

BCP and EP for Nb Cavities

Charles Reece

USPAS Course: SRF Technology: Practices and Hands-On Measurements

January 2015

C. Reece

Nb Cavity Surface Removal

SRF cavity surfaces must be "pure", "clean", and "smooth"

- "Ideal" surface is defect-free Nb crystals with only Nb₂O₅ ~4 nm capping layer and planar surface topography.
- After practical cavity fabrication, the real surface is "disturbed" and "polluted."
- Empirically found that >100 µm removal is typically required to reliably expose "good" bulk Nb material, i.e. predictable SRF performance.
- The naturally-forming Nb₂O₅ is a very stable oxide weak acids don't touch it
- F⁻ ions are electronegative enough to consume Nb₂O₅
- Thus the role of hydrofluoric acid (HF) in processing Nb cavities

Electronegativity of the elements

Copyright 2000 John Wiley and Sons, Inc.

USPAS SRF Course Jan. 2015

The Need For Material Removal

P. Kneisel

Importance of topography

C. Xu, C. E. Reece and M. J. Kelley, "Simulation of non-linear SRF losses derived from characteristic Nb topography: comparison of etched and electropolished surfaces," *http://arxiv.org/abs/1406.7276*, 2014.

EP cavities often have higher field gradients Difference between BCP and EP: topography

USPAS SRF Course Jan. 2015 5

Nb Cavity Surface Removal

SRF cavity surfaces must be "pure", "clean", and "smooth"

- Etching with "buffered chemical polish" (BCP) - *HF*: *HNO*₃: *H*₃*PO*₄ (1: 1: 2)
 - Nitric acid aggressively oxidizes Nb
 - HF (F⁻ ions) dissolves the oxide
 - Phosphoric acid only slows down, "buffers," the exothermic process
 - Vulnerable to variations in local reaction rates \rightarrow inherent roughness

• Electropolishing (EP) - $HF: H_2SO_4$ (1:10)

- With applied potential, sulfuric acid anodizes Nb, growing Nb₂O₅ layer
- F⁻ ions diffuse to the surface and dissolve the oxide
- Find a balance for polishing (surface leveling), not etching
- Diffusion-limited conditions yield better smoothing

Surface polishing of niobium for superconducting radio frequency (SRF) cavity applications

Liang Zhao Applied Science Department, W&M Thomas Jefferson National Accelerator Facility

Committee Members: Dr. Michael J Kelley Dr. Gunter Lüepke

C. Reece

Dr. Charles E Reece Dr. Rong-Li Geng

Current techniques for surface polishing

	Chemicals involved?	Complicate shape?	Removal rate?	Surface roughness	Routinely used?
Mechanical grinding	N	Hard	Fast	Y	Ν
ВСР	Y	Easy	Fast	Y	Y
EP	Y	Hard	Slow	N	Y
СВР	Ν	Hard	Very slow	N	Ν

- Mechanical grinding: remove local defects; but rough and needs following chemistry
- BCP: fast and simple (not limited by cavity shape); but rough
- EP: smooth; but complicated (limited by cavity shape) and slow
- CBP: smooth and uniform; but slow and needs final chemistry

C. Reece

Buffered Chemical Polishing (BCP)

$HF:HNO_3:H_3PO_4(1:1:2)$

Fine grain, 20°C, 6 minutes

9

Cavity processing conditions:

- Acid temperature below 15 °C
- "dunking" or acid circulation

BCP experiment conditions

- Temperature: 0, 10, 20, 30 °C
- Duration: 1, 2, 4, 6, 8, 10, 12, 90 minutes
- Material type: fine grain, single crystal, bicrystal
- Sample orientation: facing up, facing down, facing horizontally
- Flow condition: sample static, sample rotating

C. Reece

EBSD – BCP on fine grain, nano-polished niobium

6 minutes BCP at room temperature

C. Reece

EBSD – BCP on fine grain, nano-polished niobium

6 minutes BCP at room temperature

SEM – BCP on single crystal niobium – very smooth

Jefferson Lab

Optical, SEM, AFM - Bubble prints, BCP on bi-crystal niobium

Used large grain material to distinguish bubble effects from grain effects

BCP 20°C, 12 minutes Print radius ~ 50 μm Print depth ~ 1 μm

USPAS SRF Course Jan. 2015

SEM – BCP on fine grain niobium, 10°C vs. 22°C

10°C

>Shallow etching reveals fine features within individual grains. Deep etching smooth surface within individual grains, but causes facets, steps and edges.

