Ellipsoids:

The potential functions of both inside and outside sphere are known by solving Laplace's equation in ellipsoidal coordinates although such a solution needs elliptic integration. It is possible to calculate the work done in a similar way to the metallic.

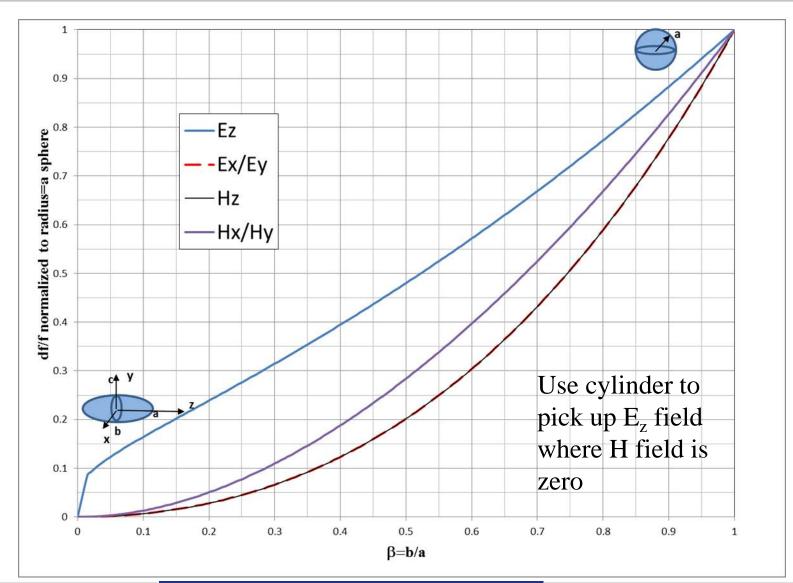

The perturbation of an originally uniform electric field is shown due to the dielectric ellipsoid. The dielectric polarization inside the object is homogenous, however not parallel to the initial field.



U.S. Particle Accelerator School

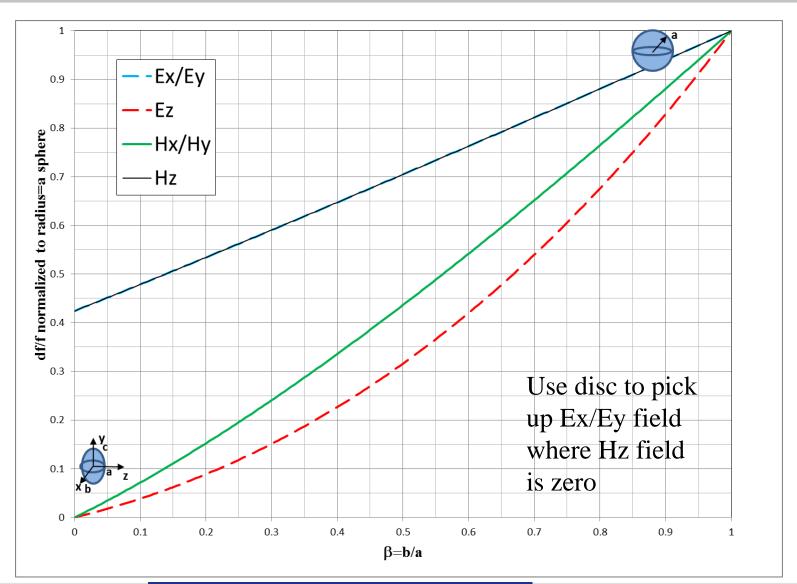
Education in Beam Physics and Accelerator Technology

