

Cleanroom Design and Operations

Philip J Denny

USPAS Course:

SRF Technology: Cleanroom Design and Operations

January 2015

Topics

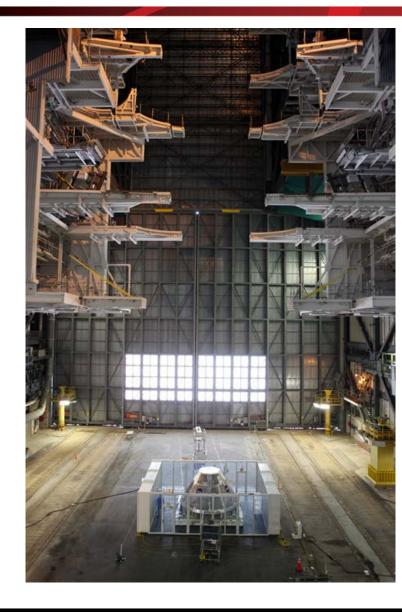
- Introduction
- Contamination
- Design
- Operation
 - Monitoring
 - Protocols, Materials, Processes
 - Equipment
- Resources

• What is a cleanroom: ISO14644-1 "A room in which the concentration of airborne particles is controlled, and which is constructed and used in a manner to minimize the introduction, generation, and retention of particles inside the room and in which other relevant particles inside the room and in which other relevant parameters, e.g. temperature, humidity and pressure, are controlled as necessary."

Airborne Particles

- Particles (dust)
- Airborne microbes (viruses)
- Aerosol and Chemical vapors (solvents)
- Airborne Molecular Contamination (AMC)

Other Relevant Parameters


- Temperature, Humidity, Pressure
- Vibration-Noise
- Lighting
- Magnetic-Electromagnetic Flux
- Electro Static Discharge

Who uses cleanrooms?

- Aerospace / Defense
- Semiconductor / Microelectronics
- Pharmaceuticals / Medical Device
- Healthcare / Hospitals
- Food
- Industrial (Auto, Solar, Optics, etc...)
- Research / University

How do we get clean air and protect the room?

- Dilution
 - With no air ventilation in a cleanroom, particles build up quickly. Ventilation expels contaminated air to the
 outside or recirculates through the filter system. Thus new make-up air dilutes existing air in the cleanroom.
 - Air Changes
- Filtering
 - Pre-Filters (Similar to house hold air filter) used for gross filtering outside air.
 - Secondary Filters (MERV Filters) high efficiency (high velocity, low pressure drop).
 - HEPA or ULPA
 - Carbon Filtering / Gas-Phase air Filtration Airborne Molecular contamination (AMC)
- Isolation / segregation
 - Cleanroom are isolated by walls ceiling and floor from other room.
 - Entry and exiting of material and personnel is controlled through room of lower cleanliness zones
 - Utilize independent HVAC systems
 - Isolate particulate generating operations and personnel (garments/suits)
- Positive Pressure
 - Clean air flow out to lower pressure areas
- Laminar Flow
 - Moves particles to the air returns efficiently and quickly
 - Suppress contaminates
- Cleaning & Maintenance
 - Daily, Weekly, Monthly
 - HVAC and Filter maintenance
- Materials & Equipment
 - Approved materials and equipment design
- Protocols
 - · Rules for personnel conduct in the cleanrooms

What cleanroom is right for your application? Where do you start?

- Product Product Quality (clean, sterile, other)
- Cost (ISO 5 = \$900 \$1200 / ft²)
- Work / Process Flow (Product Mix, volume, change-over, key/critical steps)
- Regulation (FDA/USP, OSHA, EPA, DOD, Industry, Customer)

Jlab SRF

- Test Lab Addition classified space: ISO 4-9 = ~6100 ft²
- Main Cleanroom and associated Chemistry rooms
 Cleanroom Contractor (DAW): ~2.5M
 Other CR specific construction: 4.0M+

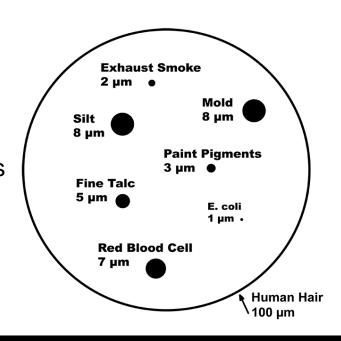
Contamination - Particles

Cleanroom Classification — Cleanrooms are designated by ISO 14644-1 for particulate levels.

