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Vibration and Modal Analysis Basics

Objectives

* Why study vibrations?
— S0 my machine doesn'’t get screwed up

* What is modal analysis?

» Analytical Modal Analysis (Calculations)
» Experimental Modal Analysis (Measurements)

 How are real structures analyzed?

USPAS SRF Course Jan. 2015 4 Jefferson Lab



Vibration and Modal Analysis Basics
What Is vibration?

 Stored energy within a structureis |, . Energy
transformed between potential
(elastic deformation) and kinetic \
(moving mass) energy. The
oscillatory motion is vibration.

Max Kinetic Energy

 The stored energy results in
standing waves (modes) at
Inherent natural frequencies.
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Types of Vibrations

Vibrations
Free (natural) Forced
f(t)= F, coswt
| I | I
Undamped Damped Undamped Damped

Undamped Damped
* ldealized * Real Structures
*  No friction *  Energy is dissipated
* No energy dissipation * Viscous Damping (linear models)

. Perpetual Motion —  Damping Force proportional to velocity
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SDOF System Model

Single Degree of Freedom (SDOF) Mechanical System Model
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Equation of Motion

d’x  dx
m-—— +¢— +kx =1(1)
dt dt
root
Acceleration Velocity  Displacement
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SDOF System Model

» Undamped Free Vibrations

d?x
mﬁ = —kx
» Solution
Vo\ .
x(t) = x,cos wt + (Z) sin wt

x(t) = Acos(wt — @)

A= \/x02+ ((:—;C)O)z

rad
Angular Natural Frequency Sec

= Linear Natural Frequency (hertz)

Dy

¢ =tan~! (—

WX,

)

c=0 f()=0
Free (natural)

Forced

| Undamped

| Damped | | Undamped | | Damped |

The initial conditions (displacement, velocity) do not
affect the natural frequency. (Just the amplitude)
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SDOF System Model

» Damped Free Vibrations
d?x dx
mﬁ + cd— +kx =0
Linear, 2" order differential equation
= homogeneous

» General Solution

X (t)=Ae"tt 4+ B et

2
rl, r2——+\/(c) _ X
2m m

C C

¢ = = Damping Ratio
Zmw Ccritical Ping

rl, r2 =-(w * w\/ﬁ

J. Matalevich

() =0

Free (natural) | Forced
I—l *

| Undamped | |Damped | | Undamped | |Damped |

> A & B from initial conditions

» 3 Distinct Solution Sets
Correspond to the Damping Ratio

1. Underdamped ¢<1
2. Overdamped ¢>1
3. Critically Damped ¢ =1
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SDOF System Model

. . ft)=0
» Damped Free Vibrations
= Underdamped ¢<1 [Free (natura) | Forced
[ p——
| Undamped | | Damped | | Undamped | | Damped |

> x(t) = e — st [v 0%, sm(a)t,/ 1— (2) + x, cos(a)t\/T(Z)]

%, SR Conditions: m =1 kg, £k = 36 N/m

¢=1N-s/m (= 0.083) Damped Natural Frequency
30 x0 =30 mm, xo=0
20 3\\&?_% wg = wy/1—¢?
<—T7d
10 — o
5 | | [N I
0 1 2 \ /3L
— 10— o
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SDOF System Model

» Damped Free Vibrations
= Critically Damped ¢ =1 x(t) = (v, + wxy)te ~— @t + x,e —

o = Aot (6T

= Overdamped {>1
(VP Do o (ayT)ox,
A= 20,72 =1 B 2w4/(%-1
X, mm
; Conditions: m =1 kg, & =9 N/m
30 r“ x) =30 mm, xo=0
20 L _——c¢=15N-s/m ({= 2.5), overdamped

i >

/ c=6N-s/m@E—43}) critically damped
10 Y

OL | — J>I "

0 1 2 3 4
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SDOF System Model

» Damped Forced Vibrations
Free (natural) | Forced
d?x dx Ky = o si ( t) | .
m dt2 +C dt + kx = o S1n a)f |Undamped| |Damped| |Undamped| |Damped|

» Solution consists of a complementary (transient) and a particular
(steady state) solution

> Complementary F,=0; homogeneous DE b F,
2 2
x() = xo(8) + % (£) Jle=ma,2) + (wp)
— Do Cw
xp(t) = D sin(wt — ¢) ¢ = tan~1 ( f 2)
k — ma)f
| D 1
Damped Magnification Factor Pa = ‘ Fo| ~
k
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SDOF System Model

» Forced Response of a SDOF System
= How much energy is leaving before next force input?