Dielectric Ellipsoid Shape Perturbation Formulae


Form factor of disc for radial direction

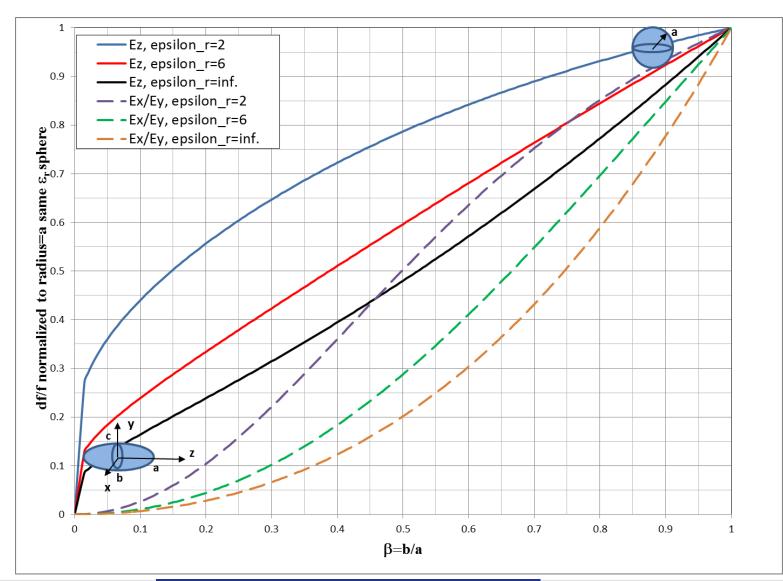
U.S. Particle Accelerator School

Perturbation due to Metallic Prolate Spheroids

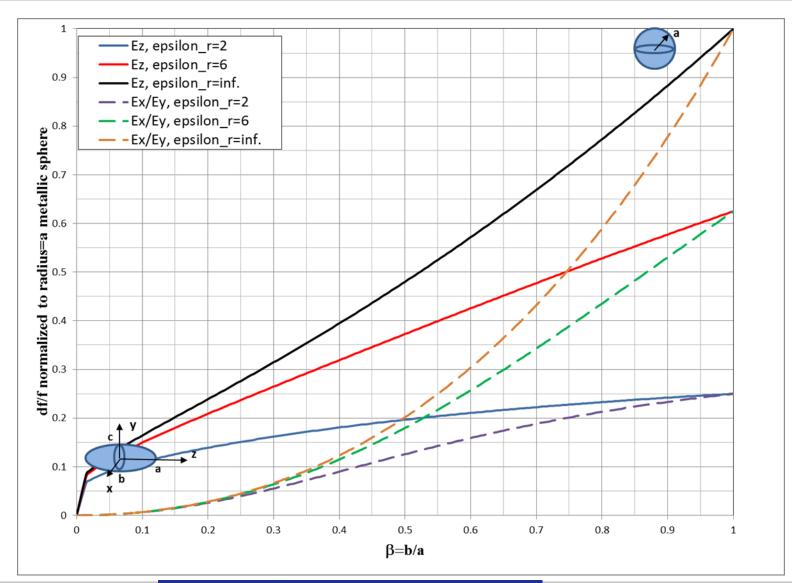

US Particle Accelerator School, SRF Practices and Hands-on Measurements, Jan. 19-23, 2015

Education in Beam Physics and Accelerator Technology

Jefferson Lab

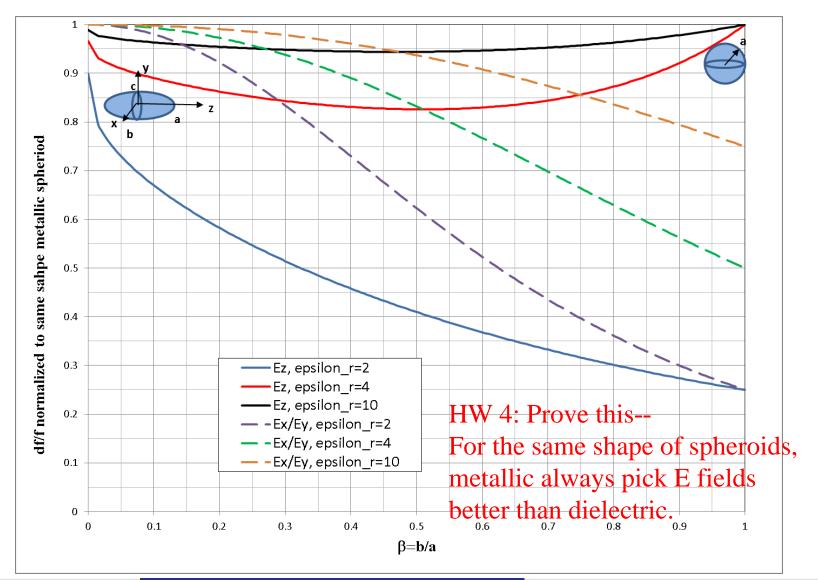

Perturbation due to Metallic Oblate Spheroids

Jefferson Lab

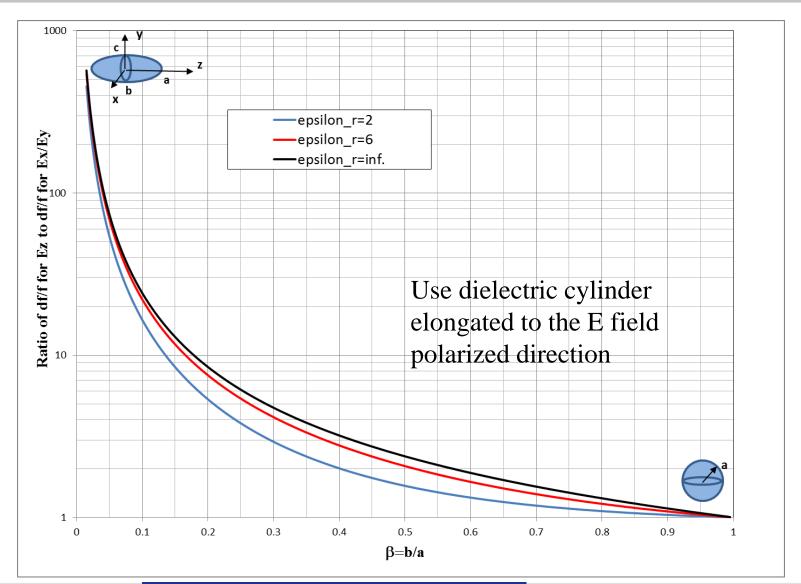


US Particle Accelerator School, SRF Practices and Hands-on Measurements, Jan. 19-23, 2015

