

Joseph Matalevich

USPAS Course: SRF Technology: Practices and Hands-On Measurements

January 2015

J. Matalevich

April 1940

November 1940

3

USPAS SRF Course Jan. 2015

Objectives

- Why study vibrations?
 - So my machine doesn't get screwed up
- What is modal analysis?
 - Analytical Modal Analysis (Calculations)
 - Experimental Modal Analysis (Measurements)
- How are real structures analyzed?

What is vibration?

- Stored energy within a structure is transformed between potential (elastic deformation) and kinetic (moving mass) energy. The oscillatory motion is vibration.
- The stored energy results in standing waves (modes) at inherent natural frequencies.

Types of Vibrations

Undamped

- Idealized
- No friction
- No energy dissipation
- Perpetual Motion

Damped

- Real Structures
- Energy is dissipated
- Viscous Damping (linear models)
 - Damping Force proportional to velocity

Single Degree of Freedom (SDOF) Mechanical System Model

Newton $\sum f = ma$

7

Equation of Motion

Undamped Free Vibrations

 $m\frac{d^2x}{dt^2} = -\mathbf{k}x$

Solution

 $x(t) = x_0 \cos \omega t + \left(\frac{v_0}{\omega}\right) \sin \omega t$ $x(t) = A \cos(\omega t - \phi)$

$$A = \sqrt{x_0^2 + \left(\frac{v_0}{\omega x_0}\right)^2} \qquad \phi = \tan^{-1}\left(\frac{v_0}{\omega x_0}\right)^2$$

$$\omega = \sqrt{\frac{k}{m}}$$
 Angular Natural Frequency $\left(\frac{rad}{sec}\right)$
 $f = \frac{\omega}{2\pi}$ Linear Natural Frequency (hertz)

Damped Free Vibrations

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = 0$$

Linear, 2nd order differential equation

- homogeneous
- General Solution
 - $x (t) = A e^{r_1 t} + B e^{r_2 t}$

r1, r2 =
$$\frac{-c}{2m} \pm \sqrt{\left(\frac{c}{2m}\right)^2 - \frac{k}{m}}$$

 $\zeta = \frac{c}{2m\omega} = \frac{c}{c_{critical}} \qquad \text{Damping Ratio}$

r1, r2 = -
$$\zeta \omega \pm \omega \sqrt{\zeta^2 - 1}$$

A & B from initial conditions

- 3 Distinct Solution Sets
 Correspond to the Damping Ratio
 1. Underdamped ζ < 1
 2. Overdamped ζ > 1
 - 3. Critically Damped $\zeta = 1$

9

USPAS SRF Course Jan. 2015

- Damped Free Vibrations
 - Underdamped $\zeta < 1$

$$\succ x(t) = e^{-\zeta\omega t} \left[\frac{v_0 + \zeta\omega x_0}{\omega\sqrt{1-\zeta^2}} \sin\left(\omega t\sqrt{1-\zeta^2}\right) + x_0 \cos\left(\omega t\sqrt{1-\zeta^2}\right) \right]$$

Damped Natural Frequency

$$\omega_d = \omega \sqrt{1 - \zeta^2}$$

10

Jefferson Lab

- Damped Free Vibrations
 - Critically Damped $\zeta = 1$

$$x(t) = (v_0 + \omega x_0)te^{-\omega t} + x_0e^{-\omega t}$$

• Overdamped $\zeta > 1$

$$x(t) = Ae^{\left(-\zeta + \sqrt{\zeta^2 - 1}\right)\omega t} + Be^{\left(-\zeta - \sqrt{\zeta^2 - 1}\right)\omega t}$$

$$A = \frac{v_0 + (\zeta + \sqrt{\zeta^2 - 1})\omega x_0}{2\omega\sqrt{\zeta^2 - 1}} \qquad B = \frac{-v_0 - (\zeta - \sqrt{\zeta^2 - 1})\omega x_0}{2\omega\sqrt{\zeta^2 - 1}}$$

Damped Forced Vibrations

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = F_0\sin(\omega_f t)$$

 F_0

Jefferson Lab

12

- Solution consists of a complementary (transient) and a particular (steady state) solution
 - > Complementary $F_0=0$; homogeneous DE

$$x(t) = x_c(t) + x_p(t) \qquad \qquad \sqrt{\left(k - m\omega_f^2\right)^2 + \left(\omega_f\right)^2}$$
$$x_p(t) = D\sin(\omega t - \phi) \qquad \qquad \phi = \tan^{-1}\left(\frac{c\omega_f}{k - m\omega_f^2}\right)$$

Damped Magnification Factor

$$\beta_{d} = \left|\frac{D}{\frac{F_{0}}{k}}\right| = \frac{1}{\sqrt{\left(1 - \left(\frac{\omega_{f}}{\omega}\right)^{2}\right)^{2} + \left(2\zeta\frac{\omega_{f}}{\omega}\right)^{2}}}$$

D = _____

- Forced Response of a SDOF System
 - How much energy is leaving before next force input?