Class	maximum particles/m³				FED STD 209E		
	≥0.1 µm	≥0.2 µm	≥0.3 µm	≥0.5 µm	≥1 µm	≥5 µm	equivalent
ISO 1	10	2.37	1.02	0.35	0.083	0.0029	
ISO 2	100	23.7	10.2	3.5	0.83	0.029	
ISO 3	1,000	237	102	35	8.3	0.29	Class 1
ISO 4	10,000	2,370	1,020	352	83	2.9	Class 10
ISO 5	100,000	23,700	10,200	3,520	832	29	Class 100
ISO 6	1.0×10 ⁶	237,000	102,000	35,200	8,320	293	Class 1,000
ISO 7	1.0×10 ⁷	2.37×10 ⁶	1,020,000	352,000	83,200	2,930	Class 10,000
ISO 8	1.0×10 ⁸	2.37×10 ⁷	1.02×10 ⁷	3,520,000	832,000	29,300	Class 100,000
ISO 9	1.0×10 ⁹	2.37×10 ⁸	1.02×10 ⁸	35,200,000	8,320,000	293,000	Room air

Occupancy States – "As-Built", "At-Rest", "Operational"

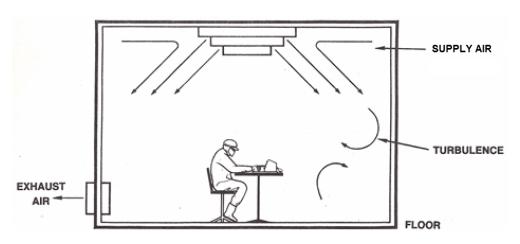
- As-Built: building complete and operational, but no equipment, materials, or personnel.
- At-Rest: no personnel, no work.
- Operational: specified number of personnel and process working.
- Cleanrooms are tested (certified) when built, then recertified annual or semiannually.
- Re-Certification can be performed "at-rest" or "operational".

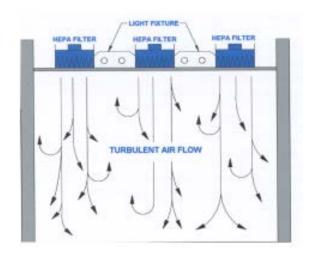

Contamination - Particles

Particles movement through the cleanroom air

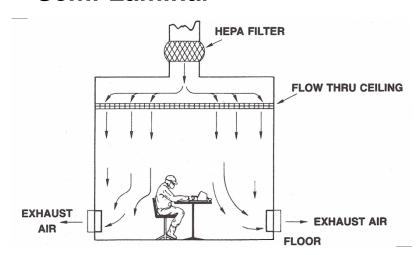
- Gravity
- Ballistic force: particles ejected and move against prevailing air flow.
- Diffusion: thermal variation, Brownian motion.
- Currents: laminar or turbulent.

Particles Adherence

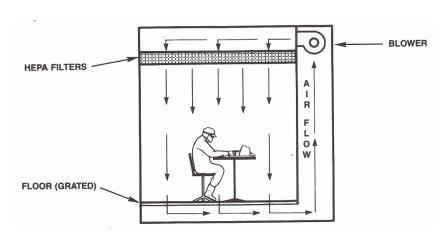

- Friction
- Electrostatic adhesion
- Capillary adhesion
- Accretion particles sticking to other particles
- Van der Walls force

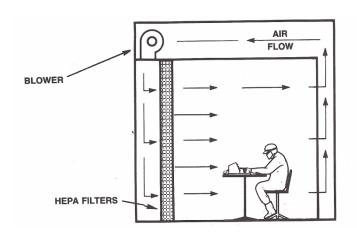


Jefferson Lab


Design - Airflow

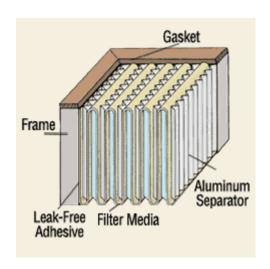
Conventional

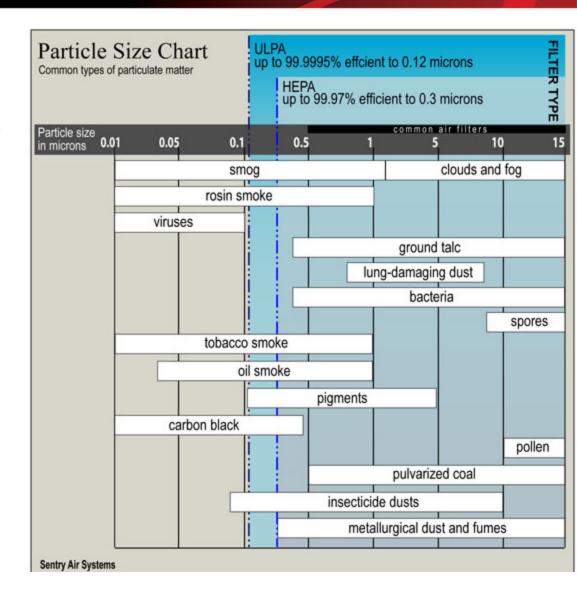

Semi-Laminar


Design - Airflow

Vertical Uni-directional

Horizontal Uni-directional

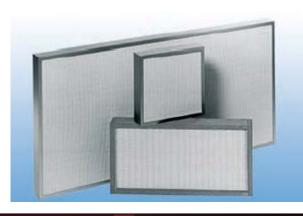



Design - Filtering

HEPA vs ULPA

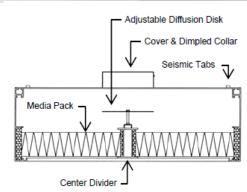
- High efficiency particulate arrestance or air (HEPA)
- Ultra-Low Particulate Air (ULPA)
- EN 1822, and IEST-RP-CC001