Education in Beam Physics and Accelerator Technology


Jefferson Lab

Jefferson Lab



U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology

Jefferson Lab

Jefferson Lab

RF cavity acceleration voltage [6]:

$$V_{c} = \left| \int_{-L/2}^{L/2} E_{z}(r=0,z) exp\left(\frac{i\omega z}{\beta c}\right) dz \right| \qquad \text{Volt} \qquad (29)$$

Cavity R/Q, also called shunt impedance to quality factor ratio in unit of Ohm:

$$\frac{R}{Q} = \frac{V_c^2 / P}{\omega U / P} = \frac{V_c^2}{\omega U}$$
(30)

R/Q is cavity geometry shape dependent only, acceleration voltage V_c is normalized to cavity stored energy U, $\omega = 2\pi f$, f is cavity resonance frequency in Hz.

This definition is from Accelerator Physics. Some Electrical Engineering folks use a definition of R/Q with an extra factor of 2 in denominator. Make sure to use corresponding R/Q value for your design when reading literatures and tech notes.

R/Q for CEBAF C100 7-cell, 1497MHz SRF cavity is 871.5Ω.

HW5: use SuperFish (SF,2D) code to calculate R/Q value to confirm this. (download SF and SF input file with cavity geometry is provided separately)

U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology

Cavity R/Q Calculation from Bead-pull Measurement

From (29) (30):

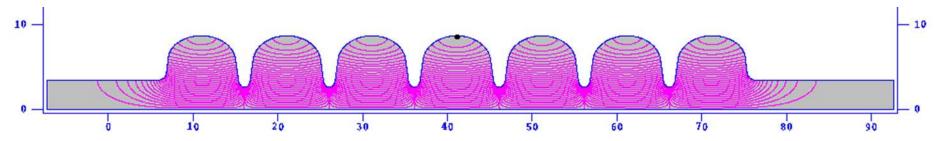
Jefferson Lab

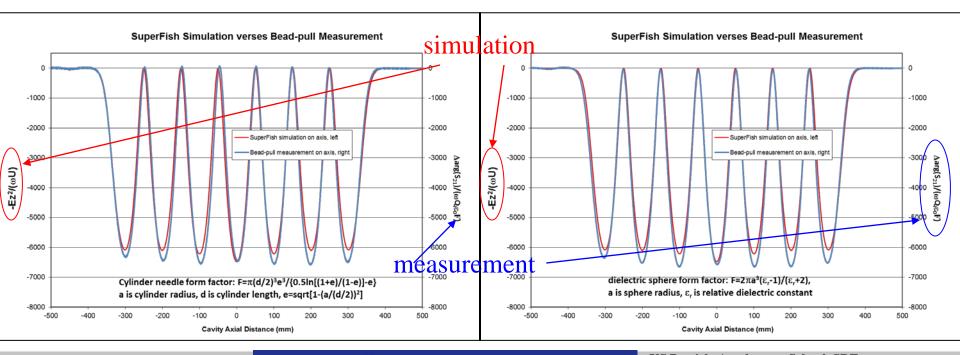
From (19) pulling a bead to measure the cavity $\Delta f(z)/f$ can measure the sqrt[Ez(r=0,z)]/U :

$$\frac{\Delta f(z)}{f} = \frac{\Delta W_m(z) - \Delta W_e(z)}{W_m + W_e} = \frac{\Delta W_m(z) - \Delta W_e(z)}{U}$$
(32)

For example, using a Teflon sphere bead or syringe needle, $Hz(r=0,z)\approx 0$ in this case :

$$\frac{\Delta f(z)}{f} \frac{F_{bead}}{\omega} = \frac{|Ez(z)|^2}{\omega U}$$
(33)


Here, F_{bead} or its alternative factor with multiplication to other constants is called **bead form factor** which is only defined by the bead geometry and material which we have found early. So the bead-pull measurement can measure the normalized EM field distribution along the pulling direction which is **not** cavity frequency and drive power dependent parameter.


U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology

Cavity R/Q Calculation from Bead-pull Measurement

HW6: Use SF to calculate $Ez(r=0,z)^2/(\omega U)$ field in Excel format to be ready before the hands-on class next week for simulation to measurement comparison.

