RG-D: PID and Contamination Studies

CLAS Collaboration Meeting July 10th, 2025

Suman Shrestha Temple University

Outline

- **1. Ongoing Particle Identification Refinement**
 - a. Event Builder PID
 - b. Charged Hadrons PID
- 2. Contamination Studies
- 3. Summary and Outlook
- 4. Acknowledgement

Ongoing PID Refinement

S.N.	Detectors	Functions
1	HTCC	Separates electrons (positrons) < 4.9 GeV from pions, kaons, protons
2	LTCC	Detects charged pions > 3.5 GeV
3	RICH	Identifies charged kaons (3–8 GeV)
4	ECAL	Used primarily to identify electrons, photons, and neutrons
5	FT	Detects electrons and photons at polar angles between 2.5° and 4.5°
6	FTOF	Measures time-of-flight of charged particles
7	CND	Detects neutrons in the momentum range 0.2–1.0 GeV
8	СТОГ	Identifies charged particles in the momentum range 0.3–1.25 GeV
9	BAND	Detects backward neutrons with momenta between 0.25–0.7 GeV

P.S.: FT and BAND are not used in RG-D

Event Builder PID

<u>PID assignment in Event Builder (From Coatjava):</u> Step 1: Select the Trigger Particle (Electron)

Electron is identified first, as it serves as the trigger particle (If the particle's status is -ve). The selection is based on:

- 1. Charge Check \rightarrow Must be negative
- 2. HTCC \rightarrow nphe> 2 ensures the presence of a Cherenkov signal.
- 3. Energy Deposit in PCAL $\rightarrow E_{PCAL} > 0.06 \text{ GeV}$
- 4. Sampling Fraction (E/P) vs. $E \rightarrow$

Total energy: $E = E_{PCAL} + E_{ECAL}$

The SF should be within $\pm 5\sigma$ of the expected electron band.

If a particle passes all these conditions, PID= 11 is assigned and set the event start time using it.

Step 2: Assign PID to Other Charged Particles (Hadrons)

Once the trigger electron is selected, the remaining particles are processed:

- 1. Check Charge
 - a. Positive particles: Can be π^+ (211), K⁺ (321), p (2212), deuteron (45).
 - b. Negative particles: Can be π^- (-211), K⁻ (-321), etc.

2. Timing-Based Identification

- a. Compare measured vs. expected vertex time for different hadron hypotheses.
- b. Use FTOF (Time-of-Flight Detectors) for timing information.
- c. Compute timing difference (Δt) for each hadron type.
- d. Assign the PID of the hadron with the smallest Δt (best match).
- 3. Fallback to Signal Checks (HTCC & LTCC):
 - a. If timing does not match well, htccSignalCheck: nphe>2 & htccPionThreshold: P> 4.9 GeV → Assign Pion
 - b. If the timing matches and is a kaon, but ltccSignalCheck: nphe>2 & ltccPionThreshold: P> 3 GeV → Assign Pion
 - c. If the timing matches and is a proton, but ltccSignalCheck: nphe>2 & ltccPionThreshold: P> 3 GeV → Assign Pion

Charged Hadrons PID

The time difference (Δt) is calculated assuming the pion mass (pion hypothesis)

$$\Delta t = \left[t_{FTOF} - \frac{L}{\beta_h(p) \times c} \right] - t_{startTime} \quad \text{and} \quad \beta_h(p) = \frac{p}{\sqrt{p^2 + m_h^2}},$$

where, h: hadron, m: mass, p: momentum, c: speed of light, L: path length, t_{FTOF} : time of flight, and $t_{startTime}$: particle start time, while, L and t_{FTOF} are measured from the beam–target interaction point to the FTOF detector

Charged Hadrons PID (Cont'd)

- Data Selection for this Analysis:
 - 1. RG-D Data
 - 2. Target: Dual carbon foils (CxC)
 - 3. Even selection :
 - a. Trigger electron Cut
 - i. EB PID: 11
 - ii. status < 0
 - iii. Forward Detector
 - iv. |chi2pid| < 5, vz: [-10.56, 5] cm
 - 4. π^+ sample selection
 - a. charge > 0
 - b. Forward Detector
 - c. 3σ cut for ' Δ t'

See Mathieu Ouillon talk for ongoing RG-D Vz study and cuts

Charged Hadrons PID (Cont'd)

 Δt for all positively charged particles under the pion hypothesis

Selection of the +ve pions candidates

CLAS collaboration meeting, July 2025

Contamination Studies

- Two methods have been used to study K⁺ and proton contamination in the π^+ sample:
 - 1. Data-driven (experimental)
 - 2. Simulation-based

Data-driven (experimental)

Beta vs. momentum for all positively charged particles

Beta region to investigate the contamination: [0.95, 1.03]

Data-Driven Contamination

- 1. All positively charged particles β is plotted for each momentum bin.
- 2. After applying a $3\sigma \Delta t$ cut based on the pion hypothesis, β is re-plotted for the surviving positive candidates.
- 3. All positive particles are fitted with a total fit function composed of:
 - a. A double Crystal Ball function describing the pion and proton peak regions
 - b. A single Crystal Ball function describing the kaon peak region
- 4. Therefore, the contamination is evaluated as

 K^+ (or proton contamination) =

p: [3.1-3.4) GeV/c

The integral of K⁺ (or protons)under the π^+ 's area The integral of π^+ 's area

Data-Driven Contamination (Cont'd)

Data-Driven Contamination (Cont'd)

Suman Shrestha

CLAS collaboration meeting, July 2025

Contamination based on Simulation

- Two Monte Carlo (MC) banks have been used:
 - 1. MC::Particle Generated (or True) Particles
 - 2. REC::Particle Reconstructed Particles
- The reconstructed particles have been matched to the generated particles by requiring
 - a. matching charge, and
 - b. $\Delta \theta < 1^{\circ} \text{ and } \Delta \phi < 3^{\circ}$
- The contamination is evaluated as

 $K^{+} \text{ (or proton contamination)} = \frac{MC \text{ matched } K^{+} \text{ (or protons) reconstructed as } \pi^{+}}{All \text{ reconstructed } \pi^{+}}$

Preliminary Contamination Results

Summary and Outlook

- ✓ K⁺ and proton contamination in the π^+ sample has been studied using timing cuts from the FTOF detector with both experimental and simulated data
- ✓ Next steps: Cherenkov information from the LTCC detector will be explored for particle PIDs and further contamination studies to finalize them

Acknowledgement

This work is supported by the US DOE award #: DE-SC0016577

Thank

CLAS collaboration meeting, July 2025