Filter	
HEPA	99.97% @≥.3μm
ULPA	99.999% @≥.12μm

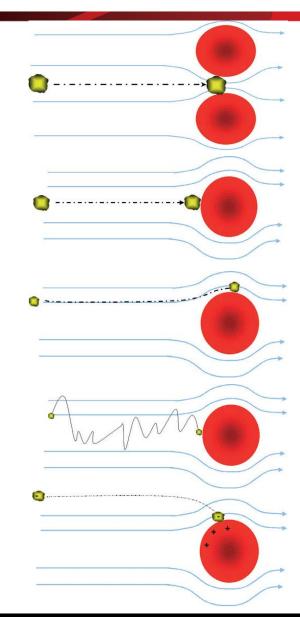


Design – HEPA/ULPA

- Fan Filter Unit Typically used in soft-wall and small modular cleanrooms.
- **Ducted Filter Unit Typically used** for modular or conventional cleanrooms.
- Gasket or Gel Sealed Filters Found in open plenum conventional cleanrooms.



P. Denny



12

Design-HEPA/ULPA

How the HEPA/ULPA filter works:

- Straining / Sieving: particle diameter is simply too large for the space for it to flow through.
- Impaction / Impingement: particle hits a filter fibers and embeds into its surface. (particles>0.1 μm)
- Interception: particles are attracted and bonded via intermolecular adhesion (van der Waals force). (particles<0.1 μm)
- Diffusion: Brownian motion on small particles increasing likelihood of particle coming into contact with fibers. (particles<0.1 µm)
- Electrostatic Attraction: Uses large diameter charged fibers to attract much smaller particle with the opposite charge. (Special Filters Only)

Design-HEPA/ULPA

Air Velocity

- Carry particles faster to the return.
 Suppress particles on surfaces.
- Too High turbulence, operating cost, filter efficiency.
- Too Low no laminar flow, migration of particles, etc...
- Test method used for unidirectional rooms per ISO 14644.

Air Changes

- Dilution of air.
- Test method recommended by ISO 14644 for non-unidirectional rooms.

Ceiling Design

- Ducted Filter Unit used for modular or conventional cleanrooms.
- Gasket or Gel Sealed Filters typical of open plenum and some FFU or ducted filter units.

FLANDERS SE

Air Filtration Products for Science and Industry

DESIGN GUIDE FOR CLEANROOMS

u	eanroom	Design

CLEANLINESS CLASSIFICATION ²	AIRFLOW PATTERN 3	AVERAGE AIR VELOCITY	AIR CHANGES PER HOUR
ISO CLASS 8 (100,000)	Nonunidirectional / Mixed	1 - 8 fpm	5 – 30
ISO CLASS 7 (10,000)	Nonunidirectional / Mixed	10 - 15 fpm	30 - 60
ISO CLASS 6 (1,000)	Nonunidirectional / Mixed	25 - 40 fpm	125 - 240
ISO CLASS 5 (100)	Unidirectional	40 – 80 fpm	240 - 480
ISO CLASS 4 (10)	Unidirectional	50 – 90 fpm	300 - 540
ISO CLASS 3 (1)	Unidirectional	60 – 90 fpm	360 - 540
ISO CLASS 2	Unidirectional	60 - 100 fpm	360 - 600

FILTER EFFICIENCIES

Cleanliness Class	Filter Efficiency
Class 2	99.99999% @ 0.12µm
Class 3	99.9995% @ 0.12um
	99.999% @ 0.12µm
Class 5	99.99% @ 0.30µm
Class 6	99.99% @ 0.30µm
Class 7	99.99% @ 0.30µm
Class 8	99.99% @ 0.30µm

CEILING DESIGN

Cleanliness Class	Ceiling Grid Type
Class 2	Gel Grid
Class 3	Gel Grid
Class 4	Gel Grid
Class 5	1-1/2" T Bar Gasket
Class 6	1-1/2" T Bar Gasket
Class 7	1-1/2" T Bar Gasket
Class 8	Side Access HEPA Hsg.

AIR RETURNS

Cleanliness Class	Air Return Design
Class 2	Raised Floor
Class 3	Raised Floor
Class 4	Raised Floor
Class 5	Low Wall Long Axis
Class 6	Low Wall
Class 7	Low Wall or Ceiling
Class 8	Low Wall or Ceiling

FILTERED CEILING COVERAGE

Cleanliness Class	Amount of Filters
Class 2	100% Ceiling Coverage
Class 3	100% Ceiling Coverage
Class 4	100% Ceiling Coverage
Class 5	100% Ceiling Coverage
Class 6	20-60% Ceiling Coverage
	5-40% Ceiling Coverage
Class 8	5% Remote Filter Bank

http://www.flanderscorp.com/files/Technical Data/DESIGN+GUIDE+FOR+CLEANROOMS.pdf

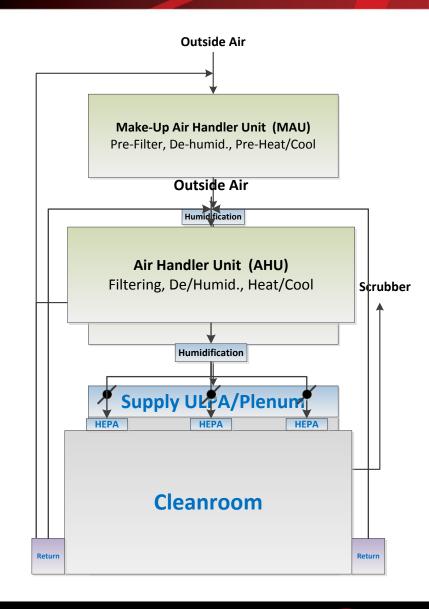
Design – Cleanroom HVAC Block Diagram

Make-up Air Units (MAU)