> From 10 °C to 22 °C, higher temperature results in faster etching. Temperature does not change topography significantly.

BCP - polishing rate vs. time, different temperatures

Polishing rate vs. time (Fine grain, 0-10 mins, 0-30°C)

High defect density in top mechanically disturbed surface produces higher initial reaction/removal rate.

Beware of using sample materials for short periods to predict extended removal rates.

17

USPAS SRF Course Jan. 2015

Analysis of BCP Reaction Rate

reaction rate constant k, activation energy E_a , temperature T

 $Nb + 5HNO_3 + 5HF = H_2NbOF_5 + 5NO_2 \uparrow + 4H_2O$

LnRate vs. 1/T (0-30°C)

- > / kcal/mol, chemical reaction controll
 < 7 Log/(soc) difference at sollard
- < 7 kcal/mol, diffusion controlled

C. Reece

18

Jefferson Lab

BCP polishing rate vs. sample orientation and flow rate

1 - face-up 2 - face-down 3 - face-horizontal

C. Reece

USPAS SRF Course Jan. 2015

Etch pits at crystallographic defect sites

BCP of large grain Nb samples reveals vulnerability highly faceted local etching induced by crystallographic defects – inadequate annealing

Optical imaging of cavity cut-out sample, showing pit density varies on distinct crystal grains.

Study of Etching Pits in a Large-Grain Single Cell Bulk Niobium Cavity

Etching pits with complex and symmetric geometry are observed in contrast to typical tetrahedral pits.

BCP summary

- Preferential etching plays an important role in the genesis of BCP topography; gas evolution plays a secondary role by leaving dents.
- For <u>polycrystalline niobium</u>, the BCP topography depends on the total removal. <u>Single crystal niobium</u> showed smooth surface even after heavy BCP. Bi-crystal with little orientation difference did not show strong differential etching and grain boundary attack.
- Within 0-20 °C, the average removal rate increases with temperature and mass transfer through surface flow or sample orientation. Agitation also helps prevent gas accumulation on niobium surface.
- The roughness from BCP on FG Nb is inherent and fundamental.
- For cavity production, low temperature and surface flow are recommended to better control removal rate and avoid gas accumulation on niobium surface.
- "Genesis of topography by buffered chemical polishing of niobium", Liang Zhao, Charles E. Reece,
 Michael J. Kelley, Oral presentation at 7th SRF Materials Workshop, July, 2012, Jefferson Lab

Electropolishing (EP)

Concentrated acid (sulfuric acid + hydrofluoric acid)

- Macro smoothing: geometrical leveling: removal rate proportional to solid angle of exposure
- Micro smoothing: exploit local near-surface concentration gradient of reactant to encourage fine leveling

EP in practice

Typical cavity EP conditions:

- Current density 10-50 mA/cm²
- Voltage 8-16 V

C. Reece

- Electrolyte temperature 20-25 °C
- Rotation speed 1-2 rpm (1-4 cm/s)
- Acid flow rate ~1-3 L/min

- Removal rate 0.3-0.4 μm/min
- Polishing time 1-10 hours
- RMS roughness <0.5 μm</p>

Anode (Nb) reaction $2Nb + 5SO_4^{2-} + 5H_2O \rightarrow Nb_2O_5 + 10H^+ + 5SO_4^{2-} + 10e^-$ Cathode (Al) reaction $2H^+ + 2e^- \rightarrow H_2 \uparrow$

Basic Mechanisms of "Standard" Niobium "EP"

Hui Tian Charles Reece

USPAS SRF Course Jan. 2015

Past studies show that the diffusion-limited access of F⁻ to the surface oxide produces "best" polishing

