
C. Reece 

BCP and EP for Nb Cavities 

Charles Reece 
 
 
 
USPAS Course: 
SRF Technology: Practices and Hands-On Measurements 
 
January 2015 



C. Reece USPAS SRF Course Jan. 2015 2 

Nb Cavity Surface Removal 
SRF cavity surfaces must be “pure”, “clean”, and “smooth” 
 

• “Ideal” surface is defect-free Nb crystals with only Nb2O5 ~4 nm 
capping layer and planar surface topography. 

• After practical cavity fabrication, the real surface is “disturbed” and 
“polluted.”  

• Empirically found that >100 µm removal is typically required to 
reliably expose “good” bulk Nb material, i.e. predictable SRF 
performance. 

• The naturally-forming Nb2O5 is a very stable oxide – weak acids 
don’t touch it  

• F- ions are electronegative enough to consume Nb2O5  
• Thus the role of hydrofluoric acid (HF) in processing Nb cavities 
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Electronegativity of the elements 
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The Need For Material Removal 
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Study of performance with integrated removal 
by BCP circa 1995 
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Importance of topography 

EP cavities often have higher field gradients 
Difference between BCP and EP: topography 

C. Xu, C. E. Reece and M. J. Kelley, "Simulation of non-linear SRF losses derived from 
characteristic Nb topography: comparison of etched and electropolished surfaces," 
http://arxiv.org/abs/1406.7276, 2014. 

BCP 

EP 
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Nb Cavity Surface Removal 
SRF cavity surfaces must be “pure”, “clean”, and “smooth” 
 

 
• Etching with “buffered chemical polish” (BCP) - 
𝑯𝑯𝑯𝑯:𝑯𝑯𝑯𝑯𝑶𝑶𝟑𝟑:𝑯𝑯𝟑𝟑𝑷𝑷𝑶𝑶𝟒𝟒 𝟏𝟏:𝟏𝟏:𝟐𝟐  
• Nitric acid aggressively oxidizes Nb 
• HF (F- ions) dissolves the oxide 
• Phosphoric acid only slows down, “buffers,”  the exothermic process 
• Vulnerable to variations in local reaction rates  inherent roughness 

 
• Electropolishing (EP) - 𝑯𝑯𝑯𝑯:𝑯𝑯𝟐𝟐𝑺𝑺𝑶𝑶𝟒𝟒 𝟏𝟏:𝟏𝟏𝟏𝟏  

• With applied potential, sulfuric acid anodizes Nb, growing Nb2O5  layer 
• F- ions diffuse to the surface and dissolve the oxide 
• Find a balance for polishing (surface leveling), not etching 
• Diffusion-limited conditions  yield better smoothing 



C. Reece 

Surface polishing of niobium for 
superconducting radio 
frequency (SRF) cavity 

applications 
Liang Zhao 
Applied Science Department, W&M 
Thomas Jefferson National Accelerator Facility 
 
Committee Members: 
Dr. Michael J Kelley                   Dr. Charles E Reece 
Dr. Gunter Lüepke                     Dr. Rong-Li Geng 
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Current techniques for surface polishing 

• Mechanical grinding: remove local defects; but rough and 
needs following chemistry 

• BCP: fast and simple (not limited by cavity shape); but rough 
• EP: smooth; but complicated (limited by cavity shape) and 

slow 
• CBP: smooth and uniform; but slow and needs final chemistry 

Chemicals 
involved? 

Complicate 
shape? 

Removal 
rate? 

Surface 
roughness 

Routinely 
used? 

Mechanical 
grinding N Hard Fast Y N 

BCP Y Easy Fast Y Y 

EP Y Hard Slow N Y 

CBP N Hard Very slow N N 
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Buffered Chemical Polishing (BCP) 

𝑯𝑯𝑶𝑶𝟐𝟐 

𝑯𝑯𝑯𝑯:𝑯𝑯𝑯𝑯𝑶𝑶𝟑𝟑:𝑯𝑯𝟑𝟑𝑷𝑷𝑶𝑶𝟒𝟒 (𝟏𝟏:𝟏𝟏:𝟐𝟐) 

𝑯𝑯𝑵𝑵 

Cavity processing conditions: 
• Acid temperature below 15 °C 
• “dunking” or acid circulation 

Fine grain, 20°C, 6 minutes 
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BCP experiment conditions 