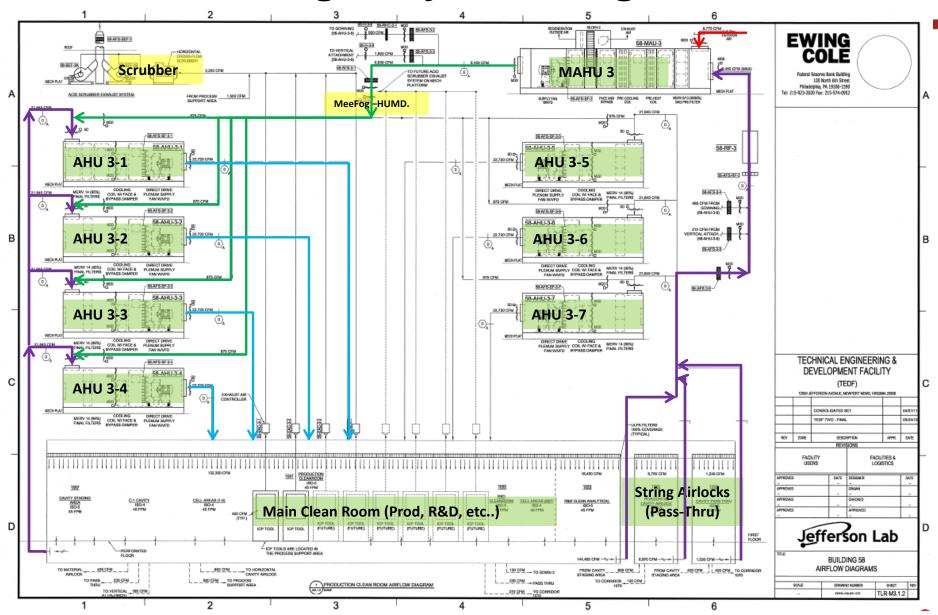
- Used to supply fresh air
- Keeps cleanroom pressurized
- Work-horse for dehumidification
- Pre-heat and Pre-cool
- Pre-filtering

Humidification

- Uses high pressure spray of RO or DI to humidify air.
- Located in supply duct

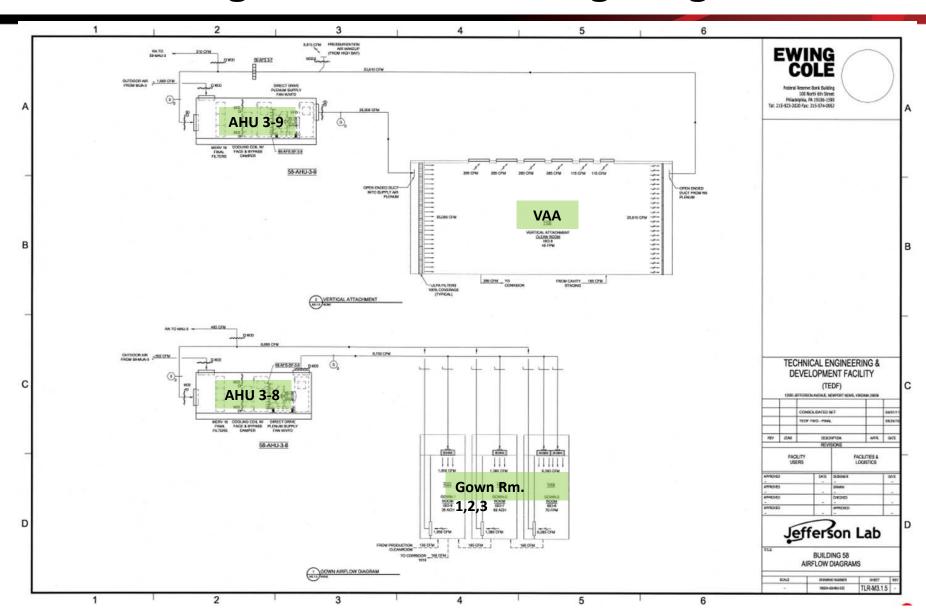

Supply Air Handler Units (AHU)

