RG-D CT Studies

Matthew Maynes Mississippi State University On behalf of the CLAS Collaboration

Summer CLAS Collaboration Meeting July 10th, 2025

Outline

- Color Transparency (CT) Phenomenon
 - Brief Introduction
 - o RG-D Experimental Setup
- RG-D CT Experiment Status
 - Initial Particle IDentification
 - Ongoing Analysis and Preliminary Results
- Summary and Outlook

Brief Introduction: Experimental Observable

Coherence length, *l*: the lifetime of the qq-bar pair

Formation time, l_f : the time needed for the SSC to evolve to an on-shell ρ^0 meon

The CT signature is the increase of the medium "nuclear" transparency, T_{A} , as a function of the four-momentum transfer squared, Q^2 , where

$$T_A = \frac{\sigma_A}{A\sigma_N}$$

 σ_{A} is the nuclear cross section $\sigma_{_N}$ is the free (nucleon) cross section

 T_A

RG-D Experimental Setup

- Used a polarized electron beam with an energy of 10.5 GeV
- Standard CLAS12 configuration with FT-OFF
- 5-cm-long LD₂ cell in the newly built cryogenic system positioned at -5 cm relative to the CLAS12 center
- Remotely controlled 5-cm-apart solid-foil (C, Cu, and Sn) flag assembly centered @ -5 cm

Initial Particle Identification

- $\circ \chi^2$ is precision of reconstructed particle trajectories
- \circ Electron Selection
 - ➢ PID = 11
 - Particle must be in the forward detector
 - \succ -5 ≤ χ^2 ≤ 5
- $\circ \pi^+$ Selection
 - > PID = 211 > $-10 \le \chi^2 \le 10$
- $\circ \pi^{-}$ Selection
 - PID = -211
 −10 ≤ χ^2 ≤ 10

Sector-dependent z-Vertex Timeline

Vz vs Run Number

Particle Yield: Electrons

Electron Yield

Particle Yield: Positive Pions

Particle Yield: Negative Pions

 π Yield

Particle Yield: ρ^0

RG-D: Ongoing CT Analysis

• Kinematics for exclusive diffractive and incoherent ρ^0 electroproduction off nuclei

RG-D: Ongoing CT Analysis

With W Cut

RG-D CT Analysis: Invariant Mass Comparison

Q² (1-2) [GeV²]

12

RG-D CT Experiment Status: Invariant Mass Comparison

13

RG-D CT Analysis Status: $\pi^+\pi^-$ Invariant Mass Fit

- $\circ \pi^+\pi^-$ mass distributions for various Q² bins and less than 10% of all datasets
- A very preliminary fit using a simple Breit Wigner for the signal and a 3-D polynomial (*temporarily*) function for the background underneath the peak

4

• Nuclear transparency is extracted as

$$T_A = \frac{N_s^{\rho}}{N_D^{\rho}} (\frac{t_D \times \rho_D}{t_s \times \rho_s})$$

where,

- N_S^{ρ} is the ρ^0 yield from solid target
- N_D^{ρ} is the ρ^0 yield from LD₂ target
- $\circ \ t_S$ is the solid target thickness
- $\circ \ t_D$ is the LD_2 target thickness
- $\circ~\rho_S$ is the solid target density
- $\circ \rho_D$ is the LD₂ density

Summary and Outlook

- Refine particle identification, vertex, and fiducial cuts and corrections
- Perform background subtraction using our ρ⁰ event generator and the CLAS12
 GEant-4 Monte Carlo package
- Extract the preliminary nuclear transparency results for the three nuclei, C, Cu, and Sn, after applying various cuts and corrections
- $\circ~$ Identify various sources of systematic uncertainties related to the CT study in ρ^0 electroproduction off nuclei

Thank you

This work is supported in part by the US DOE award #: DE-FG02-07ER41528

Backup Slides

RG-D CT Kinematics

- v = E − E': Energy of the virtual photon
 Q² = −(P_e − P_{e'})² = 4EE'sin²(^θ/₂) : Transfer momentum squared
 t = (P_γ − P_ρ)² : Momentum transfer squared to target proton
 W² = (P_p + P_γ)² = −Q² + Mp² + 2Mpv : Invariant mass squared of hadronic final state
- $Z_h = E_{\rho}/\nu$: Observed hadron energy fraction