• Temperature: 0, 10, 20, 30 °C 
• Duration: 1, 2, 4, 6, 8, 10, 12, 90 minutes 
• Material type: fine grain, single crystal, bi-

crystal 
• Sample orientation: facing up, facing down, 

facing horizontally 
• Flow condition: sample static, sample 

rotating 
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EBSD – BCP on fine grain, nano-polished niobium 

6 minutes BCP at room temperature 
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EBSD – BCP on fine grain, nano-polished niobium 

a 

b 

c 

a b c 

6 minutes BCP at room temperature 

Polishing rate: 
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SEM – BCP on single crystal niobium – very smooth 
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RMS roughness of single crystal Nb after 90 
minutes BCP 
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Optical, SEM, AFM - Bubble prints, BCP on bi-crystal niobium 

BCP 20°C, 12 minutes  
Print radius ~ 50 μm 
Print depth ~ 1 μm 

Used large grain material to distinguish 
bubble effects from grain effects 
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SEM – BCP on fine grain niobium, 10°C vs. 22°C 

1 3 7 14 20 

1 3 7 14 20 

10°C 

22°C 

Shallow etching reveals fine features within individual grains. Deep etching smooth 
surface within individual grains, but causes facets, steps and edges.  
From 10 °C to 22 °C, higher temperature results in faster etching. Temperature does not 
change topography significantly.  
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BCP - polishing rate vs. time, different temperatures  

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12

Po
lis

hi
ng

 ra
te

 (u
m

/m
in

) 

Time (min) 

0 C

10 C

20 C

30 C
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High defect density in top 
mechanically disturbed surface 
produces higher initial 
reaction/removal rate. 
 
Beware of using sample materials 
for short periods to predict 
extended removal rates. 
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Analysis of BCP Reaction Rate 

LnRate vs. 1/T (0-30°C) 

y = -6469.8x + 23.041 
R² = 0.9995 
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𝑬𝑬𝒂𝒂 = −𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 ∙ 𝑹𝑹 = 𝟏𝟏𝟐𝟐.𝟖𝟖𝟖𝟖 𝒌𝒌𝒌𝒌𝒂𝒂𝑺𝑺/𝒎𝒎𝑺𝑺𝑺𝑺 

reaction rate constant 𝒌𝒌,  activation energy 𝑬𝑬𝒂𝒂,  temperature 𝑻𝑻 

𝒌𝒌 = 𝑨𝑨 𝑺𝑺𝒆𝒆𝑺𝑺(−𝑬𝑬𝒂𝒂 𝑹𝑹𝑻𝑻)⁄  

𝑹𝑹𝒂𝒂𝑹𝑹𝑺𝑺 = 𝒌𝒌 ∙ [𝑯𝑯𝑯𝑯𝑶𝑶𝟑𝟑]𝒂𝒂∙ [𝑯𝑯𝑯𝑯]𝑵𝑵 

• Chemical reaction control 
dominates at 0-20 °C, diffusion 
control takes over at higher 
temperature 

• Activation energy relates to reaction mechanism:  
• > 7 kcal/mol, chemical reaction controlled 
• < 7 kcal/mol, diffusion controlled 

𝑯𝑯𝑵𝑵 + 𝟖𝟖𝑯𝑯𝑯𝑯𝑶𝑶𝟑𝟑 + 𝟖𝟖𝑯𝑯𝑯𝑯 = 𝑯𝑯𝟐𝟐𝑯𝑯𝑵𝑵𝑶𝑶𝑯𝑯𝟖𝟖 + 𝟖𝟖𝑯𝑯𝑶𝑶𝟐𝟐 ↑ +𝟒𝟒𝑯𝑯𝟐𝟐𝑶𝑶 

0°C 

10°C 

20°C 

30°C 
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BCP polishing rate vs. sample orientation and flow rate 
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Etching rate (BCP) vs. facing direction 
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  1 rpm 12 rpm 60 rpm 
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2.3 ~ 3.4 
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138.2 ~ 
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Facing 
horizontal 

3.9 mm/s 46.5 mm/s 232.5 mm/s 

Room temperature  
6 minutes 
Fine grain  
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Etch pits at crystallographic defect sites 

Etching pits with complex and symmetric geometry 
are observed in contrast to typical tetrahedral pits. 

Optical imaging of cavity cut-out sample, showing pit 
density varies on distinct crystal grains.  