U.S. Particle Accelerator School

US Particle Accelerator School, SRF Practices and Hands-on Measurements, Jan. 19-23, 2015

Jefferson Lab

RF Measurement Basics-S parameters

HW 7: Refer to [6] pp149-151 to prove following two-port S parameter formulae (34)-(37) (38) no mater of $\beta_1 < 1$ or $\beta_1 > 1$ or $\beta_2 < 1$ or $\beta_2 > 1$. The conditions of approximation in (39) and the relative error for a 10° of phase change:

$$S_{21}(f) = \frac{2\sqrt{\beta_1 \beta_2}}{(1+\beta_1+\beta_2)+i\Omega(f)}$$
(34)

$$\Omega(f) = Q_0 \left(\frac{f}{f_0} - \frac{f_0}{f}\right) \qquad Q_L = \frac{Q_0}{1+\beta_1+\beta_2}$$
(35)

$$B_1 = \frac{1}{Q_{e1}}$$
 Q_{el} is input coupler external Q (36)

$$\beta_2 = \frac{Q_0}{Q_{e2}}$$
 Q_{e2} is output coupler external Q (37)

When
$$f = f_0$$
 or $\Omega(f_0) = 0$: $S_{21}(f_0) = 10 \log \left[\frac{4\beta_1 \beta_2}{(1 + \beta_1 + \beta_2)^2} \right]$ dB (38)

/

Jet

$$\Delta ang(S_{21}) = \tan^{-1} \left(\frac{-\Omega(f)}{1 + \beta_1 + \beta_2} \right) \approx -2Q_L \frac{\Delta f}{f_0} \qquad \text{Radian and} \qquad \Delta f = f - f_0 \qquad (39)$$

U.S. Particle Accelerator School

Hugging in Beam Physics and Accelerator Technology

Hugging in Beam Physics and Accelerat

HW 8: Refer to [6] p153 to prove following S parameter formulae (40)-(44):

$$\Gamma(f) = \frac{\beta_1 - 1 - i\Omega(f)}{\beta_1 + 1 + i\Omega(f)}$$
(40)

Reflection:

Jet

$$-1 \le \Gamma(f_0) = \frac{\beta_1 - 1}{\beta_1 + 1} \le 1$$
(41)

$$\beta_1(f_0) = \frac{1 \pm |S_{11}(f_0)|}{1 \mp |S_{11}(f_0)|} \qquad \text{Upper sign is for } \beta_1 > 1 \text{ (over-coupled)} \\ \text{Lower sign is for } \beta_1 < 1 \text{ (under-coupled)} \qquad (42)$$

In the case of $\beta_1 \ll 1$, $S_{11} \sim 1$, (41) gives a large error. We used (42) instead of (41) in the bench measurement:

 $\beta_{1} \approx \frac{1 - \left|S_{11}(f_{0})/S_{11}(|f| >> f_{0})\right|}{1 + \left|S_{11}(f_{0})/S_{11}(|f| >> f_{0})\right|} \quad |f| >> f_{0} \text{ is off resonance condition}$ (43) $f = f_{0} \text{ is on resonance} \qquad \text{(43)}$ No cable calibration is needed

In the case of $\beta_2 \ll 1$, $S_{22} \sim 1$, we measure S_{21} instead of S_{22} :

Transmission:
$$Q_{e2}(f_0) = \frac{4\beta_1}{1+\beta_1+\beta_2} Q_L \cdot 10^{\frac{|S_{21}(f_0)|(dB)}{10}}$$
(44)
cable calibration is needed
U.S. Particle Accelerator School
Education in Beam Physics and Accelerator Technology
Education in Beam Physics and Accelerator Technology

Field Flatness Measurement from Bead-pull Data

The original definition of the N-cell cavity field flatness is

$$\eta_{ff} = \left(1 - \frac{V_{c \max} - V_{c \min}}{\frac{1}{N} \sum_{i=1}^{N} V_{ci}}\right) \times 100\%$$
(45)

Here V_{ci} is the accelerating voltage of the *i*th cell. V_{cmax} and V_{cmin} is the maximum and minimum cell voltage in the cavity, respectively.