- Anodization of Nb in H₂SO₄ forces growth of Nb₂O₅.
- F⁻ dissolves Nb₂O₅.
- These competing processes result in sustained current flow and material removal.
- Above a certain anodization potential, the reaction rate plateaus, limited by how fast fresh F⁻ can arrive at the surface. (*diffusion-limited*)
- In this steady-state case, this Nb₂O₅ layer is a "compact salt film" with specific resistivity.
- The thickness of the salt film increases with applied potential, although the steady-state current does not change (*plateau*).
- In the diffusion-limited circumstance, material removal is blind to crystallography (avoids crystallographic *etching*).
- The diffusion coefficient sets a scale for optimum leveling effects

26

Jefferson Lab

Past studies show that the diffusion-limited access of F⁻ to the surface oxide produces "best" polishing

- Anodization of Nb in H₂SO₄ forces growth of Nb₂O₅.
- F⁻ dissolves Nb₂O₅.
- These competing processes result in sustained current flow and material removal.
- Above a certain anodization potential, the reaction rate plateaus, limited by how fast fresh F⁻ can arrive at the surface. (*diffusion-limited*)
- In this steady-state case, this Nb₂O₅ layer is a "compact salt film" with specific resistivity.
- The thickness of the salt film increases with applied potential, although the steady-state current does not change (*plateau*).
- In the diffusion-limited circumstance, material removal is blind to crystallography (avoids crystallographic <u>etching</u>).

• The diffusion coefficient sets a scale for optimum leveling effects.

C. Reece So we want to understand this diffusion coefficient

Current-limited plateau is the result of a "mass-transport" limitation

Mass transport may occur by three mechanisms in an electrochemical cell. It is described by the <u>Nernst-</u><u>Planck equation</u>, written for one-dimensional mass transfer along the x-axis as:

Current-limited plateau is the result of mass-transport limitation

Mass transport might occur by three mechanisms in an electrochemical cell. It is described by the <u>Nernst-Planck equation</u>, written for one-dimensional mass transfer along the x-axis as:

If "really" in I-V plateau, gradient at surface must be negligible

Current-limited plateau is the result of mass-transport limitation

Mass transport might occur by three mechanisms in an electrochemical cell. It is described by the <u>Nernst-Planck equation</u>, written for one-dimensional mass transfer along the x-axis as:

If "really" in I-V plateau, gradient at surface must be negligible

Current-limited plateau is the result of mass-transport limitation

Mass transport might occur by three mechanisms in an electrochemical cell. It is described by the <u>Nernst-Planck equation</u>, written for one-dimensional mass transfer along the x-axis as:

If "really" in I-V plateau, gradient at surface must be negligible

Determination of the limited species diffusion coefficient by rotating disk electrode (RDE)

RDE : creates a defined solution flow pattern in which the mass transport of species is <u>almost completely</u> <u>due to convection</u>. By solving the convection equation with the boundary condition, the Levich equation can be used to describe the relationship of limiting current to the physical properties of electrolyte bath - diffusion coefficient (*D*) and kinematic viscosity (v).

Levich equation

 $J = 0.62nFD^{0.67}\upsilon^{-0.166}c\omega^{0.5}$ slope(J vs. $\omega^{0.5}$) = 0.62nFD^{0.67}\upsilon^{-0.166}c

υ: kinematic vis cos ity
ω: rotation speed of the electrode
c: concentration of active species

Jefferson Lab

I-V curves of Nb electropolishing at different temperatures with RDE

C. Reece

USPAS SRF Course Jan. 2015

RDE measurements

Strong evidence for temperature-dependent electrochemical **etching** in parallel with the diffusion-limited process. For analysis, we must separate these current contributions.

Measured using a Brookfield DV-II pro viscometer

$$c_F = 2.67 \times 10^{-3} \text{ M/cm}^3$$

RDE measurements + viscosity measurements + concentration determine the Diffusion coefficient

Diffusion Coefficient of 1:10 HF/H₂SO₄ Electrolyte

Estimation of diffusion layer thickness in 1:10 HF/H₂SO₄ Electrolyte at different temperatures