BCP of large grain Nb samples reveals vulnerability 
highly faceted local etching induced by 
crystallographic defects – inadequate annealing 

Study of Etching Pits in a Large-Grain Single Cell Bulk Niobium Cavity 

http://accelconf.web.cern.ch/AccelConf/SRF2009/papers/tuppo087.pdf
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BCP summary 

• Preferential etching plays an important role in the genesis of BCP 
topography; gas evolution plays a secondary role by leaving dents. 

• For polycrystalline niobium, the BCP topography depends on the 
total removal. Single crystal niobium showed smooth surface even 
after heavy BCP. Bi-crystal with little orientation difference did not 
show strong differential etching and grain boundary attack. 

• Within 0-20 °C, the average removal rate increases with 
temperature and mass transfer through surface flow or sample 
orientation. Agitation also helps prevent gas accumulation on 
niobium surface. 

• The roughness from BCP on FG Nb is inherent and fundamental. 
• For cavity production, low temperature and surface flow are 

recommended to better control removal rate and avoid gas 
accumulation on niobium surface.  

• “Genesis of topography by buffered chemical polishing of niobium”, Liang Zhao, Charles E. Reece, 
Michael J. Kelley, Oral presentation at 7th SRF Materials Workshop, July, 2012, Jefferson Lab 



C. Reece USPAS SRF Course Jan. 2015 23 

Electropolishing (EP) 

Concentrated acid (sulfuric acid + hydrofluoric acid) 
• Macro smoothing: geometrical leveling: removal rate proportional to solid 

angle of exposure 
• Micro smoothing: exploit local near-surface concentration gradient of reactant 

to encourage fine leveling 

Optimum polishing 
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EP in practice 

Anode (Nb) reaction   𝟐𝟐𝑯𝑯𝑵𝑵 + 𝟖𝟖𝑺𝑺𝑶𝑶𝟒𝟒
𝟐𝟐− + 𝟖𝟖𝑯𝑯𝟐𝟐𝑶𝑶 → 𝑯𝑯𝑵𝑵𝟐𝟐𝑶𝑶𝟖𝟖 + 𝟏𝟏𝟏𝟏𝑯𝑯+ + 𝟖𝟖𝑺𝑺𝑶𝑶𝟒𝟒

𝟐𝟐− + 𝟏𝟏𝟏𝟏𝑺𝑺− 
Cathode (Al) reaction   𝟐𝟐𝑯𝑯+ + 𝟐𝟐𝑺𝑺− → 𝑯𝑯𝟐𝟐 ↑ 

• Removal rate 0.3-0.4 μm/min 
• Polishing time 1-10 hours 
• RMS roughness <0.5 μm 

Typical cavity EP conditions: 
 
• Current density 10-50 mA/cm2 

• Voltage 8-16 V 
• Electrolyte temperature 20-25 °C 
• Rotation speed 1-2 rpm (1-4 cm/s) 
• Acid flow rate ~1-3 L/min 
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Basic Mechanisms of  
“Standard” Niobium “EP” 

Hui Tian  
Charles Reece 
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Nb
Bulk Electrolyte

Diffusion Layer
(~ um) 

Compact Salt Film
(~ nm)

F 
-  

%

F 
-  

%

Distance

Distance

Past studies show that the diffusion-limited access of F-  to the  
surface oxide produces “best” polishing 

 
 

Local temperature, flow  and  electrolyte 
composition affect the local F- gradient 

• Anodization of Nb in H2SO4 forces growth of Nb2O5. 
• F- dissolves Nb2O5. 
• These competing processes result in sustained 

current flow and material removal. 
 

• Above a certain anodization potential, the reaction 
rate plateaus, limited by how fast fresh F- can arrive 
at the surface. (diffusion-limited) 

• In this steady-state case, this Nb2O5 layer is a 
“compact salt film” with specific resistivity. 

• The thickness of the salt film increases with 
applied potential, although the steady-state 
current does not change (plateau). 
 

• In the diffusion-limited circumstance, material 
removal is blind to crystallography (avoids 
crystallographic etching). 

• The diffusion coefficient sets a scale for optimum 
leveling effects 
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Nb
Bulk Electrolyte

Diffusion Layer
(~ um) 

Compact Salt Film
(~ nm)

F 
-  

%

F 
-  

%

Distance

Distance

Past studies show that the diffusion-limited access of F-  to the  
surface oxide produces “best” polishing 

 
 

Local temperature, flow  and  electrolyte 
composition affect the local F- gradient 

• Anodization of Nb in H2SO4 forces growth of Nb2O5. 
• F- dissolves Nb2O5. 
• These competing processes result in sustained 

current flow and material removal. 
 