For a fixed $\beta_g = v/c$ structure, all the cells in the cavity have an equal accelerating gap $d = \beta c/(2f_0)$. The cell's accelerating voltage is

$$V_{c} = E_{c} \int_{-L/2}^{L/2} f(z) \cos(\pi \frac{z}{L} + \phi_{0}) dz = E_{c} T(d)$$
(46)

Here E_c is the peak axial electric field along the beam axis z. The f(z) is the field distribution function. As long as the cavity shape and the gap L don't change from cell to cell, or a small perturbation change which only changes the E_c but not f(z) and d. So the transit time factor T(d) will be a constant. Then the equation (46) becomes:

$$\eta_{ff} = \left(1 - \frac{E_{c \max} - E_{c \min}}{\frac{1}{N} \sum_{i=1}^{N} E_{c i}}\right) = \left(1 - \frac{\sqrt{\Delta \phi_{c \max}} - \sqrt{\Delta \phi_{c \min}}}{\frac{1}{N} \sum_{i=1}^{N} \sqrt{\Delta \phi_{c i}}}\right) \times 100\% \quad \begin{array}{l} \text{Here } E_{ci} \text{ is the peak axial} \\ \text{electric field in the } i\text{th cell.} \\ \Delta \phi_{ci} \text{ is } S_{21} \text{ phase change in} \\ \text{bead-pull data after} \\ \text{correction of slop and offset} \end{array} \right)$$
(47)

Bead-pull Formula for Dielectric Sphere and its Error Analysis

From page 17 and equation [39], we can derive:

$$-\frac{E_z^2}{\omega U} = \frac{\tan(\Delta ang S_{21})}{\omega Q_L \varepsilon_0 F_{di-sphere}}$$
(48)

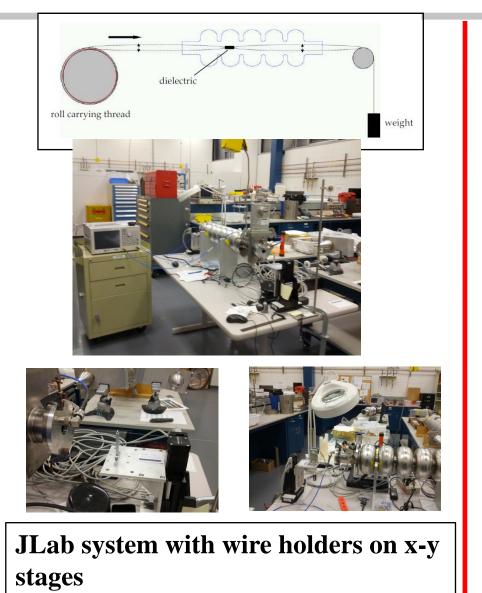
Here $F_{di-sphere}$ is dielectric sphere form factor:

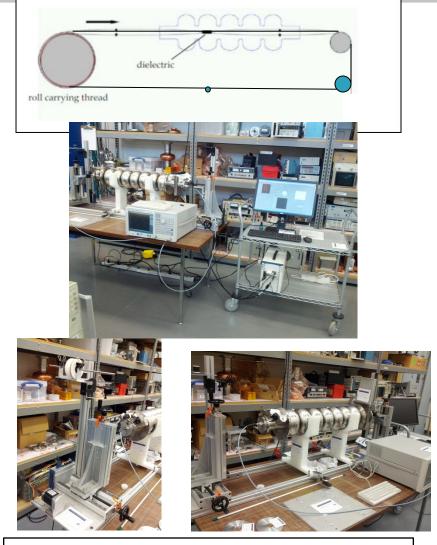
$$F_{di-sphere} = 2\pi a^3 \left(\frac{\varepsilon_r - 1}{\varepsilon_r + 2}\right)$$
(49)

Except the approximation in [39], additional relative errors caused by measurement parameters are:

$$2\left|\frac{\Delta E_z}{E_z}\right| = \left|\frac{\Delta \phi}{\phi}\right| + \left|\frac{\Delta Q_L}{Q_L}\right| + 3\left|\frac{\Delta a}{a}\right| + 3\left|\frac{\Delta \varepsilon_r}{(\varepsilon_r - 1)(\varepsilon_r + 2)}\right|$$
(50)

For a teflon sphere $|\Delta E_z/E_z| \sim (1\% + 1\% + 3*0.2\% + 3*1\%)/2 \sim 5\%$


HW9 optional: Try to estimate cavity frequency shift due to a nylon (ε_r =4) fishing wire (dia.=0.019 inch) stretching through the axis of C100 cavity. When using ΔF method to measure the E field, should you consider this frequency shift? Try to confirm your estimate in your experiment.