MDOF System

Multiple Degree of Freedom (MDOF) Mechanical System Model

• Equation of Motion for 2 DOF system

$$\begin{bmatrix} m_{1} \\ m_{2} \end{bmatrix} \begin{bmatrix} \ddot{x}_{1} \\ \ddot{x}_{2} \end{bmatrix} + \begin{bmatrix} (c_{1} + c_{2}) & -c_{2} \\ -c_{2} & c_{2} \end{bmatrix} \begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \end{bmatrix} + \begin{bmatrix} (k_{1} + k_{2}) & -k_{2} \\ -k_{2} & k_{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} f_{1}(t) \\ f_{2}(t) \end{bmatrix}$$

- Model Complex Systems
- Approximate Continuous Real Systems
 - Matrix Formulation $[M]{\ddot{x}} + [C]{\dot{x}} + [K]{x} = {F}$

MDOF System

$[M]{\dot{x}} + [C]{\dot{x}} + [K]{x} = {F}$

- An eigensolution yields eigenvalues (frequency) and eigenvectors (mode shapes) for each mode of the system.
- Modal Transformation Equation is used to uncouple the set of highly coupled equations

 ${x} = [U]{p}$

 $[M]{\ddot{x}} + [C]{\dot{x}} + [K]{x} = {F} \quad \square \qquad \overline{M}{\ddot{p}} + \overline{C}{\ddot{p}} + [\overline{K}]{p} = [U]^{T}{F}$

3. Mode Shape

15

Jefferson Lab

Vibration and Fourier Analogy

What is modal analysis?

- The process of characterizing the dynamic response of a system in terms of its modes of vibration.
- Any periodic function can be represented as a series of sinusoidal functions.
- Each individual sinusoid is define by its amplitude, frequency and phase.

$$\sum_{n=1}^{N} A_n \sin(2\pi f_n t + \phi_n)$$

• Vibration of a real structure can be represented as a series of modal contributions.

• Each mode is defined by its natural frequency, damping, and mode shape.

Analytical Modal Analysis

- Modal Analysis is the process of characterizing the dynamic response of a system in terms of its modes of vibration.
- Analytical Modal Analysis depends on the generation of the equations of motion of a system through a finite element model.

- 3D model typically generated with CAD tool
 - Import & mesh with FEA tool
 - Requires good material property info
 - Application of accurate boundary conditions is vitally important for reasonable results

17

1000's of simultaneous equations are common for FEA modal models

Analytical Modal Analysis

Output is an ordered list of frequencies and the corresponding mode shapes

Analytical Modal Analysis

➢ Note,

- The individual mode animations do NOT reflect an expected deflection shape
- The modes are a function of the inherent mass and stiffness of the structure (no loads are applied)

- Modal Analysis is the process of characterizing the dynamic response of a system in terms of its modes of vibration.
- Experimental Modal Analysis depends on parameter estimation techniques to extract modal information from experimental data.

Frequency Response Function (FRF)

- Ratio of the output response of a structure to the applied force
- The applied force and structure response are measured simultaneously
- Time domain data is transformed to frequency domain (FFT)

20

Jefferson Lab

Jefferson Lab

FRFs are used to generate modal data

Consider Simple 3DOF beam model

Drive Point FRF

-Excitation and measurement at same location

Images from Peter Avitabile [2]

- 3 possible locations for force application
- 3 locations for response measurement
- 9 possible FRFs; organized in matrix form
- Notation convention
 - h_{row,column} h_{output,input}

Cross FRF

-Excitation and measurement at different location

USPAS SRF Course Jan. 2015

- > Due to the Fast Fourier Transformation the FRFs are complex valued quantities
 - Magnitude & Phase or Real & Imaginary

Jefferson Lab

≻ FRFs

Reference points cannot be located at the node of a mode.

Images from Peter Avitabile [2]

USPAS SRF Course Jan. 2015

≻FRFs

- Roving Impact
 - Force input is moved
 - Transducer stationary

Images from Peter Avitabile [2]

- Roving Response
 - Force input is stationary
 - Transducer is moved

25

USPAS SRF Course Jan. 2015

Practical Considerations

- Theoretically no difference between shaker test and impact (hammer) test
- Ideal
 - No interaction between applied force and the structure
 - Massless transducer
- Reality
 - Collecting data on the structure plus all the measurement apparatus
 - Structure supports
 - Mass of transducers
 - Stiffening effects of shaker attachment
- Impact tests
 - Typically faster, lower cost, and easier to implement
 - Hammer tip hardness must be matched to the frequency range of modes desired
 - S/N ratio may be poor
 - Windowing required (less accuracy in predicting damping)
- Shaker tests
 - Better precision, enables frequency sweep (targeted investigations)
 - Setup is timely and can be difficult

J. Matalevich

USPAS SRF Course Jan. 2015

Jefferson Lab

Actual FRF measurements

Modal Parameter estimation (Curve Fitting)

- FRF Broken down into multiple SDOF systems
- Determine frequency, damping, and mode shape
- Multiple techniques & automated algorithms are utilized to extract data.

- Insufficient input power at higher frequencies
- Coherence good at low frequencies, poor at high frequencies.

28

Images from Peter Avitabile [2]

OK, I've got my frequencies and mode shapes. Now what?

- Visualization of mode shapes is invaluable in the design (& redesign) process.
- Evaluate the most cost effective design modifications.
- Identifies areas of weakness in a system or structure.
- Predict system response to proposed loads or operating conditions.
- Update / correlate FEA models.

29

Jefferson Lab

Images from Peter Avitabile [2]

OK, fix your beams, buildings, & bridges. Why do I care?

SRF cavities have mechanical modes too !

- Example: JLAB 12GeV cavities tuning sensitivity = 300 Hz / micron
- Low frequency oscillations cause cavity target frequency to vary (1497.000... MHz)
- Accelerating gradient per supplied RF power degraded

References

1. Michael R. Lindeburg

"Mechanical Engineering Reference Manual", Professional Publications, Inc., 2013 ISBN: 978-1-59126-414-9

2. Peter Avitabile

"Experimental Modal Analysis", Modal Analysis and Controls Laboratory University of Massachusetts Lowell

- J.L. Meriam and L.G. Kraige
 "Dynamics", John Wiley and Sons, Inc., 1986
- Jimin He and Zhi-Fang Fu
 "Modal Analysis", Butterworth Heinemann, 2004
 ISBN: 0 7506 5079 6