• Above a certain anodization potential, the reaction 
rate plateaus, limited by how fast fresh F- can arrive 
at the surface. (diffusion-limited) 

• In this steady-state case, this Nb2O5 layer is a 
“compact salt film” with specific resistivity. 

• The thickness of the salt film increases with 
applied potential, although the steady-state 
current does not change (plateau). 
 

• In the diffusion-limited circumstance, material 
removal is blind to crystallography (avoids 
crystallographic etching). 

• The diffusion coefficient sets a scale for optimum 
leveling effects. 

 So we want to understand this diffusion coefficient 
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Mass transport may occur by three mechanisms in an electrochemical cell. It is described by the Nernst-
Planck equation, written for one–dimensional mass transfer along the x-axis as:  

)()()()( xC
x
xCD

RT
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x
xCDxJ iii

ii
ii υφ

+
∂

∂
−

∂
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−=

Migration - movement of ions driven   
by a gradient of electrical potential 

Convection - natural convection driven by density gradient 
 and forced convection (stirring, vibration, circulation) 

Diffusion  -  movement of species ( F- ) 
driven by a concentration gradient 

Current-limited plateau is  
the result of a “mass-transport” limitation  
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Mass transport might occur by three mechanisms in an electrochemical cell. It is described by the 
Nernst-Planck equation, written for one–dimensional mass transfer along the x-axis as:  
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Migration - movement of ions driven   
by a gradient of electrical potential 

Convection - natural convection driven by density gradient 
 and forced convection (stirring, vibration, circulation) 

Diffusion  -  movement of species ( F- ) 
driven by a concentration gradient 

Current-limited plateau is  
the result of mass-transport limitation  

If “really” in I-V plateau, gradient at surface must be negligible 
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Mass transport might occur by three mechanisms in an electrochemical cell. It is described by the 
Nernst-Planck equation, written for one–dimensional mass transfer along the x-axis as:  
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Migration - movement of ions driven   
by a gradient of electrical potential 

Convection - natural convection driven by density gradient 
 and forced convection (stirring, vibration, circulation) 

Diffusion  -  movement of species ( F- ) 
driven by a concentration gradient 

Current-limited plateau is  
the result of mass-transport limitation  

If “really” in I-V plateau, gradient at surface must be negligible 

In ideally static case, 
only diffusion 
matters. 
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Mass transport might occur by three mechanisms in an electrochemical cell. It is described by the 
Nernst-Planck equation, written for one–dimensional mass transfer along the x-axis as:  
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Migration - movement of ions driven   
by a gradient of electrical potential 

Convection - natural convection driven by density gradient 
 and forced convection (stirring, vibration, circulation) 

Diffusion  -  movement of species ( F- ) 
driven by a concentration gradient 

Current-limited plateau is  
the result of mass-transport limitation  

If “really” in I-V plateau, gradient at surface must be negligible 

One may learn about Di 
by deliberately 
controlling convection. 
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RDE : creates a defined solution flow  pattern  in which 
the mass transport of species is almost completely 
due to convection.  By solving the convection 
equation with the boundary condition, the Levich 
equation can be used to describe the relationship of 
limiting current to the physical properties of 
electrolyte bath - diffusion coefficient  (D) and 
kinematic viscosity (ν). 

Levich equation 

0.67 0.166 0.50.62J nFD cυ ω−=
0.5 0.67 0.166( . ) 0.62slope J vs nFD cω υ−=

: coskinematic vis ityυ
: rotation speed of the electrodeω

Determination of  the limited species diffusion coefficient by 
rotating disk electrode (RDE) 

c: concentration of active species 
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I-V curves of Nb electropolishing at different 
temperatures with RDE  
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Strong evidence for temperature-dependent electrochemical 
etching in parallel with the diffusion-limited process.  For analysis, 
we must separate these current contributions. 
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ω1/2 (rad.s-1)1/2

T= 1 +/- 0.5 oC
T= 9.0 +/- 0.5oC
T= 19.0 +/- 0.5oC
T= 30.0 +/- 0.5oC
T= 41.0 +/- 0.5oC
T= 50.0 +/- 0.5oC

0.5 0.67 0.166( . ) 0.62slope J vs nFD cω υ−=

Excellent linear fit provides 
definitive  evidence of a 
diffusion-limited process.   
Knowing  ν and c yields D. 