RESONANCE Energy is readily absorbed by a
¢ system near its natural frequency
Transmissibility
30 o
0.16 F , ) 2
,;é . TR = transmitted _ ﬁd 1+ (Zf—f)
| ¢=& Fapplied w
20— 3
Pa ot
ol.so Amplification Ratio
1.0
1.0 .
_ dlsplacementtransmitted — TR
displacement ;ppiieq
0 1.0 2:0 30 40 5.C

w
Frequency Ratio —
w

J. Matalevich USPAS SRF Course Jan. 2015 13 Jefferson Lab



MDOF System

Multiple Degree of Freedom (MDOF) Mechanical System Model

f\”’{l * Equation of Motion for 2 DOF system
n I m, |[X;
alm - I—U_é _|_|:(Cl +¢,) _CZ}{XI}
A E\_ / —C & X
T AN | +{(kl +k,) —kz}{xl }:{fl(t)}
_ —[F— -k, ky [IX,] [5H(D)

= Model Complex Systems
=  Approximate Continuous Real Systems

e Matrix Formulation

(M} + [ClUk) + [Kxy = {F}
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MDOF System

(M]3 + [Clix} + [Kix) = (F)

» An eigensolution yields eigenvalues (frequency) and
eigenvectors (mode shapes) for each mode of the system.

» Modal Transformation Equation is used to uncouple the &} = [U]{p}
set of highly coupled equations B p

[M1{%} + [C1{6} + [K]{x} = {F} wmms) [M]{D} + [C]{D} + [K]{p} = [UI"{F}

Independent SDOF Systems

PATSLT L

‘ 1. Natural Frequency
2. Damping

3. Mode Shape

J. Matalevich
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Vibration and Fourier Analogy
What is modal analysis?

The process of characterizing the dynamic response of a
system in terms of its modes of vibration.

e Any periodic function can be represented
as a series of sinusoidal functions.
e Each individual sinusoid is define by its
: wwwiwwwwwwwwwwwwwwwwm
amplitude, frequency and phase.

N
Z A, sin(2rft + ¢p)
n=1

Vibration of a real structure can be represented
as a series of modal contributions.

 Each mode is defined by its natural frequency,
damping, and mode shape.

) (’j A J. Matalevich
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Analytical Modal Analysis

» Modal Analysis is the process of characterizing the dynamic
response of a system in terms of its modes of vibration.

» Analytical Modal Analysis depends on the generation of the
equations of motion of a system through a finite element model.

= 3D model typically generated with CAD tool

= |mport & mesh with FEA tool

= Requires good material property info

= Application of accurate boundary

\ M‘\‘g‘"\,‘\r conditions is vitally important for

reasonable results

1000’s of simultaneous equations are common for FEA modal models
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Analytical Modal Analysis

» Output is an ordered list of frequencies and the corresponding mode shapes

B:Beam

Total Defarmation 2
Type: Totol Deformatian
Frequency: 5, 36 He

it in
V15201531 PM

B:Beam B Beam
Towl Deformations Total Deformstian §
Type: Tatal Deformatian Type: Total Deformation
Frequency: 3116 He Frequency: 88,632 Hz
Unitin Uit in
1572015 V573015 320 M
28594 Max
L7
13
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Analytical Modal Analysis

275 Hz & 572 Hz

> Note,

®= The individual mode animations do NOT reflect an expected deflection shape

= The modes are a function of the inherent mass and stiffness of the structure (no loads are applied)
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Experimental Modal Analysis

» Modal Analysis is the process of characterizing the dynamic
response of a system in terms of its modes of vibration.

» Experimental Modal Analysis depends on parameter estimation
techniques to extract modal information from experimental data.

