Recent Update on the analysis of $\Lambda(1405)$ Electroproduction with CLAS12

Tatsuhiro Ishige (Tohoku University)
CLAS Collaboration Meeting

Contents

- Research background
 - \uparrow Λ (1405), Q^2 dependence
- Analysis
 - ◆ Decay modes
 - ◆ Event selection, background estimation
 - **♦** Fitting result
- Summary

Λ(1405)

Hadron states in $SU(3)_f$ group

- Success on mass spectrum reproduction by the constituent quark model (CQM)
- Large discrepancy in first Λ resonant states, Λ(1405)
- →Beyond the CQM description → Exotic hadron

Two-pole structure of $\Lambda(1405)$

Hadron molecular states of $\pi\Sigma$ and $\bar{K}N$ are expected

Chiral unitary model(ChUM) calculation

M. Mai, Eur. Phys. J. Spec. Top. (2021) 230:1593-1607

^{*} S. Navas et al. (Particle Data Group), "83. Pole Structure of the $\Lambda(1405)$ Region", Phys. Rev. D 110, 030001 (2024)

Q^2 dependence of $\Lambda(1405)$

Theoretical calculation of $\Lambda(1405)$ electroproduction

- Considered EM form factor of $\Lambda(1405)$ assuming charge rms radii by ChUM
- It results in different Q^2 dependence of each cross section for H and L

Λ(1405) electroproduction at CLAS e1f experiment

- Previous research (CLAS, e1f)
 - ◆ Two peaks(H and L poles) by pole structures
 - ◆ Statistics limitation → Very few Q2 dependence data
- Present research (CLAS12, RGK'18/RGK'24)
 - ◆ More statistics
 - lacktriangle Access to Q^2 dependence more precisely

Decay modes and Analysis flow

Associated decay modes of $\{e', K^+, \pi^-, p, \pi^0\}$

Analysis flow

Background estimation

This presentation

Yield correction

Cross section calculation

- RG-K, 2018, 6-GeV datasets
- No Q2 binning for now
- Yield correction and Calculation of cross section have not started

Event Selection

• Event Selection: Select $\{e',K^+,\pi^-,p\}$ events and select missing π^0

• Selection Steps

- ✓ Final state cut ... Select $\{e', K^+, \pi^-, p\}$
- √Z-vertex cut ... Vertex peaks with 3σ range
- Fiducial cut ... Not applied
- √PID cut ... Good identification for mom vs ΔTOF
- ✓ Missing particle cut ... Missing π^0 peak with 3σ range
- $\checkmark \Sigma$ cut ... Missing Σ^+ peak with 3σ range

Background Estimation

Resonant backgrounds

$$\Sigma(1385)$$
 $K^{+} + \Sigma(1385) \to K^{+} + \Lambda + \pi^{0} \to K^{+} + p + \pi^{-} + (\pi^{0})$
Invariant mass

$$K^{*0}$$

$$\underline{K^{*0}} + \Sigma^{+} \rightarrow \underline{K^{+} + \pi^{-}} + p + \pi^{0}$$
 Invariant mass

Not completed

- Number of events: Invariant mass
- Shape: Estimate by simulation

Performed

Other backgrounds

Non-resonant

$$K^{+} + \Sigma^{+} + \pi^{0} \rightarrow K^{+} + p + (\pi^{0}) + \pi^{-}$$

Accidental coin.

$$\{e', K^+, p, \pi^-\}$$

Performed

- Number of events: Estimate by simulation
- Shape: Estimate by simulation

Performed

Resonant Backgrounds

- Derive K^{*0} count ratio of exp./sim.
- Scaling simulated background by the ratio

$\Sigma(1385)$ events

- Λ band and Σ + band can be seen
- Events of $\Lambda(1405)$ and $\Sigma(1385)$ overlaying
- → Difficult to separate them by using only cuts
- Simulation estimation is needed

Other backgrounds

Non-resonant events

- Simulate non-resonant events
- Subtract K*O events in advance
- Fitting to adjust higher-mass tail ([2.2, 2.4] GeV) with simulated shape

Accidental events

- →True events are centered around 0 ns
- ΔTOF correlation between e' and K^+
 - ◆ Another bunch clusters can be seen
 - \bigstar (Acc. coin. events) / (true coin. events) ~ $10^{-3} \to$ The accidental events are negligible

Background subtraction & Fitting

Total cross sections of hyperon photoproductions

- Fit with BW+BW+Gaus
- Width $(\Gamma_{fit}^2 \sim \Gamma_{nat}^2 + (2.35\sigma_{det})^2)$
 - $\sigma_{det} = 21 \text{ MeV from } \Lambda(1405)$
 - $\sigma_{det} = 17 \text{ MeV from } \Lambda(1520)$
- Area
 - $\Lambda(1405)/\Lambda(1520) \sim 0.6$
 - ◆ ~0.5 at W=2.6 GeV from previous data

• Σ (1385) is still remaining, but reasonable result on width and area for Λ (1405) and Λ (1520) are obtained

Summary

- Present status
 - lacktriangle Background estimation was performed for K^{*0} , non-resonant, and accidentals
 - ◆ After subtracting, the fitting result is reasonable

- Next analysis step
 - \bullet Background estimation of $\Sigma(1385)$
 - ◆ Improving kinematics distribution of simulation
 - ◆ Acceptance correction

Backup

Datasets & Kinematical Range

Table of RG-K datasets

Run Period	Beam Energy (GeV)	Target	Collected Charge (mC)	
Spr2024	6.394	Full	91.35	
Spr2024	6.394	Empty	10.0	
Spr2024	8.477	Full	81.77	
Spr2024	8.477	Empty	10.09	
Dec2018	6.535	Full	18.23	\
Dec2018	6.535	Empty	2.35	Calibrated
Dec2018	7.546	Full	10.77	/
Dec2018	7.546	Empty	0.0	

- As a first step, develop analysis method using 6 GeV dataset of RG-K'18
- Then, integrate events over all datasets
- → More statistics than the previous result

Ranges of kinematical parameter from a dataset

- Dataset of RG-K'18 6 GeV
- After exclusively select $\{e', K^+, \pi^-, p\}$ and applying analysis cuts, the ranges are obtained

Reproducibility of Simulation

- Generator: clas12-elSpectro
- GEMC & COATJAVA: latest version

- Compare kinematics of experiment and $\Lambda(1405)$ simulation
- Simulated kinematics doesn't match well
- →Effect on background shape of nonresonant events
- Need to adjust it

Theoretical suggestion

Feynman diagrams of Λ(1405) electroprodction

Include Λ^* Dirac and Pauli form factor using charge rms radii by ChUM

- EM form factors of higher and lower poles are largely different
- Use charge rms radii of ChUM
- There should be Q2 dependence of the cross section if form factor is as predicted

Survival ratio

Step	Event Count Percen
 Total events processed	
After final state selection	j 43571 0.871
After Z-vertex cut	j 39555 90 . 7829
After PID cut	j 35003 88 . 4920
After Missing Particle cut	j 19855 j 56 . 723
After Sigma cut	j 19749 j 99 . 466

Survival ratio using $\Lambda(1405)$ simulated data

Selection Step	Event Count	Efficiency	Survival ratio
No cut	5.00 M	-	1.0
Final state	43.6 k	0.008	0.0087
Z-vertex	39.6 k	0.90	0.0079
PID	35.0 k	0.88	0.007
Missing particle	19.9 k	0.57	0.004
Σ	19.7 k	0.99	0.0039