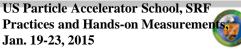

Jefferson Lab

U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology

Bead-pull Measurement Systems

ODU system with wire loop frame

U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology



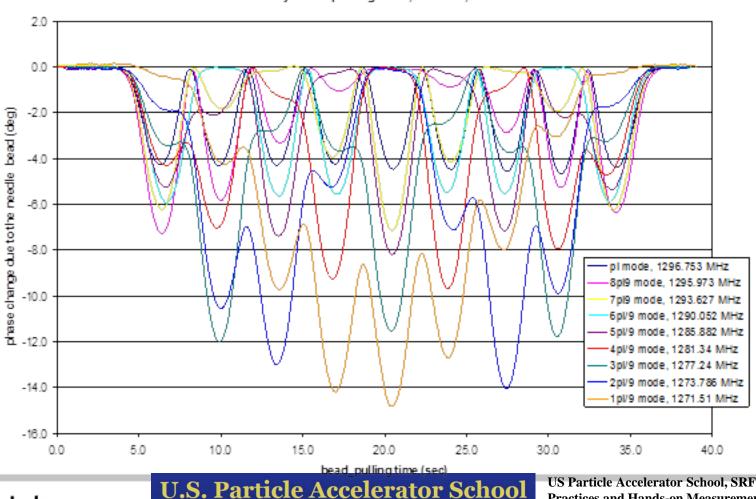
Bead-pull Measurement Techniques

System	ODU	JLab
wire pulling device	close loop with spring tension on pulleys	weight drop with multi-loop travel on pulleys
step-motor-drive	1D in Z w/ Labview	3D w/ X-Y stages
automation control	Labview 2010	Labview 2014
measure with VNA	search S ₂₁ peak f to find $\Delta f/f_0 = (f_{peak} - f_0)/f_0$	S_{21} phase $\Delta f/f_0 = tan(\Delta arg(S_{21}))/(2Q_1)$
pros	no wire over latch on reel; no bead vibration issue; no Q ₁ measurement; change bead w/o rewiring	fast; can be manual operation for quick setup; multi-mode measure in one pull is possible
cons	slow, frequency drift; need automation; suitable for short cavity	possible bead vibration; wire over latch caused pulling speed change; phase lock drift; bead change needs rewiring

U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology

Bead-pull Measurement Common Errors and Remedy Tricks

Common Errors	Most Possible Causes	Remedy Tricks
large noise small signal	Too weak in couplings, small drive power, high IF frequency, drive frequency off resonance in phase measurement	P=0-10dBm, IF<1kHz, S ₂₁ _loss >-60dB 0.01 <s<sub>11~S₂₂. Use RF amplifier is needed. Scan for new peak drive frequency</s<sub>
Bead vibration	String suspension structure resonance with motor step frequency	Increase string tension or hanging weight, use damper on wire eye
Field tilts to one side	Not a real tilt, too strong coupling on weak peak side	Control $\beta_1 \sim \beta_2 < 0.1$. Large β causes $f_0 \downarrow$ Antenna not perturb f_0 by < 20 kHz
Positive phase or frequency change	off-axis pulling, picking up H field Wrong mode	Re-align the wire Change drive frequency
Phase display jump during time sweep	Phase near ±180°, normal in VNA phase lock sweep	Use phase delay on the VNA display screen
Too large phase change	Too large bead size or wrong shape	Change bead
Signal base line tilt	Cavity frequency/VNA phase drift	Correct slop in data process Faster pulling speed Use small IF<500Hz
Large error on R/Q calculation	Bead size measurement error ϵ_r error, wrong calculation formula Misalignment of Ez field versus cavity position z	Use caliper to measure bead size Calibrate bead-pulling speed/distance with stop watch Calibrate ε_r with a pillbox cavity
fferson Lab	U.S. Particle Accelerator Scho Education in Beam Physics and Accelerator Technology	US Particle Accelerator School, SRF Practices and Hands-on Measurements Jan. 19-23, 2015


Qext Measurement Common Errors and Remedy Tricks

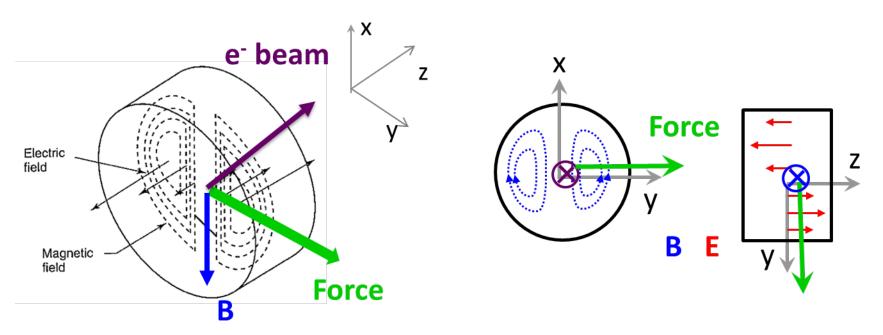
Common Errors	Most Possible Causes	Remedy Tricks
Calibration error	Changed cable, Cal Kit standards are misused	Recalibrated cable Follow calibration procedure
Input beam pipe coupler is too strong	Cavity field perturbed and tilted by input antenna	Reduce the $\beta_1 < 0.1$
Bad cable	Extra loss on bad connector	Change the cable
Using mismatched top hat	Extra loss on top hat	Use Adaptor Removal Calibration Procedure
Nb top hat on C50 cavity waveguide FPC	Extra waveguide mode build up	Avoid assembly structure with waveguide build up
antenna perpendicular to E field or loop plane parallel to H field	Very sensitive to coupler tilting angle or rotation	Use "L" shape rod antenna, mark the orientation of rotation for reassembly
Large Qext difference between bench and cold measurements	Third port or add-on structure affect S_{21} transmission coupling	Measure the S_{21} with full assembly, avoid any ghost mode nearby, use simulation to understand the coupling
tterson Lab	Particle Accelerator Scho in Beam Physics and Accelerator Technology	US Particle Accelerator School, SRF Practices and Hands-on Measurements Jan. 19-23, 2015

