Jefferson Lab Scientific Computing Infrastructure Update

CLAS Collaboration Meeting
July 2025

Brad Sawatzky

Tuesday, July 8, 2025

Jefferson Lab's High Throughput Computing – The Farm

- Farm has many components
 - ~30000 compute threads
 - ~11 PB Lustre
 - ~5 PB NFS/XRootD (ZFS)
 - ~100+ PB of (online) Tape
 - Consumes >400kW
 - GPU nodes available as well
 - Interactive nodes (ifarm240x)
- Growth is \$\$\$ and based on projections from Halls
 - Expenditures generally switch between storage + CPU every other year
 (FY25 is 'Compute' year; FY26 is 'Disk')
 - Computing projections assessed annually; next one Aug 2025

Jefferson Lab's High Throughput Computing – The Farm

- FY25 +1600 AMD EPYC 9354 "Genoa" cores
 - 4 GB/thread
 - Installation in Fall 2025
- FY23 3072 EPYC 7763 AMD "Milan" cores
- FY19 FY21 Were EPYC 7502 "Rome"
- GPU Node available but underutilized
 - 20 A800 (40 GB) cards
 - 18 A100 (80 GB) cards
- Planning for <u>Disk</u> purchase in FY26 (tentative)
 - → +10PB of /cache, /volatile (Lustre)

Disk Storage Areas and Their Uses

- There is strong demand for more disk. This is an explicit priority for for us.
 - High performance, reliable disk and associated infrastructure is still expensive and has been long lead...
 - We attempted to get ahead of the curve on disk in FY24 but JLab cancelled a planned Lustre disk purchase (We will try again in FY26)
 - NEW CephFS disk storage (standard POSIX) will add to /work in FY25 (~1 PB)
- Lustre Storage is good for large files, streaming, large block I/O, production farm runs.
 - Lustre is *not* good for small files, high IOPS, and frequent metadata operations (worst case: open, write 1kB, close, repeat)
- /work will not scale for large farm campaigns.
- Node-local /scratch is good for jobs with high IOPS to working files.
 - Note: SWIF-declared MSS files are automatically copied to node-local working directory
 - Old GlueX wrappers still doing this manually (watch for old code and update it)

Path	Best Use	FS Type	Deletion	backup
/cache	Bulk I/O, Migration to tape	Lustre	Once on tape	/mss
/volatile	Bulk I/O Temporary storage	Lustre	auto	NO
/work	Source code, DB files, exe's, etc. User Managed	NFS+ ZFS	manual	NO
/home	Dot files, personal documents, etc	NFS ssd	manual	YES
/farm_out	Farm job stdout/stderr	NFS ssd	auto	NO
/group or /scigroup	Source code Papers, thesis, analysis scripts	NFS ssd	Manual	YES
/scratch	Farm job I/O to node local disk	ssd	auto	NO
/u/scratch	CUE scratch. Deprecated (Unavailable on el9)			
/cvmfs	Software stack. Configuration.			

Jefferson Lab's High Throughput Computing – The Farm

- The farm is routinely busy
 - Utilization generally over 80%
- FairShare allocations are used to balance consumption between the halls
 - A,B,D ~26% each
 - C ~ 8%
 - EIC ~14%
 - Bursts beyond share when cycles are free
 - CLAS routinely claims free cycles.
 - NB: Hall A data volumes and analysis requirements rose to Hall B/D levels with the SBS program in 2025
- Data R+W to tape exceeded <u>13 PB</u> (!) in June 2025

Open Science Grid Processing

- The Open Science Grid continues to be a significant resource for Monte Carlo Simulation Compute Cycles. GlueX and CLAS12 are significant consumers of CPU cycles.
- EIC runs the bulk of their simulation on the OSG
- Encouraging Hall A (SBS, MOLLER) to follow your lead!

Recent and Near-term Infrastructure Updates (HW): 2025

- "Farm25" CPU node installation (late-fall)
 - This will require ~1day downtime for Farm in Oct/Nov. We will schedule/plan with your Hall Compute Coordinator!
- 20 new A800 GPUs installed (done)
 - Currently underutilized!
- "/work" disk increase (early-fall)
 - All NVMe disk; CephFS backed
 - Onsite S3 storage if there is interest(?)
- +4 tape drives brought online (done)
 - Tape system throughput is ~12.5 GB/sec
 - Significant optimizations to SW and HW backing Jasmine in May/July
- Tentative plan is to buy Lustre disk in FY26 (/cache, /volatile)
 - Guided by Hall needs/requests passed on by Hall Compute Coordinators

