Common Vertex Finder & Analysis Tools Updates

Veronique Ziegler

Common Vertex Finder Service

- Service included in coatjava release
- Available for cooking
- Minimal impact on processing time
- 1. For each track
 - Swim backwards to fixed
 Z to get starting point of trajectory
 - Swim forward to fixed Z to get starting point of trajectory
- 2. Compute Doca of track2(1) to track1(2) obtained from swimming track2(1) where the swimming is stopped when the Doca to trajectory2(1) is minimal
- Compute r as the distance between the so-obtained doca points of each track

Common Vertex Finder

- Run service as last in YAML,
- Can be run on DST's postprocessing or as part of the "cooking"
- If running stand-alone, needs MagField service

```
io-services:
  reader:
   class: org.jlab.io.clara.HipoToHipoReader
   name: HipoToHipoReader
  writer:
   class: org.jlab.io.clara.HipoToHipoWriter
   name: HipoToHipoWriter
services:
 - class: org.jlab.clas.swimtools.MagFieldsEngine
   name: MAGFIELDS
  - class: org.jlab.rec.service.vtx.VTXEngine
   name: VTX
configuration:
  global:
   variation: rga_fall2018
    timestamp: 12/31/2020-00:00:00
     triggerMask: "0x1"
## uncomment the following two lines for compatibility with alignments before th
     dcMinistagger: "NOTONREFWIRE"
     dcFeedthroughs: "OFF"
   io-services:
     writer:
       schema_dir: "absolute-path-to-schema-folder"
       schema_dir: "/home/clas12-1/chef/myClara/plugins/clas12/etc/bankdefs/dst"
  services:
   MAGFIELDS:
      magfieldSolenoidMap: Symm_solenoid_r601_phi1_z1201_13June2018.dat
      magfieldTorusMap: Full_torus_r251_phi181_z251_25Jan2021.dat
mime-types:
 - binary/data-hipo
```


Use of Common Vertex Finder in Strangeness Production Studies with Λ' s

Reconstructed $\Lambda \rightarrow p\pi^-$

Using displaced vertex reconstruction

Clean reconstructed invariant mass spectrum

Study hyperons
 properties with
 higher precision
 → decay products
 track parameters
 at decay vertex

Analysis Tool to Reconstruct Decays

Look In:

illo common-tools

- > 🛍 clara-io
- > **iiii** clas-analysis
- > iiii clas-decay-tools
- > maclas-detector
- > **iiii** clas-geometry
- > Me clas-io
- > **iiii** clas-jcsg
- > **m** clas-logging
- > Me clas-math
- > **m** clas-physics
- > Me clas-reco
- > me clas-tracking
- > me clas-utils
- > **iiii** cnuphys
- > Me coat-lib
- > ms swim-tools

🗸 👺 clas-decay-tools

∨ Image: Source Packages

igo org.jlab.clas.decay.analysis

- Analysis.java
- AnalysisEngine.java
- Constants.java
- Decay.java
- Particle.java
- Reaction.java
- - Reader.java
 - Mriter.java

 Tool to store information of reconstructed decays

$$P \rightarrow D1 + D2$$

$$\downarrow \qquad \qquad G1 + G2$$

- Reads reconstructed 2track common vertex bank (REC::VertDoca)
 - Doca
 - Corrected momentum at vertex
 - Common vertex
 - ➢ PID
- If REC::VertDoca bank nonexistent, runs common vertex finder algorithm

Decays Output Bank Rows Layout

$$P \rightarrow D1 + D2$$

$$\downarrow \qquad \qquad G1 + G2$$

Rows ordering:

Track combinations:

- O P
- o **D1**
- o **G1**
- o **G2**
- \circ K

•	2 charged trac	ks	\checkmark
	- changea dae		•

- 1 charged track + 1 neutral tracks
- 2 neutral tracks

E.g
$P \rightarrow \Lambda + K$
$p + \pi$

	idx	ndau	dau1idx	dau2idx	pid
0	200	2	100	4	999
1	100	2	1	3	3122
2	1	0	0	0	2212
3	3	0	0	0	-211
4	4	0	0	0	321

ру	pz	r	vx	vy	vz
0.22372	4.11822	1.10521	0.23421	-0.2929	-0.0894
0.37817	3.31521	0.69567	0.51442	-0.59534	-0.4573
-0.01355	2.21961	0.0	0.70460	-0.72710	-0.7171
0.39171	1.09560	0.0	0.32424	-0.4635!	-0.1976
-0.15444	0.80301	0.0	-0.04599	0.00949	0.27857