Bead-pull Measurement-Advanced Topics

Multi-mode measurement with one bead-pull:

• Example: TM010 passband modes of ILC (TESLA) 9-cell Cavity

ILC-AES A8 9-cell Cavity Bead-pulling Data, on Axis, Metallic Needle Bead


Education in Beam Physics and Accelerator Technology

Bead-pull Measurement-Advanced Topics

Bead-pull for HOMs

• Example: TM110 π modes

- Use analytical or 3D simulation to understand EM field pattern
- Use metallic spherical bead to pick up on-axis Bx field
- Use metallic disc or sphere to pick up off-axis Bx and Ez fields
- Use ceramic spherical or needle bead to pick up off-axis Ez field
- Rotate ceramic sphere around beam axis to measure the dipole polarization

U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology

- Perform two-port VNA cable calibration procedure
- Practice VNA measurement key menu
- β_1 and β_2 measurement by S_{11} and S_{21} for electric antenna setup on beam pipes
- Change antenna length for appropriate input and output couplings β_1 and β_2
- External Q measurement for C100 cavity's fundamental Power Coupler (FPC) and Field Probe FP
- Practice 1D wire pulling by manual control of step motor through NI's IMAX
- Measure cavity resonance frequency f_0 , Q_L by -3dB bandwidth
- 1D bead-pull on C100 cavity using either ODU or JLab system with student's choice of bead
- Download bead-pull data in csv format for HW10
- HW10: compare bead-pull data with SF simulation on Ez(r=0,z)²/(@U) distribution and calculate the R/Q value from the bead-pull data to compare it with your SF result. Calculated cavity's field flatness. (due in the morning of the last school day (01/23) for grade)
- If an extra time is allowed, we will do advanced topics
 - 1. TM010 passband modes bead-pull demonstration by Labview automation
 - 2. TM110 π mode rotation bead-pull to measure mode polarization (on JLab system)
 - **3.** On-axis bead-pull for H field, off-axis bead-pull for both E and H fields

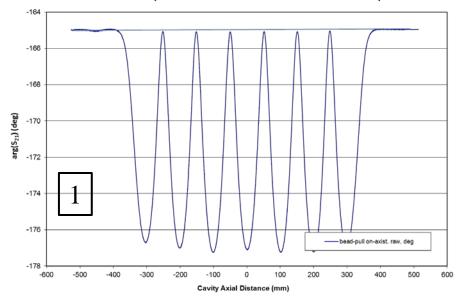
U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology

References

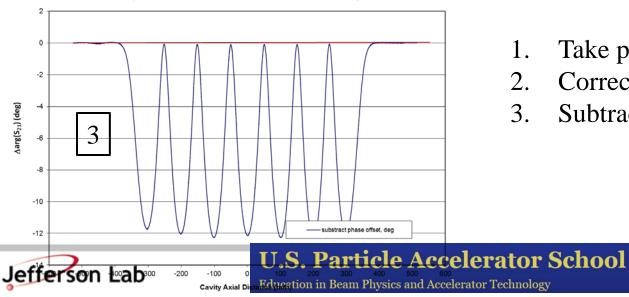
- 1. Wikipedia page: <u>http://en.wikipedia.org/wiki/Cavity_perturbation_theory</u>
- David M. Pozar, Microwave Engineering, 2nd edition, Wiley, New York, NY, 1998, Section 6.8 Cavity Perturbation, pages 340-344
- 3. J. D. Jackson, Classical Electrodynamics, John Wiley and Sons, Inc.
- 4. L. B. Mullett, Perturbation of a Resonator, UK Atomic Energy Research Establishment, Harwell, Berkshire, 1957, Unclassified A.E.R.E. G/R 853
- 5. R. G. Carter, Engineering Department, Lancaster University, Lancaster LA14YR, U.K., School Teaching Note, year?
- 6. H. Padamsee, J. Knobloch and T. Hays, RF Superconductivity for Accelerators, Wiley Series in Beam Physics and Accelerator Technology
- 7. L. C. Maier Jr. and J. C. Slater, Field Strength Measurements in Resonator Cavities, Journal of Applied Physics Vol. 23, No. 1, Jan. 1952
- 8. H. Hahn and H.J. Halama, Pertubation measurements of transverse R/Q in irisi-loaded waveguides, IEEE Trans. MTT-16, no.1, p. 20 (January 1968)