Hall ESX Virtual Machine Cluster

- VMs within the Hall experimental enclave are available
 - High-uptime infrastructure explicitly targeted to support Hall operations, etc.
 - Update policy, downtime scheduling for VMs defined by Hall Compute Coords as usual.
 - Ex: Slow control systems
 - EPICS softIOCs
 - Windows/Rockwell control systems
 - ie. Hall C: cmagnets, skylla10
 - PXE boot hosts/services
 - Ex: Data-base hosts
 - RCDB, CCDB hosts
 - Ex: "Remote CH" support hosts

- VM hosts functionally operate within the Hall subnets (no firewall issues)
 - Direct access within respective subnets
 - 2-factor hop (via. hallgw, etc) as with any existing Hall hosts
- Take advantage of VM flexibility
 - snapshotting / backups
 - auto-failover on HW issues
 - advantages wrt "cloning", load balancing, etc
- Keep this in mind for future deployments, HW upgrades, etc
 - Cheaper / better than HW for many applications

Infrastructure Updates (SW): 2025

- code.jlab.org (GitLab)
 - CI/CD
 - Container registry
 - JLab GitHub Org will remain while cost-effective
- CVMFS 'Stratum 0' for JLab
 - /cvmfs/jlab.opensciencegrid.org/ ← NEW
 - will replace /cvmfs/oasis.opensciencegrid.org/jlab/ at some point
- Kubernetes for workflows that don't fit Batch model
 - OpenShift 'enterprise' K8 platform rolled out in 2024; it was aggravating...
 - required significantly more 'backend' work than advertised
 - CI/CD now stable; other (internal) projects being deployed; adding some hardware to the cluster
 - more conventional K8 deployment being rolled out in TestBed
 - This is probably where Users should start

Rucio

- Distributed (large-file) data management framework
- EIC simulation campaigns in full production
- MOLLER, GlueX planned next
- Swif+Rucio file URI integration in progress
 - rucio://.....

JLab Research DB

- "One stop shop" to locate data, publications, workflow information, logbook references, etc...
- Ties into DOE and JLab Data
 Management policy changes that will be announced Fall 2025

code.jlab.org (GitLab Service)

- GitHub is getting \$\$\$
 - CI/CD, storage, etc are all metered costs
 - JLab is on a 'legacy' license model for now but limitations are frustrating
- JeffersonLab GitHub Org will be maintained as-is
 - BUT goal is for code.jlab.org to be a "value-added" proposition

- code.jlab.org (GitLab instance)
 - JLab run/managed
 - Open / Offsite access
 - Federated logins avail.
 - CI/CD and Storage can leverage our Farm
 - Built-in Container Registry
 - Supports several Data Management requirements important to JLab / PhysDiv

GSPDA Mini-Software Workshops

- Thanks to Grad Students PostDoc Assoc. for organizing!
 - Kate Evans (W&M)
 - Cameron Clarke (JLab)
- Targeting new JLab grad students and Farm users
 - ifarm/Farm basics
 - worked examples using git, slurm, swif, containers, etc
- JSA support could be better
 - Please advocate for funding in FY25!
 - Contributed talks would be great!

- Trying to make these at least annual:
 - May 2024 Mini Software Workshop, pt 1
 - Sep 2024 Mini Software Workshop, pt 2
 - May 2025 Computing Bootcamp

GSPDA Mini-Software Workshops

- Thanks to Grad Students PostDoc Assoc. for organizing!
 - Kate Evans (W&M)
 - Cameron Clarke (JLab)
- Targeting new JLab grad students and Farm users
 - ifarm/Farm basics
 - worked examp containers, etc
- JSA support co
 - Please advocate randing in FY25!
 - Contributed talks would be great!

- Trying to make these at least annual:
 - May 2024 Mini Software Workshop, pt 1
 - Sep 2024 Mini Software Workshop, pt 2
 - May 2025 Computing Bootcamp

Information Resources

- scicomp.jlab.org
 - SciComp web page
- scicomp-briefs
 - mailing list for JLab Scientific Computing

Documentation links

- Getting Started
- SciComp Knowledge Base
- CST User Portal
- JLab Helpdesk
 - helpdesk@jlab.org
 - Incident Request

How to find information

- Searching in JLab ServiceNow
 - ServiceNow is where SciComp (and other groups) are putting their documentation.
 - Search all of JLab ServiceNow from within Firefox:
 - Go to https://jlab.servicenowservices.com/scicomp and login (top-right)
 - Bookmark the page
 - Right-click on the bookmark you made and update all 3 fields like so:

Now you can type 'jsn <keywords>' in the Location bar for instant search

I want to hear from you

- What are the problems / pain-points in your workflows?
- Other question / comments?

Thank you!