Jefferson Lab

Topography characterization

erface	A BOUNDARY	the state of the s	-	-	
led 1					
Progress Bar	Verber	C:UserslizhaolDoc erente 23.26	uments/LZ/Laser project/LZ data/AFM 201305 /Da. do AEM/IN armol 23/260 room 4 25cm	1 Jefferson Lab	
[C:\Users\izhao\Docu smpls_23-29 (R	ments/LZ/Laser project/LZ data/APM 201309 e-do AFM/l/z-smpl_23(29)-rng_4-25um.mat	EXPLORING THE NATURE OF MATT	ER
		-	Running	Reset Save Report if Yell	bw?
-		-	-RMS from image and Detren	dedi	
			179.5773	5.2892	
-	have a second se	-	AFM 100	5.2015	
-		Nonlinea	WLI 230 WLI 124 * 512	25000	
0 ⁵ 10 ⁴	10 ⁻³	10 ⁻² 10 ⁻¹	0 order * SETUP 2nd order 2nd order	Non Windowed A Blackman Windowed Tukey Windowed	
Fitting	Length X (Unit:nm"1)		BNS from 10 PSD	nòoo	
2e-05	9e-05 0.000	3 F£ £??	154.2839	0.0012543	
9e-05	0.0002 0.002	RMS from 2D PSD			
		RMS 1D RMS	2D Power Ratio	Running	
+ *		1		500	500
۰.		1.9 -		untitl	ed fit 1
		9.8 -	500	• Z VS.	x, y
		1 .7			
		1.6	e .		-
	*	1.5	ji ji		
		14	fi am		14
			E STREET		
	100		.1000		
	· ·		500 400		->
	· · ·	1.1	400	300	400
				200	
5 10 ⁻⁴	10 ⁻³ 10 ⁻²	10 ¹⁰ 0 02 04	ne ne 1	200 100 200 300	

- Hirox optical microscope, Phenom SEM
- Atomic force microscopy (<u>AFM</u>)
 - Tapping mode
 - <u>RMS roughness</u> (*R_q*), height variation of peaks/valleys
- Power spectral density (<u>PSD</u>) of surface height
 - Customized program
 - 2nd order detrending
 - Blackman window
 - Width variation of peaks/valleys
 - Quantitatively describe sharp features

Not all Nb "EPs" the same

With "standard"1:10 HF/H₂SO₄ Electrolyte at 30°C Nb crystallography affects the polishing effectiveness.

With identical starting topography from CBP, given identical 100 min "EP" at 30°C, single-crystal material was significantly smoother.

Evidence for a significant etching activity at 30°C

Jefferson Lab

Avoid sulfur production at the cathode

- Most commercial electropolishing applications attempt to maximize the surface area of the cathode to avoid process complications (cost).
- In contrast to this, typical horizontal cavity EP circumstances have cathode:anode active area ratio of 1:10.
- Result is high current density on cathode and resulting high overpotential on the cathode necessary to drive the current.

SO_4^{2-} + 8 H⁺ + 6 e⁻ \rightarrow S + 4 H₂O

1:10 HF/H₂SO₄ Electrolyte with Nb

If the objective is maximally smooth surfaces:

Implications:

- We should expect the best micropolishing for topographic features smaller than ~ 15 μm, so start with surfaces that are consistently smooth to this scale: CBP?
- This process we call "EP" also has a temperature-dependent etching process present, even below 20°C. So, minimize the temperature as much as is practical (process time goes up).
- Reduce sulfur production at the cathode by minimizing cathode current density and improving the reaction kinetics for hydrolysis at the cathode → maximize cathode surface area

Optical, AFM - EP topography vs. surface flow rate

14 V, 20-22 °C, 90 minutes, ~40 µm removed

Jefferson Lab

AFM, PSD - EP topography vs. surface flow rate

14 V, 20-22 °C, 90 minutes, ~40 µm removed

EP Flow-rate Summary

- Within 0-3.7 cm/s range, varying the surface flow rate on niobium shows no clear influence on polishing rate and topography. RMS roughness may be slightly smaller at higher flow rate at micro scale.
- Surface flow is still recommend for cavity production because of possible improvement on micro scale roughness and temperature distribution in the electrolyte.

