CLAS Collaboration Meeting July 9, 2025

Recent Spectroscopy results from CLAS

Veronique Ziegler

Hadron spectroscopy at CLAS: The Big Picture

Study of hadrons by measuring their mass, widths, quantum numbers, and decay properties.

- To understand how the strong force, described by QCD gives rise to the spectrum and internal structure of hadrons. A key focus is the discovery and characterization of *excited baryonic states* (N*, Δ*, Ξ*) and the search for *exotic hadrons* (e.g., hybrid mesons, glueballs).
- CLAS instrumented to perform spectroscopy studies with high precision

•Electron Beam: Provides polarized beams for precise measurements of spin observables.

•**Targets**: Typically liquid hydrogen or deuterium for spectroscopy analyses.

•CLAS12 Detector: Large-acceptance spectrometer used to detect and reconstruct multi-particle final states.

•Photoproduction & Electroproduction Reactions: Tools to probe hadron resonances and internal structure.

CERN Courier

Gell-Mann and Zweig on Exotic States

- The discovery of a lot of new particles (*Particle Zoology*) in the sixties led to a need to classify them
 → "Eightfold Way" SU(3) flavor symmetry (Gell-Mann and Ne'eman).
- Led to the Quark Model (proposed by Gell-Mann and Zweig independently) → hadrons as bound states of quarks.
- Gell-Mann and Zweig's theoretical framework allowed for the existence of "qqqqq" states (tetraquarks) and "qqqqq" states (pentaquarks), also mentioning possibilities like glueballs and hybrids.
- About 4 decades later new states (*Particle Zoology 2.0*) with unexpected features were observed, prompting renewed interest in the possibility of exotic hadrons which had been only hypothesized until then.

Exotic hadrons

• Hybrids

- Exotic quantum numbers (i.e. 0⁺⁻,1⁻⁺,2⁺⁻ not possible for conventional states)
- Molecules
 - Close to the threshold of the two hadrons they are made of
 - Narrow widths above threshold
 - Decay through suppressed channels
- Tetraquark, Pentaquark states
 - Narrow widths above threshold
 - Expected to have charged partners

Strange pentaquark Molecular (top) and compact (bottom) interpretations of the P_{ccs}(4338) pentaquark discovered by the LHCb collaboration in 2022. Credit: D Dominguez

Brand new LHCb's latest tetraquarks, illustrated here as single units of tightly bound quarks, go by the names $T^a_{c\bar{s}o}(2900)^o$ and $T^a_{c\bar{s}o}(2900)^{++}$ in the new naming scheme. Credit: CERN

Baryonium states

٠

- E.g. Nucleon-Anti-nucleon bound states
- Non-resonant production
 - Threshold enhancement or cusp effect
 - Cross-channel re-scattering, intermediate mesons

Lattice QCD Evidence that the $\Lambda(1405)$ Resonance is an Antikaon-Nucleon Molecule

Jonathan M. M. Hall, Waseem Kamleh, Derek B. Leinweber, Benjamin J. Menadue, Benjamin J. Owen¹, Anthony W. Thomas, and Ross D. Young

BES-II: a) $M(p\overline{p}) - 2m_p$

[1]Bai, J. Z., et al. "Observation of a Near-Threshold Enhancement in Th P Pbar Mass Spectrum from Radiative J/Psi-->gamma P Pbar Decays." *arXiv.Org*, 7 Mar. 2003, arXiv.org/abs/hep-ex/0303006v1.

[2] Ablikim, M, et al. "Spin-Parity Analysis of Ppbar Mass Threshold Structure in J/PSI and Psi' Radiative Decays." arXiv.Org, 5 Dec. 2011, arxiv.org/abs/1112.0942.

Searches for missing (excited) hyperon states

- Excited Ξ 's
 - Improve knowledge of excited baryons with strangeness
 - Parity and polarization measurements
 - Searches for missing excited hyperon states
- Nucleon resonance studies
 - Study the baryon spectrum to map the Q² evolution of excited states
- $\Omega\text{-}$ in photo- and electro-production
 - Not seen in this production mechanism
 - First cross section measurement

