RG-E Lambda Analysis and ALERT Al-assisted PIDs Update

CLAS Collaboration Meeting July 10th, 2025

Uditha Weerasinghe Mississippi State University

Outline

- RG-E Lambda Analysis
 - Semi-inclusive Deep Inelastic Scattering Production
 - SIDIS Kinematics Cuts
 - Particle Identification
 - Preliminary Vertex Cuts
 - Λ Production Channel
 - Event Mixing for Background Subtraction
- ✤ ALERT AI-assisted PID
 - AI/ML Alternative Solution
 - Data Sample Cleaning
 - Current Classification Accuracy

SIDIS Production

- Studying hadronization processes in SIDIS production helps improve our understanding of the confinement dynamics, a fascinating feature of Quantum Chromodynamics, the fundamental theory of strong interactions between quarks and gluons
- ✤ Hadronization process is characterized by two time-distance scales:
 - Production time (τ_p): Struck quark propagates as a colored object during the color-neutralization stage
 - Formation time (τ_f): Time needed for the color-neutral prehadron to evolve into a fully dressed hadron with its gluonic field

$$e + p \rightarrow e' + h + X$$

SIDIS Kinematics and Cuts

- The study of hadronization dynamics is probed in the SIDIS regime using this set of kinematics and cuts:
 - ν: electron energy loss or struck quark's initial energy
 - Q²: four-momentum transferred squared
 - $Q^2 > 1 \text{ GeV}^2$: to probe the intrinsic structure of nucleons
 - $y = \frac{v}{E_{beam}}$: electron energy fraction transferred to a struck quark
 - y < 0.85: to reduce radiative effects based on former HERMES studies
 - $W = \sqrt{M^2 + 2\nu M Q^2}$: total mass of the hadronic final state, where *M* is the nucleon mass
 - W > 2 GeV: to avoid contamination from the resonance region
 - $z_h = {}^{E_h}/{}_{\nu}$: struck quark's initial energy fraction carried by the formed hadron
 - *p_T*: hadron transverse momentum measured relative to the virtual photon direction

Particle Identification

- Particle ID:
 - Electron: +11
 - (+/-) pions: (+/-) 211
 - Proton: +2212
- Detectors cuts:
 - Electron should be in the forward region
 - Pions and protons are either in the forward or central region
- ✤ Fit quality cut:
 - 3 σ cuts on the χ² of reconstructed tracks

Preliminary Vertex Cuts

DC Vertex Distributions

FMT Vertex Distributions

Λ Production Channel

- Our channel of interest is Λ SIDIS production off nuclei
- A is identified through its decay daughter particles, proton and πdetected in coincidence with the scattered electron
- Cuts applied on secondary vertex to refine the Λ signal
 - Distance between the electron and secondary Λ vertex
 - Opening angle between protons and π⁻s

Event Mixing for Background Subtraction

- Event mixing technique proved to be effective in modeling the background in the Λ invariant mass for CLAS6 EG2 data
- Each correlated event protons and pions pairs are mixed, respectively, with pions and protons from uncorrelated events to model the combinatorial background underneath the Λ peak
- The RooFit library was used to assign probability distribution functions- Breit-Wigner for the signal and the mixed events sample for the background, to fit the invariant mass distribution and obtain the A yield

ALERT AI-Assisted PID

- Ongoing efforts to deploy AI and ML techniques to improve track reconstruction and particle identification.
- In this context, a Multi Layer Perception (MLP) model has been used to classify recoil nuclear-target fragments that are detected in the ALERT detector
- The CLAS12 ALERT detector consists of
 - A Hyperbolic Drift Chamber (AHDC)
 - A Time-Of-Flight detector (ATOF)
- Relying on conventional tracking is insufficient to distinguish nuclear-recoil fragments, such as helium-4 and deuterium, from each other

AI/ML Alternative Solution

- A MLP neural network with an input layer, several hidden layers, and an output layer which determines PIDs
- ✤ A set of 27 features to include the following inputs:
 - momentum, energy deposited, supercluster position, and the AHDC residuals;
 - cluster position, time, and the ATOF path length
- Currently, the MLP model is trained with a sample of 5 M events generated using GEMC, and reconstructed using the CoatJava
- As the ALERT AI track finding is further trained with the collected data, the PID MLP model will be tweaked accordingly before being integrated in CoatJava

Data Sample Cleaning

To clear the large outliers in the reconstructed training sample from simulation, the following cuts are used:

Variable	Selected Range	Percentage of Sample
Vx (cm)	[-0.2,0.2]	99.99%
Vy (cm)	[-0.2,0.2]	99.98%
Vz (mm)	[-600,-100]	90.29%
Px (MeV)	[-5000,5000]	94.98%
Py (Mev)	[-5000,5000]	95.12%
Pz (MeV)	[-5000,5000]	92.98%
Sum of ADC (arb.)	[0,45000]	99.99%
Sum of residuals (arb.)	[-25,15]	98.28%
chi2	[0,200]	98.33%
Number of hits	[0,16]	100%
Energy (MeV)	[0,250]	99.99%
Time (ns)	[124,132]	99.51%
X (cm)	[-100,100]	100%
Y (cm)	[-100,100]	100%
Z (cm)	[-50,170]	99.62%
Path length (cm)	[75,200]	99.87%
In path length (cm)	[1.4,25]	100%

Current Classification Accuracy

50000

40000

For Reconstructed Momentum 41338 18404 994 95 3345 3He 25 11678 50870 637 965 4He True label - 30000 415 41 6753 15297 deuteron -41669 - 20000 13 43 9469 53867 784 proton - 10000 3455 223 12192 965 47340 tritium 3He 4He deuteron proton tritium Predicted label Protons: 83.9 % Deuterons: 64.9 % Tritium: 73.7 % Helium-3: 64.4%

Helium-4: 79.3%

For Simulated Momentum

Summary and Outlook

- Efforts to calibrate the collected CLAS12 RG-E dataset are underway
- ✤ Analysis codes are under development to
 - improve particle identification, vertex cuts and corrections
 - polish the Lambda signal using secondary vertex cuts
 - improve the event mixing algorithm for the background subtraction underneath the Lambda peak
 - extract the Lambda preliminary results for multiplicity ratios and transverse momentum broadening

- Ongoing studies to improve the AI-assisted identification of the nuclear-recoil fragments, such as ¹H, ²H, ³H, ³He, as well as ⁴He via a multi-class classifier for the current ALERT experiment
- Efforts are being made to
 - Cross-check and compare with the collected real data
 - Implement the model using the Deep Java Library making it compatible with CoatJava

Thank You!

Backup Slides

Physics Observables

Multiplicity Ratio

$$R_{A}^{h} = \frac{\frac{N_{SIDIS}^{h(A)}}{N_{DIS}^{e(A)}}}{\frac{N_{SIDIS}^{h(LD_{2})}}{N_{SIDIS}^{e(LD_{2})}}}$$

 R^h_A describes the attenuation of formed hadrons, h, in the medium

Transverse Momentum Broadening

$$\Delta p_T^2 = \left< p_T^2 \right>_A - \left< p_T^2 \right>_{LD_2}$$

 Δp_T^2 is due to the energy loss of the propagating struck quark(s) and/or the elastic and inelastic scattering of prehadrons and hadrons

RG-E Experiment Setup

- RG-E experiments collected data during the spring of 2024 using the standard CLAS12 detectors with FT-OFF
- A double target assembly consisting of liquid deuterium (LD2) and solid foil targets placed inside the solenoid magnet

z-Vertex Comparison between DC and FMT