- Filtering
- Cooling

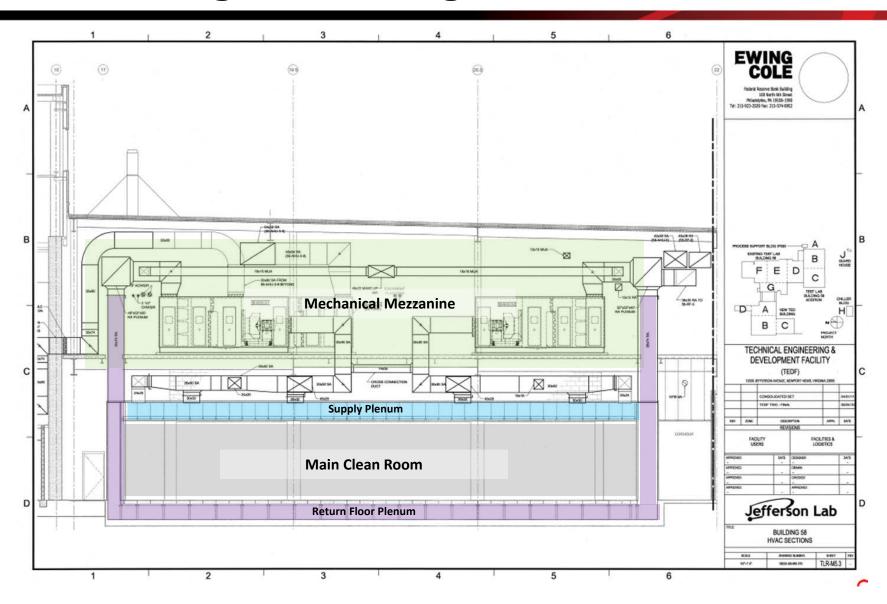

Supply Plenum

- HEPA/ULPA Filters
- Diffusion Grids
- Lighting, Fire, etc...

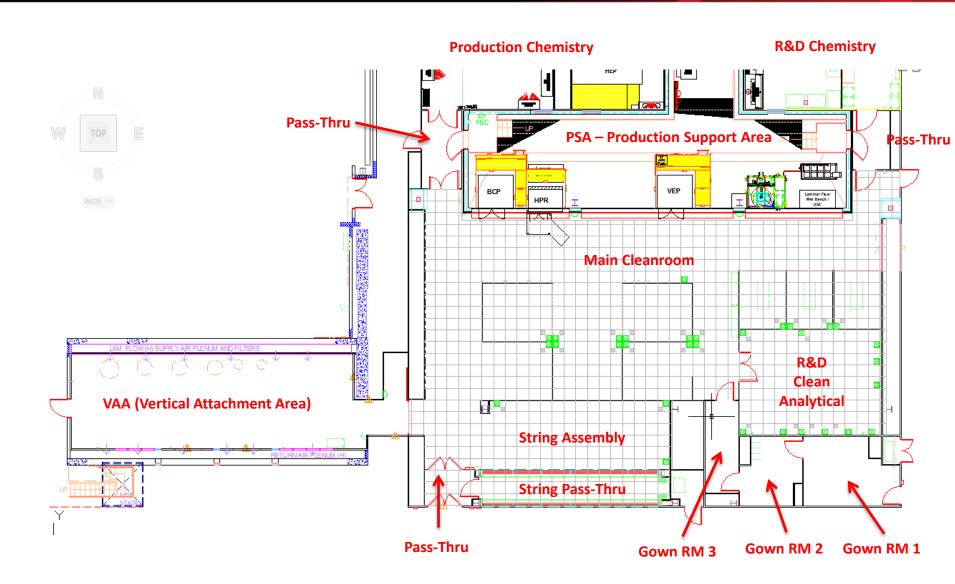
Controls / Dampers/ Fans



Design - System Diagram



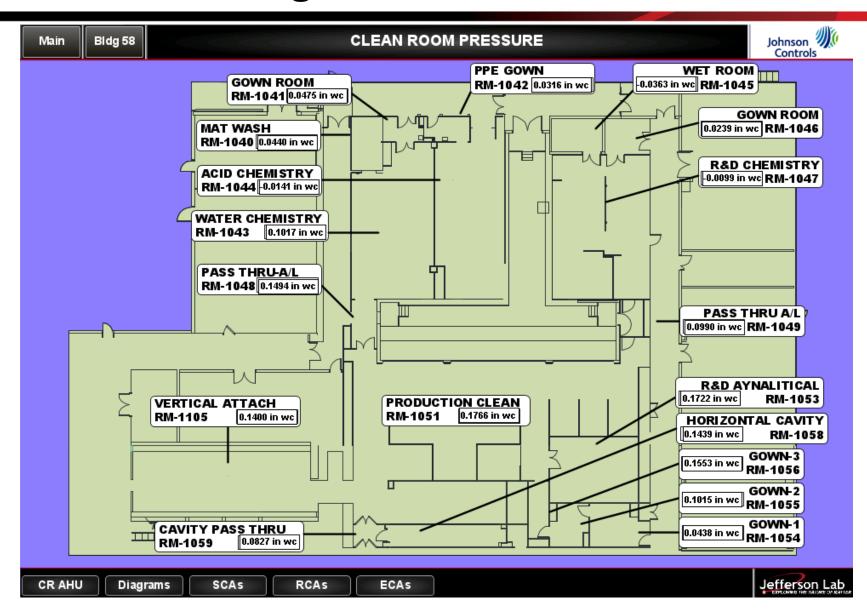
Design - VAA & Gowning Diagram



Design – Building Cross-Section

Design - Cleanroom Layout

P. Denny


Design - Pressure/Flow

Cascading positive R&D Chemistry Production Chemistry pressurization. ISO-8 Minimum of .02"wc Pass-Thru between rooms. **PSA - Production Support Area** Pass-Thru ISO-5 ISQ-5 **Main Cleanroom** (ISO-4 Cert.) R&D Clean **Analytical VAA (Vertical Attachment Area)** ISO-5 ISO-5 **String Assembly ISO-5** Pass-Thru ISO-5 Pass-Thru Gown RM 2 Gown RM 1 Gown RM 3 ISO-5 **ISO-6 ISO-7** ISO-5

30

Design – Pressure/Flow

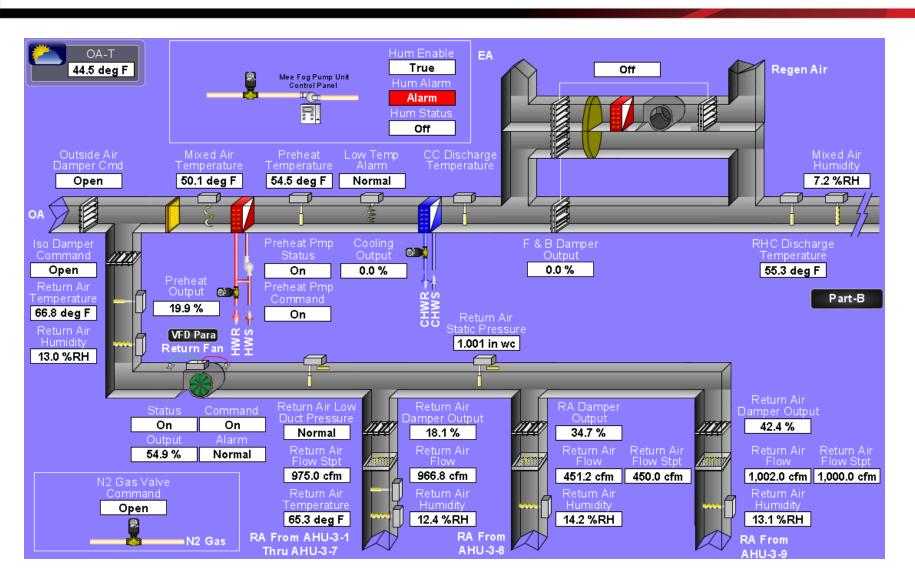
21

Operations – Process/Systems Monitoring

Systems Monitoring

- Real-time monitoring for maintaining cleanroom systems.
 - Particles
 - Temperature, Humidity
 - Pressure
 - HVAC Status
 - Other- AMC, Air Velocity, Gases

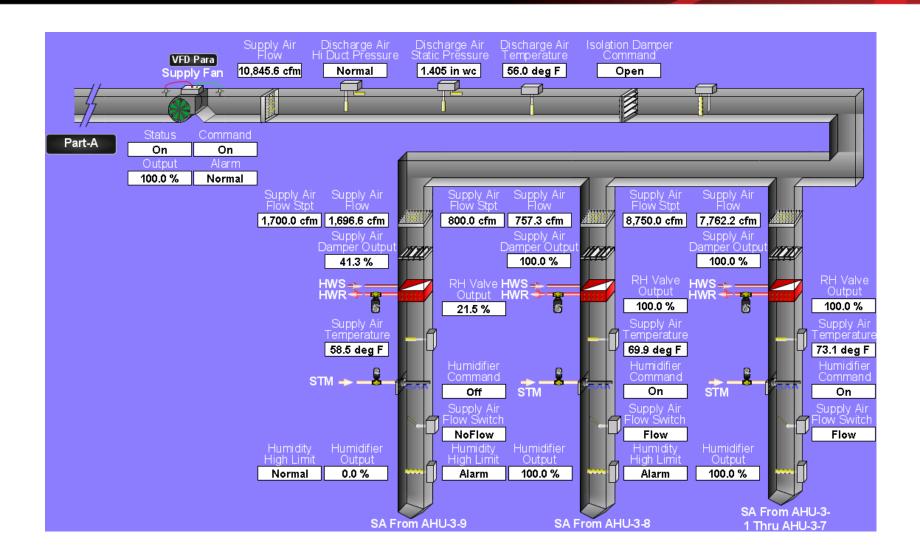
Process Monitoring


- Local Particle measurements
- Other.....

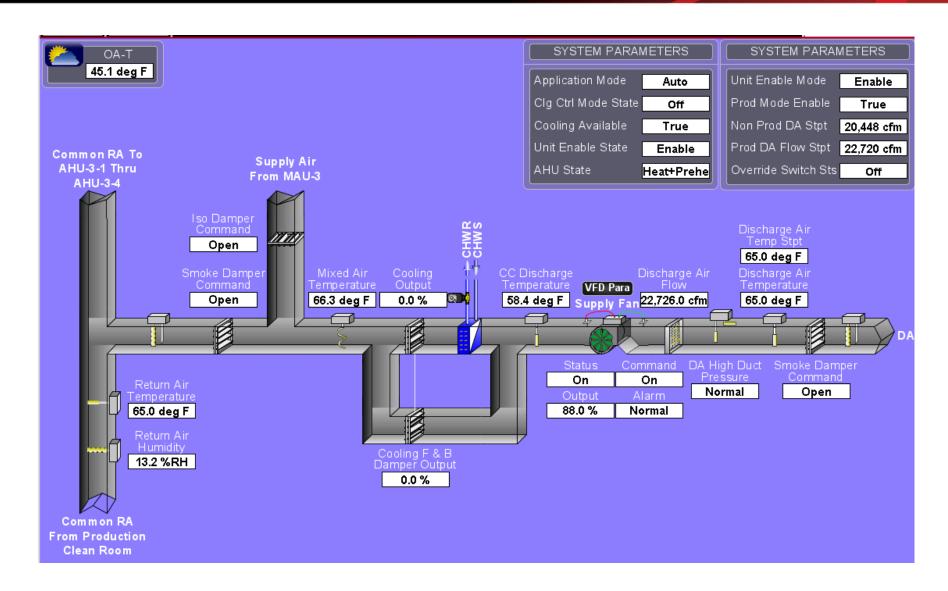
Systems Certification

Air velocity, leaks particles, etc......

USPAS SRF Course Jan. 2015

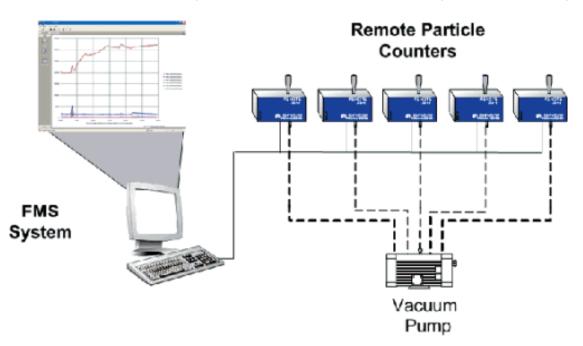

Operations – JCI Control

23


Operations – JCI Control

24

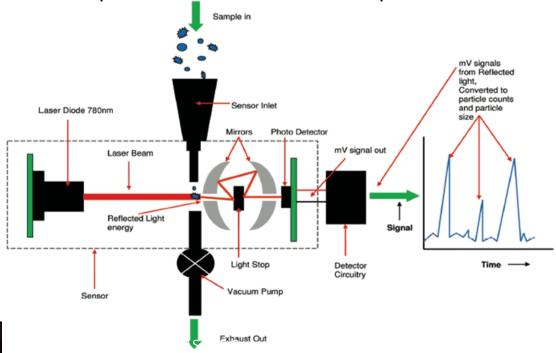
Operations – JCI Control



Operations - Monitoring Particles

Airborne Particle Counters

- Types: Handhelds , Desktop, Remote
- Networkable and Software: Real-time, Historical, SPC, Alarms
- Typically 2-4 channels, from 0.3 to 10µm
- Additionally temperature, humidity, air velocity, etc......



Operations – Monitoring Particles

Cleanroom particle counter operation:

- A vacuum pump pulls cleanroom air through an isokinetic probe at a known flow rate.
- The air sample is channeled through glass tube where the laser is targeted.
- Laser light reflected from the sample is collect and reflected by mirrors to a photodetector.
- The photo detector turns light energy into electrical energy proportional with the light intensity.
- The amplitude electrical current from the photodetector is calibrated to particle size.
- The counter has further circuitry, programing, and algorithms that ensure calibration and filter out noise.
- Output is normalized to usable data such as cts/m3 or cts /dl.

P. Denny

Operations - Protocols

General Cleanroom Regulations/Practices

- 1. Store all personal items before entering gown room. I.E. keys, watches, rings, matches, lighters and cigarettes.
- Valuable personal Items such as wallets & cell phones are permitted, but they are NEVER removed from beneath the cleanroom garments.
- 3. NO eating, smoking, or gum chewing.
- 4. Only garments approved for the cleanroom should be worn.
- 5. Only approved cleanroom paper and pens shall be allowed in the cleanroom. NO PENCILS
- 6. No paper towels. Only cleanroom approved and rated wipes per cleanroom level.
- 7. Only approved and rated gloves allowed in cleanroom.
- 8. Gloves should not be allowed to touch any item or surface that has not been thoroughly cleaned.
- 9. Solvent contact with the bare skin should be avoided. They can remove skin oils and increase skin flaking. Approved skin lotions or lanolin based soaps are sometimes allowed. These can reduce skin flaking.
- 10. All items need for use in cleanroom shall be cleaned in Chemistry rooms and delivered via the pass-thru. No items shall enter the cleanroom through the gowning areas.
- 11. All tools, containers and fixtures used in the cleaning process should be cleaned to the same degree as the cleanroom surfaces.
- 12. NO tool should be allowed to rest on the surface of a bench or table. It should be place on a cleanroom wiper.

Personal

- 1. Shower morning of or day of entering cleanroom.
- 2. Shorts and skirts are not recommended. And some fuzzy or high lint or static inducing fabrics.
- 3. If a smoker wait 30min before entering cleanroom and drink a minimum of 8oz of water.
- 4. No one who is physically ill may enter cleanroom. Including open sores, respiratory infections, and skin irritations should not work in the cleanroom.
- 5. NO cosmetics shall be worn in the cleanrooms. No make-up, mascara, powder, perfumes, or hair sprays.

Personal Actions Typically Prohibited in Cleanrooms

- 1. Fast motions such as running, walking fast or horseplay.
- 2. Sitting or leaning on equipment or work surfaces.
- Writing on equipment or garments.
- 4. Removal of items from beneath the cleanroom garments.
- 5. Wearing the cleanroom garment outside the cleanroom.
- Wearing torn or soiled garments.

Operations - Materials

Prohibited Materials

- Paper Items
 - paper towels, bags
 - Tissues or unapproved wipes
 - masking tape
 - cardboard
 - newsprint
- Natural fibers: cotton, wool
- Metals
 - cold rolled steel (unfinished)
 - galvanized steel
 - zinc
 - lead
 - mercury
 - · cadmium and cadmium plated
 - steel wool
 - unfinished aluminum

Other materials

- Mica, chalk, powders
- fiberglass, unsealed
- Sandpaper, pumice
- lapping compounds
- emery cloth, Scotch-brite
- lead pencils and erasers
- carbon typewriter and printer ribbons
- cloth tapes, e.g. duct tape
- wood products
- Aerosols, unconfined lubricants
- Books, notebooks, magazines
- Cotton Q-tips
- Open cell foam
- Velcro
- Bubble wrap
- Plastics bags
- Grease, oil, lubricants, dry lubricants
- Leather

Operations - Processes

PROHIBITED Processes

- Sawing
- Grinding, filing
- Lapping, polishing
- Thread cutting, tapping
- Scraping, deburing
- Drilling, reaming
- Welding, soldering
- Painting, coating
- Gluing, unapproved adhesives
- All actions that remove material
- Generation of fumes

USPAS SRF Course Jan. 2015

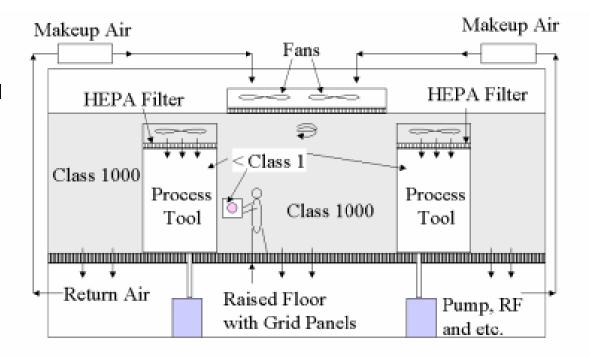
Operations - Equipment

A note on clean room equipment and furniture

- Moving Parts: Muffin Fans, Belts, hinges, slides, motors, gears, etc.
- Non Volatile lubricants(No dry powder, silicone), Low VOC
- Fabricated or assembled in a cleanroom, bagged for shipping.
- Laminar Flow
- Decontamination
- Hand Tools Stainless
- Exhaust Vacuum

A C

Approved materials –


- FM Global 4910 Approved Materials Cleanroom Materials Flammability Test Protocol
- Materials Example: Polypropylene, Stainless* (304/316), Polypropylene,
 PVC, CPVC, PEEK, Aluminum*
- *Coatings/ Surface: Anodized Aluminum, Polished or Electro-polished SS, Powder Coat (25-60µm)

Operations – Equipment

Mini-Environment – Cleanroom within a cleanroom

- Designed for a unique process
 - Airflow (Laminar, Velocities)
 - Computational-Fluid Dynamics (CFD)
 - Positive Pressure
 - FFU
 - Cost Savings
 - IEST (RP) CC 028.1

USPAS SRF Course Jan. 2015

Resources

Clean Room Standards – ISO 14644

- ISO 14644-1 Classification of Air Cleanliness
- ISO 14644-2 Specification for testing and monitoring.....
- ISO 14644-3 Test Methods
- ISO 14644-4 Design, Construction, and Start-up
- ISO 14644-5...12
- www.iso.org/iso/home/standards.htm

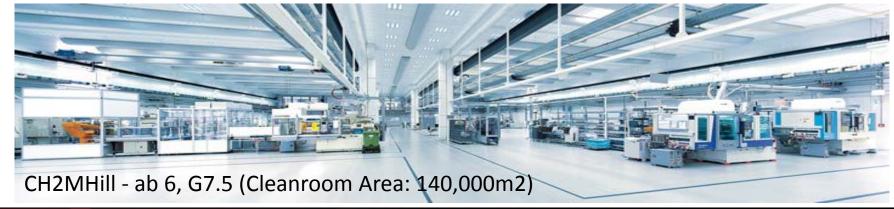
SEMI - Semiconductor Equipment and Materials International

- Source for Standards and methods (especially equipment/systems, installation, design and materials)
- www.SEMI.org

• IEST — Institute of Environmental Sciences and Technology

- IEST.org
- Cleanroom training / education
- Standards for contamination control, equipment design, etc.... (<u>www.iest.org/Standards-RPs/Recommended-Practices#TableCC</u>)

Cleanroom Suppliers and Consultants


- Balancers / Certifiers National Environmental Balancing Bureau (<u>www.nebb.org</u>)
- Cleanroom Construction Companies
- Cleanroom suppliers (equipment and consumables) Example: http://www.terrauniversal.com/
- Tradeshows, Papers, etc...

33

Worlds largest ISO 7 HB Cleanroom Goddard 1.3m ft3