RDE measurements 

cF = 2.67×10-3 M/cm3 
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Kinematic Viscosity of  
1:10 HF/H2SO4 Electrolyte   

H. Tian, JLab 

Measured using a  
Brookfield  DV-II pro viscometer  
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Diffusion Coefficient of  
1:10 HF/H2SO4 Electrolyte   

RDE measurements  
+ viscosity measurements  
+ concentration  
determine the Diffusion coefficient  

cF = 2.67×10-3 M/cm3 
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Estimation of diffusion layer thickness in  
1:10 HF/H2SO4 Electrolyte at different temperatures  

cF = 2.67×10-3 M/cm3 

There exists a F- concentration 
gradient within the 10-20 µm away 
from the surface. 
 

On this scale, peaks are 
dissolved much faster 
than valleys. 
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Topography characterization 

• Hirox optical microscope, Phenom SEM 
• Atomic force microscopy (AFM) 

• Tapping mode 
• RMS roughness (𝑹𝑹𝒒𝒒), height variation of 

peaks/valleys 
• Power spectral density (PSD) of surface height 

• Customized program 
• 2nd order detrending 
• Blackman window 
• Width variation of peaks/valleys 
• Quantitatively describe sharp features 

Chen Xu 
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KEK fine CBP fine grain sample 2
KEK fine CBP large grain sample 9
KEK fine CBP single crystal sample 13
KEK fine CBP large grain sample 9 after EP
KEK fine CBP single crystal sample 13 after EP
KEK fine CBP fine grain sample 2 after EP

RMS~200nm

AFM Measurement ( 50µm*50µm)

RMS~7nm

RMS~40nm

With “standard”1:10 HF/H2SO4 
Electrolyte at 30°C Nb 
crystallography affects the 
polishing effectiveness. 
 
With identical starting 
topography from CBP, given 
identical 100 min “EP” at 30°C, 
single-crystal material was 
significantly smoother. 
 
Evidence for a significant etching 
activity at 30°C  

Not all Nb “EPs” the same 
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Avoid sulfur production at the cathode 

• Most commercial electropolishing applications attempt to maximize the 
surface area of the cathode to avoid process complications (cost). 

• In contrast to this, typical horizontal cavity EP circumstances have 
cathode:anode active area ratio of 1:10. 

• Result is high current density on cathode and resulting high overpotential on 
the cathode necessary to drive the current. 

 SO4
2- + 8 H+ + 6 e- → S + 4 H2O   

may proceed if cathode overpotential is >0.45 V  (relative to SHE) 
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Implications: 
• We should expect the best micropolishing for topographic 

features smaller than ~ 15 µm, so start with surfaces that are 
consistently smooth to this scale: CBP? 
 

• This process we call “EP” also has a temperature-dependent 
etching  process present, even below 20°C.  So, minimize the 
temperature as much as is practical (process time goes up). 
 

• Reduce sulfur production at the cathode by minimizing 
cathode current density and improving the reaction kinetics 
for hydrolysis at the cathode maximize cathode surface area 

1:10 HF/H2SO4 Electrolyte with Nb 
 
If the objective is maximally smooth surfaces:   
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Optical, AFM - EP topography vs. surface flow rate 

BCP 

Static EP 3.7 cm/s EP 

0.7 cm/s EP 

14 V, 20-22 °C, 90 minutes, ~40 μm removed 
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AFM, PSD - EP topography vs. surface flow rate 
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BCP
Static
0.7 cm/s
1.5 cm/s
2.2 cm/s
2.9 cm/s
3.7 cm/sBCP 

Static EP 
3.7 cm/s EP 

0.7 cm/s EP 

14 V, 20-22 °C, 90 minutes, ~40 μm removed 
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EP Flow-rate Summary 

• Within 0-3.7 cm/s range, varying the surface 
flow rate on niobium shows no clear influence 
on polishing rate and topography. RMS 
roughness may be slightly smaller at higher 
flow rate at micro scale. 

• Surface flow is still recommend for cavity 
production because of possible improvement 
on micro scale roughness and temperature 
distribution in the electrolyte. 

• “Effect of Surface Flow on Topography in Niobium Electropolishing”, L. Zhao, M. Kelley, C. Reece,  
TUP106, 11th Particle Accelerator Conference Proceedings, Mar 28 – Apr 1, 2011, New York 
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AES031 receives bulk EP 

AES031 final 20 of 120 micron 
bulk EP 

Cavity Processed for 
LCLS-II High-Q0 R&D 
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