Frequency Response Function (FRF)
= Ratio of the output response of a structure to the applied force
= The applied force and structure response are measured simultaneously
= Time domain data is transformed to frequency domain (FFT)

Compliance b Displacement Maobility ' __Melocity Accelerance A Acceleration
F Force

~ Force F Force

-

Frequency _ Freuency Frequency
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Experimental Modal Analysis

» Components used to take measurements

= Want to accurately measure force and response simultaneously

Shaker - F(t) Hammer - F(t)
S A T S S AAATS S S ’ P {T;“T S .,
A"
| B S
ﬁ =—_<( @.\____

dB Mag

Accelerometer - a(t)

. |[Accelerometer

m

N =Y - Voujea

Vv
Object

Useable Frequency Range

|
Frequency

(& J. Matalevich USPAS SRF Course Jan. 2015 21 Jefferson Lab

N


http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.efunda.com/formulae/vibrations/sdof_eg_accelerometer.cfm&ei=r1G4VPDhG9ehyATyyoCgBw&bvm=bv.83829542,d.aWw&psig=AFQjCNEYXAfCohDQy5iSGSVW7jJxRpgRaA&ust=1421452031136732
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=https://www.pcb.com/products.aspx?m%3D086D05&ei=JVK4VN-TEomQyQSU8IBI&bvm=bv.83829542,d.aWw&psig=AFQjCNEVTsPAr-Cs0JIEoFs99i5QP-JB8w&ust=1421452190169404
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.avenirtechnologies.co/shakers/&ei=yVK4VNf1Coa1yQSvj4GADg&bvm=bv.83829542,d.aWw&psig=AFQjCNGsnEhAJERQTFzCEJxVGkSsLneQeA&ust=1421452360230337

Experimental Modal Analysis

» FRFs are used to generate modal data
= Consider Simple 3DOF beam model

& = 3 possible locations for force application
. = 3 |ocations for response measurement
1 2 . . . .
% 3 } = 9 possible FRFs; organized in matrix form
e " Notation convention
\_/ " IN'row,column I"'output,input
Drive Point FRF Cross FRF
-Excitation and measurement at same location -Excitation and measurement at different location
211 . . * AN 1= =
< T o
T T
_,./Jllli/.’ll/j' /L/J /-Ill‘\_,-'lk/"}\ ® 1 | | H | ‘ | ‘ | ‘ | | || ‘
[ J f . <
| | \ | ju‘ ell. |r | . - I |
. | i | — .| W T  | |
Juy. N -\ ,f-'\\ ,ﬁ\ I I} M , U ‘
." h32 h31
o h33
Images from Peter Avitabile [2]
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Experimental Modal Analysis

» Due to the Fast Fourier Transformation the FRFs are complex valued quantities
= Magnitude & Phase or Real & Imaginary

- ¢_¢,ﬁ¢%” - » FRFs matrix used to determine
| | 1. Natural Frequency

| ~lt— 2. Damping
| 3. Mode Shape

.‘y_ ,J‘,_ flp) #,, F )~

Magnitude c ‘Real
SN | ESEN | SR
T T
|
T A R
R |
Phase " Imaginary
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Experimental Modal Analysis

» FRFs
= Reference points cannot be located at the node of a mode.

8
5
2
8
1 1 3
1 °
T\B
| i ’
‘ { | [ \/7,5
11 1
l - (
' [ [ ) - ? I ] ?
|
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Experimental Modal Analysis
» FRFs

= Roving Impact = Roving Response
* Force input is moved * Force input is stationary
* Transducer stationary * Transducer is moved
L3
JONZEN —\ s

eV =i
| SR -]
i A g o

'W i - | |
M B
h
hs, Mss

h32

Images from Peter Avitabile [2]
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Experimental Modal Analysis

» Practical Considerations
= Theoretically no difference between shaker test and impact (hammer) test
= |deal
* Nointeraction between applied force and the structure
* Massless transducer
= Reality
* Collecting data on the structure plus all the measurement apparatus
* Structure supports
* Mass of transducers
* Stiffening effects of shaker attachment
= |mpact tests
e Typically faster, lower cost, and easier to implement
« Hammer tip hardness must be matched to the frequency range of modes desired
* S/N ratio may be poor
* Windowing required (less accuracy in predicting damping)
=  Shaker tests
* Better precision, enables frequency sweep (targeted investigations)
* Setup is timely and can be difficult
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Experimental Modal Analysis

ANALOG SIGNALS

> Actual FRF AQ M M o

m e a S u re m e nts '7 ANTIALIASING FILTERS 4.