Rucio

Distributed data management system SCIENTIFIC DATA MANAGEMENT SCIENTIFIC DATA MANAGEMENT

- Initially developed for ATLAS
- Highly scalable & modular
- Features
 - Basic data operations
 - Storage, transfer, deletion
 - Policy based replication (automatic)
 - Designed with distributed storage and 'protocol agnostic' data transfer methods in mind
- Can serve as a Replica/File catalog and metadata service
 - Can search its DB and present files matching names, metadata, etc

JLab Rucio Instance for EIC mature

- JLab ↔ BNL automated file registration and transport
- Works well with EIC/OSG simulation workflow
- More challenging than expected, but worth the work
- Next steps
 - "JLab" workflow integration
 - MOLLER, GlueX top candidates
 - Transparent Jasmine/tape integration
 - Backfill from existing tape library as needed

Containerization Support

SciComp/PhysDiv working on formal containerization support for Users

- Documentation
 - ie. Easy 'on-ramp' / how-to for common use cases
- "Official" Infrastructure support
 - Apptainer / Singularity
 - Docker, Podman support for image building and deployment
 - JLab GitLab Container Registry
- Among other benefits, Containers can provide
 - 'Plug and play' software configurations
 - SW version / configuration snapshots
 - Ability to run 'custom' software frameworks on other datacenters, computers, laptops
- Will also support/streamline workflow capture and data management going forwad

Apptainer (was Singularity)

works on both ifarm and farm

Podman

WORK IN

PROGRESS

- mostly works on ifarm9 now
- works on farm

Kaniko lives

Forked and maintained by Chainguard

Docker

- not happening on compute clusters
- but podman == docker (pretty much)
- Note: docker!= dockerhub

Improving Data Management at JLab

- There are a number of ongoing challenges with Data Management at JLab (and elsewhere!)
 - Difficulty capturing the analysis workflow
 - Software toolchain, metadata and calibrations, etc
 - Difficult/impossible to revisit prior 'working' code for comparison and cross-checks
 - Raw and Processed data locations may be insufficiently documented
 - Experimental metadata is being scattered more broadly as groups develop distributed and cloud-supported workflows (outside historical lab-provided frameworks)
 - Google Workspace/Groups vs. O365/Teams; Instant Messaging (Slack, Discord, SMS, etc); University/Institution provided wikis, document repos, etc.
 - We must to provide the right combination of Training, Policy, and appropriate software tools so the Users/Collaborations want to "stay in the fold".

Improving Data Management at JLab (2)

- Sustainable software and archival support (Containers)
 - Develop infrastructure to make it easier to capture, snapshot, archive, and restore software and workflows.
 - Improve infrastructure support and documentation for Containerizing workflows incl. "How-to's", template containers for existing workflows, etc.
 - Provide a Container registry (w/ history), and supporting gitbacked code repos
 - Much of this supported by new User-facing GitLab instance managed by JLab (full CI/CD support as well)
 - VM snapshots of Farm environments as 2nd layer of defense on running old code / containers
- Get a handle on what we do have and make it findable
 - New initiative: JLab Experimental Research DB

Improving Data Management at JLab (3)

- "JLab Experimental Research DB" is in the early stages of development
 - Directly supported by recent hire in PhysDiv (Anil Panta, Casey Morean)
 - Provide a '1-stop shop' to store and search information associated with Experiments executed at JLab
 - Provide a searchable database that contains a comprehensive set of information about an experiment.
 - Targets, beam characteristics, kinematics, reaction info
 - Proposals, papers, theses/dissertations, technical documents
 - machine readable "results" databases where available
 - References to raw and processed file locations
 - References to analysis software and workflow Containers
 - References to meta-data sources: RunDBs, Config DBs, Logbooks, Wikis, etc.
- We will take it in bite-sized steps that still provide value to the Lab and User community as a whole. Achievable and still useful will be our guiding principle.
 - Start by cross-referencing existing (but scattered) databases / data sources on and off-site
 - JLab Publication DB, proposal DB, experimental logbooks, wikis, web-sites, MSS URIs/paths (later Rucio datasets), JLab filesystem paths to working environments, etc
 - Reference software snapshots/workflows in the Container Registry
- This will be a long term project that we will refine as we go.

Improving Data Management at JLab (4)

- Continue to identify gaps in what we are providing to Users and address them
 - Instant Messaging (Slack, Discord, Teams, SMS, etc) has come to provide very valuable "real-time" support both when an experiment is on the floor and during analysis.
 - Too much "logbook-worthy" information is getting lost here.
 - We're evaluating our options (Teams for 'all', Cloud service licensing, Mattermost, etc.)