SU(6)xO(3) Classification of Baryons

Motivation for the analysis of the $\Lambda(1405)$ with CLAS12

- Λ(1405) [I=0, J^P=1/2⁻, S=-1] located slightly below the K
 K
 N threshold decays into the πΣ channel through the strong interaction.
- Existence theoretically predicted in 1959 by Dalitz and Tuan, based on the analysis of the experimental data of KN scattering.
 R.H. Dalitz and S.F. Tuan, "The phenomenological description of -K-Nucleon reaction processes," Annals of Physics 8 (1959) 100–118.
- Description of the $\Lambda(1405)$ as hadron molecular state

Previous CLAS results

- Position of poles measurement
- Study of Q² dependence not possible due to limited statistic
 - Possible with high statistics obtained with CLAS12

M. Mai, Eur. Phys. J. Spec. Top. (2021) 230:1593-1607

* S. Navas et al. (Particle Data Group), "83. Pole Structure of the Λ(1405) Region", Phys. Rev. D 110, 030001 (2024)

Expect two states in one resonance!

^{*} H. Lu et al., Phys. Rev. C 88, 045202 (2013)

Courtesy of Tatsuhiro Ishige – Tohoku U.

Analysis of the $\Lambda(1405)$ with CLAS12

Search for the $\Lambda(1405)$ in the reaction: $ep \rightarrow e'K^+(X)$ by missing mass technique

• RG-K data (*E*beam = 7.5 *GeV*, 6.5 *GeV*)

Mass (GeV/c²)

Courtesy of Tatsuhiro Ishige – Tohoku U. 7

Analysis of the $\Lambda(1405)$ with CLAS6

Analysis of the $\Lambda(1405)$ Cross Section as a function of -t

• g-12 data (*E*beam = 5.7 *GeV*)

Preliminary – under analysis review

- Trevor Reed thesis (2024) differential cross-section measurements for Λ(1405) photoproduction
- Results in good agreement with prior photoproduction measurements (CLAS g11) with extended energy range over g-11 data.

Motivation for Baryon – Antibaryon analyses with CLAS12

[b] Li, Hao. "Baryon-Antibaryon Photoproduction Off the Proton." Carnegie Mellon U, 2023.

- Search for Baryon-Antibaryon structures in electroproduction off proton target with CLAS12 RGA data
 - High statistics (significantly higher statistics than CLAS photoproduction sample)
 - Results shown based on CLAS12 RGA Spring-19 data (~ 15% of RGA-2018/19 dataset → > factor 10 increase in signal yields obtained in electroproduction compared to CLAS6 photoproduction data sample)
 - Investigate multiple channels with Baryon-Antibaryon particles in the final state
 - High statistics allow for amplitude analysis

Baryon – Antibaryon electroproduction off the proton at CLAS12

- Reactions •
 - $ep \rightarrow eppp$
 - $ep \rightarrow epp\pi^-\overline{n}$
 - $ep \rightarrow ep\overline{p}\pi^+n$

 $ep \rightarrow epp(\overline{p})$

- Fit

recoil electron detected in the FD

1.0MM(epp)[GeV/C²]

٠

7000

5000 ·

______ ≝ 4000-

3000

2000

1000

ounts / 10 MeV 00 00

₹ 2500

\$1 2000

3 1500

1000 50

0.8

1.0

 $Q^2 \in [1, 6]$

- Missing mass technique used
- Electron in EC or Forward Detector

Preliminary

recoil electron detected in the FT

 $Q^2 [GeV^2/c^2]$

• Binning Missing Mass distribution by Q^2

• $Q^2 \in [0.6, 6]$ with 9 equally spaced bins

 Q^2 Bins

8000

Preliminary

	ep	γp
$\frac{Y_n}{Y_{\overline{p}}}$	4%	0.52%

Analysis Goals:

- First time high statistics cross section • extractions of Baryon-Antibaryon in electroproduction
- Amplitude analyses

Courtesy of Leonel Martinez – FIU, with contributions from FIU students Alexander Lohr and Edward Morell

Motivation for Cascade Baryons analyses with CLAS12

Missing Cascade States

- Number of excited Ξ 's predicted from SU(3) symmetry greater than the number of states seen experimentally
- Incomplete knowledge of quantum numbers
- Production mechanism still unclear

Particle	J^P	Overall status	Status as seen in —				
			$\Xi\pi$	ΛK	ΣK	$\Xi(1530)\pi$	Other channels
Ξ(1318)	1/2 +	****					Decays weakly
Ξ(1530)	3/2 +	****	****				
Ξ(1620)		**	**				
Ξ(1690)		***	**	***	**		
Ξ(1820)	3/2 -	***	**	***	**	**	
Ξ(1950)		***	**	**		*	
$\Xi(2030)$		***		**	***		
Ξ(2120)		*		*			
$\Xi(2250)$		**					3-body decays
Ξ(2370)		**					3-body decays
$\Xi(2500)$		*		*	*		3-body decays

State	PDG rating	Width (MeV)	J^P
$\Xi(1320)$	****		$\frac{1}{2}^+$
$\Xi(1530)$	****	9.5	$\frac{3}{2}^+$
$\Xi(1690)$	***	< 30	$\frac{1}{2}^{-}?$
$\Xi(1820)$	***	24	$\frac{3}{2}^{-}$
$\Xi(1950)$	***	60	?
$\Xi(2030)$	***	20	$\frac{5}{2}$?

Evidence of existence is only fair. Evidence of existence is poor.

• Search for excited Cascades in the exclusive reaction: $ep \rightarrow e'K^+K^-(\Xi^-)$ [missing mass technique]

Courtesy of Bianca Gualtieri - FIU

Jose Carvajal, Ph.D. thesis "First Time Measurement of Ground State Ξ⁻ Hyperon Cross Section in Electroproduction" (2024)

- First cross section measurement for the ground state Cascade in electroproduction
- RG-A data (*E*beam = 10.2 *Ge*V)

Cascade Baryons analyses with CLAS12

Search for excited Cascades in the reaction: $ep \rightarrow e'K^+K^-(\Xi^-)$ by missing mass technique

• RG-K data (*E*beam = 7.5 *GeV*, 6.5 *GeV*)

Q^2 Bin Average (GeV^2)

Courtesy of Bianca Gualtieri - FIU

Cascade Baryons analyses with CLAS12

2.3

MM(K⁺K⁺e⁻

Search for the $\Xi(1690)$ in the reactions: $ep \rightarrow e'K^+ K^+K^-(\Lambda)$ and $ep \rightarrow e'K^+ K^+\pi^-(\Xi^0)$ (missing mass technique) • RG-A data (*E*beam = 10.2 *GeV*)

- $ep \rightarrow e'K^+ K^+ K^-(\Lambda)$ channel: $\Xi(1690)^- \rightarrow K^-\Lambda$
- Reconstructing 3 kaons
- Contamination from $ep \rightarrow e' \phi(\rightarrow K^+ K^-) N^*(\rightarrow \Lambda K^+)$

- $ep \rightarrow e'K^+ K^+ \pi^-(\Xi^0)$ channel: $\Xi(1690)^- \rightarrow \pi^- \Xi^0$
- Reconstructing 2 kaons and a pion
- Contribution from $ep \rightarrow e' K^+ Y^* (\rightarrow K^+ \Xi^- (\rightarrow \Lambda \pi^-))$

- First analysis to search for the $\Xi(1690)$ in electroproduction
- Analysis to be done 6x more statistics
- Goal is to extract J^P and branching ratios

Courtesy of Asli Acar – University of York

Strangeness Production Studies with Λ 's

^{1.50} m((p π') (π^{*})) (GeV)

Polarization Observables for Λ 's

First observation of the reaction ep \rightarrow e' $\Lambda K^*(892)^+$ in electroproduction using RGK Pass-2 data (6.5, 7.5 GeV)

- Clean Λ spectrum \rightarrow reduces background in extraction of physics observables from mis-reconstructed Λ candidates
- Studies of beam-recoil spin transfer in electro-produced $K^+\Lambda$ final states from unpolarized proton target have shown that the Λ polarization is predominantly in the direction of the spin of the virtual photon.
- For the **electro-produced K***+ Λ final state, the spin of the u-quark is the same as for K+ Λ
 - \rightarrow test hypothesis that the Λ spin direction should flip.

A Search for the $\Omega^{-} Baryon$ in RGA Data

- Not observed in electro- (photo-) production
- Part of Very Strange program
- Possible *evidence* for a peak in m((p π^-) K⁻) distribution consistent with the Ω^-

• Spring-18 RG-A dataset to be included

Meson Spectroscopy with photons at CLAS12

 Quasi-real photoproduction with CLAS12 (Low Q² electron scattering) using a Forward Tagger detector to investigate the light quark meson spectrum and search for hybrid meson states

The MesonEx Program:

- Detailed mapping of the meson spectrum up to 2.5 GeV mass.
- Search for rare or poorly known states (strangeness-rich, scalars, ...).
- Search states with unconventional quark-gluon configurations.
- Ongoing di-meson photoproduction analyses:
 - Current analyses of final states with charged mesons (π , K) \rightarrow better resolution (acceptance correction, background modeling).
 - Model-independent moment analyses, Partial Wave Analyses (PWA) → structures in the moments can suggest the presence of resonances.
 - Analysis techniques to be extended to vector-pseudoscalar final states.

- Detection of multiparticle final state from meson decay in the large acceptance spectrometer CLAS12
- Detection of the scattered electron for tagging the quasi-real photon in the CLAS12 Forward Tagger (low angle detection 2.5 to 4.5°)
- High-intensity and high-polarization tagged
 "photon" beam; degree of polarization can be
 determined event-by-event from the electron
 kinematics

MesonEx analyses with CLAS12

Moment analysis for the reaction: $\gamma p \rightarrow p \pi^+ \pi^-$ using RG-A data (*E*beam = 10.6 *GeV* on LH2 target)

 $\gamma p \rightarrow p \ \pi^+\pi^-$ channel:

- Detection of all particles in the final state
- Clear observation of the $\rho(770)$, f₂(1270), $\rho(1690)$
 - Moment, PWA analysis taking baryon into account ongoing
 - Preliminary results in good agreement with expectations from S-channel helicity conservation and pomeron exchange
- Similar ongoing analysis of the $\gamma p \rightarrow \gamma p \text{ K}^+\text{K}^-$ channel (Charlie Velasquez, U. of York)

Courtesy of Derek Glazier– University of Glasgow

Motivation for the search for the exotic $\pi_1(1600)$ with CLAS12

Evidence from COMPASS in pion diffraction data:

- 3-pion final state analysis to search for the exotic spin-1 isovector meson $\pi_1(1600)$ [I=1, J^{PC} = 1⁻⁺]
- Seen in $\eta\pi$, $\eta'\rho$, $\rho(770)(\rightarrow\pi^+\pi^-)\pi$ channels

Feasibility of PWA with CLAS12

- $\gamma p \rightarrow n\pi^{+}\pi^{+}\pi^{-}$ process is described as sum of 8 isobar channels:
 - $a_2 \rightarrow \rho \pi$ (D-wave)
 - a₁ $\rightarrow \rho \pi$ (S-wave)
 - a₁ \rightarrow ρ π (D-wave) π₂ \rightarrow ρ π (P-wave)
 - $\pi_2 \rightarrow \rho \pi (\text{P-wave})$ $\pi_2 \rightarrow \rho \pi (\text{F-wave})$
 - $\pi_2 \rightarrow f_2 \pi$ (S-wave)
 - $\pi_2 \rightarrow f_2 \pi$ (D-wave)

 $\pi_1 \rightarrow \rho \pi$ (P-wave) (exotic)

- Amplitudes calculated by A. Szczepaniak and P. Guo
 - CLAS12 acceptance projected and fitted
 - PWA is stable against CLAS12 acceptance / resolution distortion

MesonEx analysis: a search for the exotic $\pi_1(1600)$ with CLAS12

Search for the $\pi_1(1600)$ in the reaction: $\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$ using RG-A data (*E*beam = 10.6 *GeV* on LH2 target)

 $\gamma p \rightarrow \pi^+ \pi^+ \pi^-(n)$ channel:

• Preliminary results on subsample of dataset shows feasibility to carry out the analysis with complex PWA involving multiple isobars

Courtesy of Derek Glazier– University of Glasgow

Summary

- High precision and large data sample provided with CLAS12 allows for a rich spectroscopy program.
 - Various targets, beam energy to probe production mechanism and allow for an extended physics reach over CLAS6.
- CLAS12 well positioned to contribute to exotic hadrons searches and observations of excited baryons as part of its hadron spectroscopy program.
 - Ability to reconstruct final states with multiple particles.
- Tools for PWA analyses in place to study spin-parity assignments of identified states.
- Future directions: continued analyses on newly collected and processed large data samples to further studies of resonance decays and multi-hadron final states.
- Collaborative efforts among experimentalists and the involvement of theorists greatly impacts the success of this program.

BACK-UP SLIDES

CLAS12 Event Display

CLAS12 PID

Forward Calorimeter sampling fraction for electrons