\ A

Remove high frequency signals \

A AUTORANGE ANALYZER \

'7 ADC DIGITIZES SIGNALS 4’

More bits, better resolution WM M oureur

V————— apPLYWiNDOWS ———§
FFT process requires the sampled data
consist of a complete representation of ~ Minimize leakage '"M% % oureur
the data for all time or contain a periodic

' COMPUTE FFT '
repetition of the measured data. When HINEAR SPECTRA i
this is not satisfied (leakage) a serious FFT & P ”W%‘AMWM oo
distortion of the data in the frequency f
domaln |S the reSU|t. '7AVERAGING OF SAMPLES"
- »
. .

COMPUTATION OF AVERAGED
INPUT/OUTPUT/ICROSS POWER SPECTRA

Averaging & Math mu wmm s VY ”"*N\"IMW Eiy

Coherence function is used as a data

quality assessment tool. It identifies how . \ ’
COMPUTATION OF FRF AND COHERENCE
much of the output signal is related to
the input signal. FRF & Coherence jML_JMH@
|mage$ from Peter AVltablIe [2] FREGQUENCY RESPONSE FUNCTION COHERENCE FUNCTION
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Experimental Modal Analysis

» Actual FRF measurements

Modal Parameter estimation (Curve Fitting)

= FRF Broken down into multiple SDOF systems

= Determine frequency, damping, and mode shape

= Multiple techniques & automated algorithms are
utilized to extract data.

" H—comeReRcE i = |nsufficient input power at
higher frequencies
dB Mag \
o = Coherence good at low
frequencies, poor at high
i INPYT POWER SPECTRUM 1 - 9 7 P g
i frequencies.
OHz 800Hz

Images from Peter Avitabile [2]
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Experimental Modal Analysis

OK, I've got my frequencies and mode shapes. Now what?

» Visualization of mode shapes is invaluable in the design (& redesign) process.
» Evaluate the most cost effective design modifications.

» ldentifies areas of weakness in a system or structure.

» Predict system response to proposed loads or operating conditions.

» Update / correlate FEA models.

XPERIMENTAY FINITE
MODAL ELEMENT
TESTING MODELING

FREQUENCY FINITE
RESPONSE CORRECTIONS | ELEMENT
MEASUREMENTS MODEL

PARAMETER EIGENVALUE
MODAL PERFORM. ESTIMATION SOLVER
PARAMETER EIGEN
STIMATION SOLUTION l l
MODAL MODEL MODAL
PARAMETERS VALIDATION PARAMETERS
DEVELOP M RIB
MODAL STIFFNER
MODEL
SYNTHESIS
OF A
Repear W DYNAMIC MODAL MODEL
unte
desied STRUCTURAL
characteristics CHANGES No
are
outantd e DASHPOT STRUCTURAL FORCED
& MASS, DAMPING, " OVHAMICE WEADONGE REAL WORLD
€s STIFFNESS CHANGES MODIFICATION SIMULATION - FORCES
USE SDM
TO EVALUATE MODIFIED
STRUCTURAL
STRUCTURAL MODAL
RESPONSE
CHANGES STRUCTURAL DATA /
Images from Peter Avitabile [2] MODIFICATIONS
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Vibration and Modal Analzsis Basics

OK, fix your beams, buildings, & bridges. Why do | care?

" .

» SRF cavities have mechanical modes too !
= Example: JLAB 12GeV cavities tuning sensitivity = 300 Hz / micron
= Low frequency oscillations cause cavity target frequency to vary
(1497.000... MHz)
= Accelerating gradient per supplied RF power degraded
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