 "Effect of Surface Flow on Topography in Niobium Electropolishing", L. Zhao, M. Kelley, C. Reece, TUP106, 11th Particle Accelerator Conference Proceedings, Mar 28 – Apr 1, 2011, New York

Jefferson Lab

Contributors along the way:

H. Tian	JLab, (W&M)
O. Trofimova	JLab
M. Kelley	JLab, W&M, VT
C. Xu	JLab, (W&M)
L. Zhao	JLab, W&M
S. Corcoran	VT
G. Ribeill	JLab (DOE SULI)

Key References: (1)

A. J. Bard and L. R. Faulkner, *Electrochemical Methods*, Wiley: New York, 1980.
H. Tian, S. G. Corcoran, C. E. Reece and M. J. Kelley, J. Electochem. Soc. 155(2008), p. D563.
F F. Éozénou, S. Berry, Y. Gasser, and J-P. Charrier, SRF2009, Berlin, Germany (2009), THPPO069.
V.G. Levich, *Physicochemical Hydrodynamics*, Prentice-Hall, New York, 1962
H. Tian, Ph.D. Dissertation, Dept. of Applied Science, College of William and Mary, (2008).
C. Xu, Ph.D. Dissertation, Dept. of Applied Science, College of William and Mary, (2013).
L. Zhao, Ph.D. Dissertation, Dept. of Applied Science, College of William and Mary, (2014).

Key References (2):

- Quantitative EP Studies and Results for SRF Nb Cavity Production, H. Tian and C. E. Reece, Proc. 15th Int. Conf. on RF Superconductivity, Chicago, IL USA (2011), pp. 565-570, http://accelconf.web.cern.ch/AccelConf/SRF2011/papers/weioa01.pdf.
- *Evaluation of the diffusion coefficient of fluorine during the electropolishing of niobium*, H. Tian and C. E. Reece, Phys. Rev. ST Accel. Beams **13**, 083502 (2010), <u>http://link.aps.org/doi/10.1103/PhysRevSTAB.13.083502</u>.
- Exploiting New Electrochemical Understanding of Niobium Electropolishing for Improved Performance of SRF Cavities for CEBAF, C. E. Reece and H. Tian, Proc. XXV Linear Accel. Conf., Tsukuba, Japan (2010), pp. 779-781, http://accelconf.web.cern.ch/AccelConf/LINAC2010/papers/thp010.pdf.
- The Mechanism of Electropolishing of Niobium in Hydrofluoric--Sulfuric Acid Electrolyte, H. Tian, S. G. Corcoran, C. E. Reece, and M. J. Kelley, Journal of The Electrochemical Society 155, D563 (2008), http://link.aip.org/link/?JES/155/D563/1.
- Surface Studies of Niobium Chemically Polished Under Conditions for Superconducting Radiofrequency Cavity Production H. Tian, M. J. Kelley, C. E. Reece, S. Wang, L. Plucinski, K. E. Smith, and M. Nowell;, Appl. Surf. Sci. 253, 1236 (2006).
- Electro-Chemical Comparisons between BEP and Standard EP of Niobium, F. Éozénou, S. Berry, Y. Gasser, J.-P. Charrier, and A. T. Wu, Proc. 14th Int. Conf. on RF Superconductivity, Berlin, Germany (2009), <u>http://accelconf.web.cern.ch/AccelConf/SRF2009/papers/thppo068.pdf</u>.
- Characterization of etch pits found on a large-grain bulk niobium superconducting radio-frequency resonant cavity, Xin Zhao, G. Ciovati, and T. R. Bieler, Phys. Rev. ST Accel. Beams **13**, 124701 (2010), <u>http://prst-ab.aps.org/abstract/PRSTAB/v13/i12/e124701</u>.
- Aging of the HF-H₂SO₄ electrolyte used for the electropolishing of niobium superconducting radio frequency cavities: Origins and cure, F. Eozénou, S. Berry, C. Antoine, Y. Gasser, J. P. Charrier, and B. Malki, Phys. Rev. ST Accel. Beams 13, 083501 (2010), <u>http://link.aps.org/doi/10.1103/PhysRevSTAB.13.083501</u>.
- Development of vertical electropolishing process applied on 1300 and 704 MHz superconducting niobium resonators, F. Eozénou, et al., Physical Review Special Topics Accelerators and Beams 17, 083501 (2014), http://link.aps.org/doi/10.1103/PhysRevSTAB.17.083501.