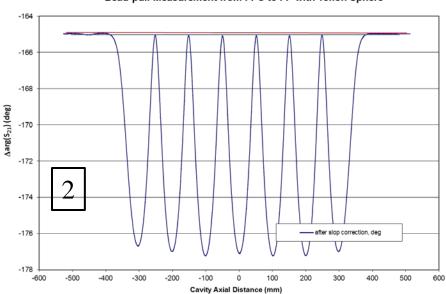
U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology

Backup Slides



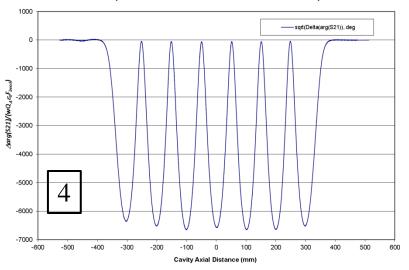
U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology



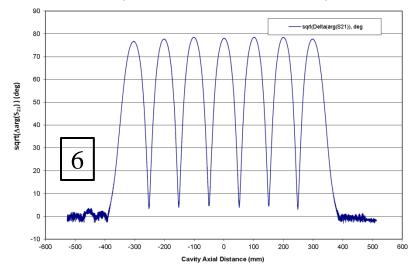

R/Q Calculation from Bead-pull Data Procedure

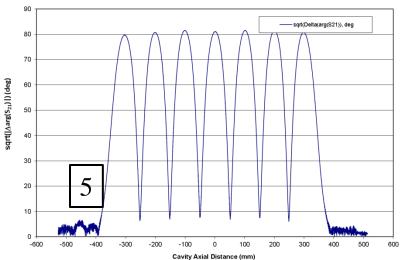
Bead-pull Measurement from FPC to FP with Teflon Sphere

Bead-pull Measurement from FPC to FP with Teflon Sphere


Bead-pull Measurement from FPC to FP with Teflon Sphere

- 1. Take phase change (deg) raw data
- 2. Correct baseline slop
- 3. Subtract baseline offset to zero

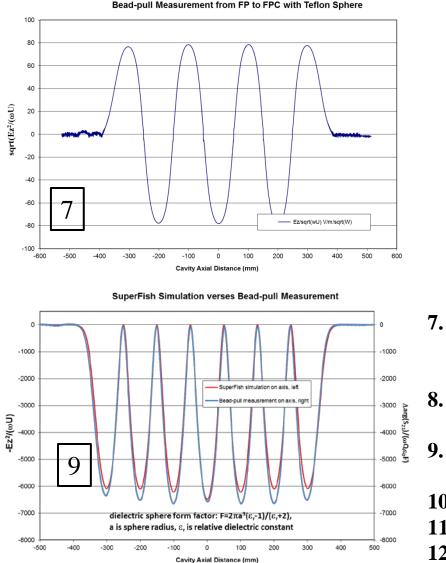


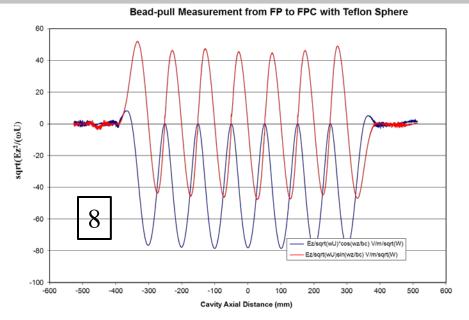

R/Q Calculation from Bead-pull Data Procedure

Bead-pull Measurement from FPC to FP with Teflon Sphere

Bead-pull Measurement from FPC to FP with Teflon Sphere

Bead-pull Measurement from FPC to FP with Teflon Sphere


- 4. $-Ez^2/(\omega U) = \Delta arg(S21)/(\omega Q_L \varepsilon_0 F_{bead})$
- 5. $sqrt(|Ez^2/(\omega U)|)$
- 6. Subtract offset $sqrt(Ez^2/\omega U)$



U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology

R/Q Calculation from Bead-pull Data Procedure

- Manually flip field amplitudes according cosine distribution, pay attention to the sign near zero crossing to avoid any large kink
- Check *sine and cosine* multiplication terms for odd and even function and values of integration
- Check F_{beand} with *Ez²/(\omegaU*) simulation amplitudes
- 10. Sums of sine and cosine terms
- 11. Sums of sine*dz and cosine*dz terms
- 12. RTTQ= $(sumsine^{dz})^2 + (sumcosine^{dz})^2$

U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology