

Surface Characterization for SRF

Charles Reece

USPAS Course: SRF Technology: Practices and Hands-On Measurements

January 2015

C. Reece

SRF Surfaces

SRF cavity surfaces must be "pure", "clean", and "smooth"

- "Ideal" surface is defect-free Nb crystals with only Nb₂O₅ ~4 nm capping layer and planar surface topography.
- After practical cavity fabrication, the real surface is "disturbed" and "polluted."
- Empirically found that >100 µm removal is typically required to reliably expose "good" bulk Nb material, i.e. predictable SRF performance.
- SRF cavity performance limitations always result from particular details of the surface.
 - Multipacting, field emission, quench, "Q-slope", "Q-drop", "Q-rise", Q₀
- A lot of detailed attention is required to understand how to "grow" excellent SRF thin film surfaces.

SRF is inherently a surface phenomenon

• RF Supercurrents flow only within a <u>very</u> shallow depth: penetration depth - λ ~40 nm for Nb

e.g., for a 9-cell Tesla-style cavity < 0.1 cm³ of Nb actually matters for SRF

- To understand and control the desirable properties of SRF cavities requires knowledge and control of this thin layer of material over large surfaces
 - **Composition** elemental, structure, interstitials
 - Morphology pits, scratches, edges, topography
 - External contamination particulates, condensed gases

Structure Determines Properties

Microscopy & Microanalysis

Experimental methodologies which employs (electron-optical) instrumentation to spatially characterize matter on scales which range from tenths of a millimeter to tenths of a nanometer. The principle modalities employed are:

Imaging

Scanning Electron Microscopy Transmission Electron Microscopy Scanning Transmission Electron Microscopy Focussed Ion Beam

Diffraction

Electron Backscattered Difrraction Selected Area Electron Diffraction Convergent Beam Electron Diffraction Reflection High Energy Electron Diffraction

Spectroscopy

X-ray Energy Dispersive Electron Energy Loss Auger Electron

Jefferson Lab

Elemental Analysis

- X-ray Energy Dispersive Spectroscopy (EDX)
- <u>Auger</u> <u>Electron</u> <u>Spectroscopy</u> (AES)
- X-ray Photoemission Spectroscopy (XPS)
- <u>Secondary</u> <u>Ions</u> <u>Mass</u> <u>Spectroscopy</u> (SIMS)

Material Science of Thin Films, Tutorials at JLab, Xin Zhao

6

Jefferson Lab

USPAS SRF Course Jan. 2015

<u>Scanning Electron Microscope (w/EDX) vs.</u> <u>Scanning Auger Microscope/Spectroscope (SAMs)</u>

An emitted Auger electron will have a precise kinetic energy E_k $E_k = E_{\text{Core State}} - E_B - E_C'$ Electron Auger electron, EKLL Hole 0 Vacuum Work function, ϕ Fermi level Primary electron E beam, E_{KE} X-ray Eκ Schematic of Auger Effect

7

Jefferson Lab

USPAS SRF Course Jan. 2015

Auger Electron Spectroscopy

Because the Auger peaks are superimposed on a large continuously incremental background in direct Auger spectrum, the peak feature is not distinguished in the direct representation. The energy distribution spectrum N(E), is differentiated to enhance the peak features. Thus, the conventional Auger spectrum's representation is the function, dN(E)/dE. Material Science of Thin Films, Tutorials at JLab, Xin Zhao

Jefferson Lab

AES and EDX Spectrum

Jefferson Lab

SRF Surfaces

Auger Emission Spectroscopy – AES

- <u>Very</u> surface sensitive: few monolayers
- Not commonly used
- Adsorbed gases are usually irrelevant to SRF performance

Trouble-shooting sulfur surface contamination following EP

X. Zhao, et al. PRST-AB **13**, 124702 (2010), <u>http://link.aps.org/doi/10.1103/Phys</u> <u>RevSTAB.13.124702</u>

AES spectra of a spot before and after a slight sputtering. **Fewer than 10 atomic layers** were removed by the Ar⁺ beam. The sulfur peak was greatly reduced after sputtering, which indicated sulfur coverage is ultra-thin.

SRF Surfaces

SEM/EDX – Scanning Electron Microscope with Energy

Dispersive X-ray spectroscopy

Probing depth: ~1 μm

SEM micrograph of one crystallite-like particle on Nb surface after EP.

The yellow box labels an area surveyed by EDX.

Photo Energy (KeV)

11

Jefferson Lab

X. Zhao, et al. PRST-AB **13**, 124702(2010) <u>http://link.aps.org/doi/10.1103/PhysRevSTAB.13</u> .124702 EDX spectrum surveyed from the yellow box area. It contains S, Fe, N element besides Nb and O. The origin of Fe and N are unknown. The elemental ratio of N, O, S, Fe and Nb is 19:72:5:3:1 after commercial EDAX software evaluation.

XPS

- X-ray photoemission spectroscopy
 - Measure the binding energy of electrons reveals their atomic and chemical origin
 - Surface sensitive probe of chemical composition

- For fixed photon energy hv, measuring the kinetic energy (KE) of the ejected electrons leads to an energy balance: hv = KE + BE, where BE is the binding energy.
- Measuring the KE of ejected electrons gives their BE, a description of the electron structure.

Example:

Near-Surface Composition of Electropolished Niobium by Variable Photon Energy XPS

H. Tian et al. SRF2003

Secondary Ion Mass Spectrometry (SIMS)

• Escape depth of sputtered species only few Angstroms

• All elements and isotopes measurable (including H)

• ppm to ppb detection limit

• **10-20 n**m depth resolution typical, **1-2nm** at low energies

13

Jefferson Lab

R. G. Wilson, F. A. Stevie, C. W. Magee: Secondary Ion Mass Spectrometry, Wiley-Interscience (1989)

jlab.org

USPAS SRF Course Jan. 2015

Improving SRF with "Pollution"

- "Pollution" of near surface discovered to have beneficial effect
- "High-Q₀" by N-doping or Ti-doping
- What is going on here?

XFEL/ILC recipe vs. N doping

USPAS SRF Course Jan. 2015

Nitrogen Doping Process

JLab HT-N treatment and triple single cell HEP configuration

What does N treatment do? N depth profiles by SIMS

Crystallography Measurements

- X-ray Diffraction (XRD)
- Electron Backscattering Diffraction (EBSD)
- Transmission Electron Microscopy (TEM)

Diffraction measurements probe the atomic structural patterns in the surface material

SRF requires high-quality lattice structure

Material Science of Thin Films, Tutorials at JLab, Xin Zhao

Crystal Quality

a definition based on crystallography

CRYSTAL QUALITY

The quality of what is nominally a "single" crystal can vary over an enormous range. At one extreme, the crystal may have undergone gross plastic deformation by bending and/or twisting, such that some portions of it are disoriented from other portions by angles as large as tens of degrees, and the dislocation density is high. At the other extreme, some carefully grown crystals are almost free of dislocations and other line or planar imperfections, and their crystal planes are flat to less than 10^{-4} degrees over distances of the order of a centimeter. In general, metal crystals tend to be more imperfect than crystals of covalent or ionic substances.

Various x-ray methods of assessing crystal quality are described below. These methods differ in sensitivity, and we will deal with the least sensitive first.

• Ref. "Elements of X-ray Diffraction", B.D. Cullity. 2nd edition, page 260.

Misorientation Angles

- as one caliber of crystal quality

Fig. 8-27 Reflection of white radiation by bent and polygonized lattices (schematic).

 Misorientation Angles of a survey area could be measured by <u>XRD</u> (Rocking Curve, RSM), or by <u>EBSD</u>

XRD vs. EBSD

	XRD	EBSD
Probing Area (Diffraction Area)	10*17 mm (selectable by X-ray aperture)	 30*30 nm By rastering e-beam, can scan a large area Scanning area is limited by SEM magnification
Probing Depth (Diffraction depth)	1 - 2 μm	< 50 nm
Pole Figures	Yes	Yes
Grain size sensitivity	any	Must > 50 nm

XRD Pole Figure Experimental Setup and Standard Nb (110) Pole Figure

Nb (110) Pole Figure

Experimental Steps:

•Fixed 2 ϑ of a {hkl} crystal plane. (Bragg Law $2d_{\{hkl\}}*sin(\vartheta)=\lambda$) •Rotated around Normal Direction (Azimuthal φ , from 0-360°) •Titled off-angle from Normal Direction (ψ , 0-90⁰)

P.F. is to visualize **Reciprocal Lattice Space** One **Crystal Plane stacks** in real lattice space is a **Pole** in reciprocal space X.Zhao et al, Talk on 5th SRF Thin Film Workshop, JLab. 2012

Crystal Plane	$\psi (^{0})$	φ (⁰)
(110)	0	0
(011)	60	54.74
(101)	60	125.26
(1,0,-1)	60	234.74
(0,1,-1)	60	305.26
(1,-1,0)	90	180
(-1,1,0)	90	0

Jefferson Lab

Grains Orientation Mapping by EBSD

- Electron Beam Spot is small (<u>few nanometers</u>)
- By rastering electron beam on a sample to map grain orientations

- Pattern matching and decomposition
- Computationally intensive
- But implementations are now quite fast

24

USPAS SRF Course Jan. 2015

EBSD – BCP on fine grain, nano-polished niobium

Technique used to examine surface evolution during processing

6 minutes BCP at room temperature

EBSD – BCP on fine grain, nano-polished niobium

6 minutes BCP at room temperature

C. Reece

A Historical Time Line in Electron Optical Instrumentation

- 1897 JJ Thompson Discovery of the Electron
- 1926 H. Bush Magnetic/Electric Fields as Lenses
- 1929 E. Ruska PhD Thesis Magnetic lenses
- 1931 Knoll and Ruska 1st EM built
- 1932 Davisson and Calbrick Electrostatic Lenses
- 1934 Driest & Muller EM surpases LM
- 1939 von Borries & Ruska 1st Commerical EM~ 10 nm resolution

- 1965 ~ 0.2 nm resolution (Multiple Organizations)
- 1968 A. Crewe U.of Chicago Scanning Transmission Electron Microscope ~ 0.3 nm resolution probe - practical Field Emission Gun

Ruska etal - Nobel Prize

1999 < 0.1 nm resolution achieved (OÅM) $2009 \quad 0.05 \text{ nm} \text{ (TEAM)}$

27

USPAS SRF Course Jan. 2015

Jefferson Lab

Service of Traditional Electron Microscope

Morphology, Crystallography, Elemental, Chemical, Electronic Structure

Material Science of Thin Films, Tutorials at JLab, Xin Zhao

28

USPAS SRF Course Jan. 2015

Transmission Electron Microscopy

29

C. Reece

1/25/2013

Jefferson Lab

Traditional TEM Specimen Preparation

hole

Foils

3 mm diam. disk very thin (<0.1 - 1 micron - depends on material, voltage)

- mechanical thinning (grind)
- chemical thinning (etch)
- ion milling (sputter)

examine region around perforation

Sample Prep for TEM/STEM studies

TEM: high spatial resolution but sample has to be thin for HRTEM thickness < 50nm

Focused Ion Beam: vertical SEM column + Ga ion column + micromanipulator + gas injection system + detectors

Result: cross-sectional cut from the bulk

Nb-H Superlattice at 94 K

HRTEM imaging of Cold Spot at Room T continue

Phase Contrast of the Grain Boundary

No significant oxidation along Grain Boundary in contradiction to J.Halbritter (2001)

Dualing in any Transmission Flasher Mission and in a sing regults and hat leads when the Vulie Transition 7th CDF

Topography characterization

erface	A BEAUTINE	No. 8 Concession, No. 8	THE OWNER WHEN THE OWNER		
led 1					
Progress Bar		C:UsersVizhao/DocumentsVi.Z/L enerie 73 76 /Ba.de.A.RIV C:UsersVizhao/DocumentsV.Z/L.a. C:UsersVizhao/DocumentsV.Z/L.a. C:UsersVizhao/DocumentsV.Z/L.a.	aser project/LZ data/AFM 201305 Ner annel 21/201 mm. 4 25cm ser project/LZ data/AFM 201309	Jefferson L	
	5	- Rut	ming	Reset Save Rep	ort If Yellow?
				edi	
í		1	179.5773	5.2892	
	<u> </u>	AFM 5	163.6924	5.2835	
		AFM 10X WLI 230 WILI 124 WILI 124	512	25000	-
D ⁻⁶ 10 ⁻⁴	10 ⁻³ 1	ν ² 10 ⁻¹	0 order 1st order Zind order 3rd order	Non Windowed Biackman Windowed Tukey Windowed	
Fitting	Congur X (Succinit I)		RMS from 1D PSD	1000	
2e-05	9e-05 0.0003	FEE77	154.2839	0.0012543	
9e-05	0.0002 0.002	RMS from 2D PSD RMS 1D RMS 2D	Power Ratio	Running	
+ +		1		500 0	0 500
		.8	500	L	_ untitled fit 1 z vs. x, y
i.	•	.7			\supset
	+	1.6	ê 0		- · ·
	*	1.5	19 🔦		
	*	9.4	튶 -500		
	*	1.3 -	ž		
	A.	12	-1000		
	· ·		600 AOD	~~~~~	14. C
		1.1	400	300	300 400
	·····			200 200	300
10"	10' 10'	10 0.0 0.4 0.6	0.8 1	100 100 200	

C. Reece

- Hirox optical microscope, Phenom SEM
- Atomic force microscopy (<u>AFM</u>)
 - Tapping mode
 - <u>RMS roughness</u> (*R_q*), height variation of peaks/valleys
- Power spectral density (<u>PSD</u>) of surface height
 - Customized program
 - 2nd order detrending
 - Blackman window
 - Width variation of peaks/valleys
 - Quantitatively describe sharp features

Case 3:BCP on Mechanical Polishing

Typical surface finishes AFM scan 100µmby 100µm **PSD Structure changes! Why?**

Optical, SEM, AFM - Bubble prints, BCP on bi-crystal niobium

BCP 20°C, 12 minutes Print radius ~ 50 μm Print depth ~ 1 μm

C. Reece

USPAS SRF Course Jan. 2015

Not all Nb "EPs" the same

With "standard"1:10 HF/H₂SO₄ Electrolyte at 30°C Nb crystallography affects the polishing effectiveness.

With identical starting topography from CBP, given identical 100 min "EP" at 30°C, single-crystal material was significantly smoother.

Evidence for a significant etching activity at 30°C

AFM, PSD - EP topography vs. surface flow rate

14 V, 20-22 °C, 90 minutes, ~40 µm removed

Importance of topography

C. Xu, C. E. Reece and M. J. Kelley, "Simulation of non-linear SRF losses derived from characteristic Nb topography: comparison of etched and electropolished surfaces," *http://arxiv.org/abs/1406.7276*, 2014.

EP cavities often have higher field gradients Difference between BCP and EP: topography

39

USPAS SRF Course Jan. 2015

SRF is all about Surfaces

- Alphabet soup of analytical techniques available (short list)
 - Elemental analysis
 - EDX (bulk), AES, XPS, SIMS (surface sensitive)
 - Structural analysis
 - XRD (1-2 μm), EBSD (50 nm), TEM (~1 nm)
 - Topographical analysis
 - Profilometer, AFM
- RF measurements are always averages over large surface areas – often ambiguous interpretations