Bank Structure

```
Look In: hipo4
"name": "DECAYS::Particle".
                                                                                                  alert.json
                                                                                                                           htcc.json
                                                                                                              dcnn.json
                                                                                                                           1tcc.json
                                                                                                  band.json
                                                                                                               decays.json
"group": 900.
                                                                                                bmt.json
                                                                                                              ecal.json
                                                                                                                           mc.json
"item" : 11.
                                                                                                  bst.ison
                                                                                                              event-ai.ison
                                                                                                                           neuralnetwork.ison
"info": "Reconstructed Particle Information".
                                                                                                              event.json
                                                                                                                           raster.json
                                                                                                cnd.json
"entries": [
                                                                                                 Cvt.json
                                                                                                              fmt.json
                                                                                                                           README.md
                                                                                                                           recoil.json
                                                                                                data.json
                                                                                                              ft.json
    {"name":"idx".
                              "type": "S", "info": "particle idx"},
                                                                                                              header.json
                                                                                                                           rich.json
                                                                                                dc.json
                              "type":"I", "info":"particle id in LUND conventions"},
    {"name":"pid",
    {"name":"emc",
                              "type":"F", "info":"particle mass constrained energy"},
    {"name":"erec".
                              "type":"F", "info":"reconstructed particle energy"},
    {"name":"e",
                              "type":"F", "info": analysis particle energy (sum of constrained energies of daughters
    {"name":"ovx".
                              "type":"F", "info":"x component of the vertex at the production vertex (cm)"},
                              "type":"F", "info":"y component of the vertex at the production vertex (cm)"},
    {"name":"ovy",
    {"name":"ovz".
                              "type":"F", "info":"z component of the vertex at the production vertex (cm)"},
                              "type":"F", "info":"x component of the momentum (GeV)"},
    {"name":"px",
                              "type":"F", "info":"y component of the momentum (GeV)"},
    {"name":"py",
    {"name":"pz",
                              "tvpe":"F". "info":"z component of the momentum (GeV)"},
                              "type":"F", "info":"x component of the uncorrected momentum at the vertex (GeV)"},
    {"name":"upx",
                              "type":"F", "info":"y component of the uncorrected momentum at the vertex (GeV)"},
    {"name":"upy",
    {"name":"upz",
                              "type":"F", "info":"z component of the uncorrected momentum at the vertex (GeV)"},
    {"name":"vx".
                              "type":"F", "info":"x component of the vertex (cm)"},
    {"name":"vy",
                              "type":"F", "info":"y component of the vertex (cm)"},
    {"name":"vz",
                              "type":"F", "info":"z component of the vertex (cm)"},
    {"name":"r".
                              "type":"F", "info":"distance between helices for 2-particle decay (cm)"},
    {"name":"charge".
                              "type": "B", "info": "particle charge"},
                              "type":"F", "info":"particle mass (GeV)"}.
    {"name":"mass".
    {"name":"umass".
                              "type":"F", "info":"particle uncorrected mass (GeV)"},
    {"name":"ndau".
                              "type": "B", "info": "number of daughters"},
                             "tvpe": "S". "info": "daughter 1 idx"},
    {"name":"dau1idx",
                             "tvpe":"S". "info":"daughter 2 idx"},
    {"name":"dau2idx",
                             "type":"S", "info":"daughter 3 idx"},
    {"name":"dau3idx".
                              "type": "B", "info": "det=0 for central, det=1 for forward tracker"}
    {"name":"det",
```

rtpc.json

urwell.ison

tof.json

DECAYS Service YAML File

```
io-services:
                         reader:
                          class: org.jlab.io.clara.HipoToHipoReader
                          name: HipoToHipoReader
                        writer:
                           class: org.jlab.io.clara.HipoToHipoWriter
                          name: HipoToHipoWriter
                       services:
                        class: org.jlab.clas.swimtools.MagFieldsEngine
                           name: MAGFIELDS
                        - class: org.jlab.clas.decay.analysis.AnalysisEngine
                           name: DECAYS
                        - class: org.jlab.clas.decay.analysis.AnalysisEngine
                           name: DECAYS2
                      configuration:
                        global:
                          variation: rga fall2018
                             timestamp: 12/31/2020-00:00:00
                             triggerMask: "0x1"
                        io-services:
                           writer:
                             compression: 2
                              schema_dir: "absolute-path-to-schema-folder"
                             for example:
                             schema dir: "/Users/ziegler/BASE/Analysis/Analysis/coatjava/etc/bankdefs/hipo4/"
                        services:
                          MAGFIELDS:
                             magfieldSolenoidMap: Symm solenoid r601 phi1 z1201 13June2018.dat
                             magfieldTorusMap: Full torus r251 phi181 z251 25Jan2021.dat
                          DECAYS:
                            pass: "1"
                                                                    Uses PDG codes:
      D1 \rightarrow G1 + G2
                             decays: "3122:2212:-211:0:1.05:1.75"
                                                                    D1:G1:G2:G3:P lower mass: P upper mass
                          DECAYS2:
                             pass: "2"
P \rightarrow D1 + D2
                                                                    P:D1:D2:D3:P lower mass: P upper mass
                             decays: "996:3122:22:0:1.05:11.0"
                      mime-types:
```

- binary/data-hipo

• 3-body decay → still needs validation

Grapes Updates

- New skim for analyses using reconstructed $\Lambda \rightarrow p \pi^-$ events
- Lambda events filtering (Yuri Gotra):

Lambda skims are separated based on the following cuts:

- 1) No **RECFT::Particle** bank, trigger electron in **REC::Particle** bank, , particles with PID=2212 and -211 are present
- 2) Trigger electron in **RECFT::Particle** bank, particles with PID=2212 and -211 are present
- 3) First (trigger) particle in **REC::Particle** bank is not electron (positron or pion), particles with PID=2212 and -211 are present

In RG-A Spring 2018 inbending the combined size of 3 skims is 8.5% (50 nA runs) In RG-A Spring 2018 outbending the combined size of 3 skims is 13% (40 nA runs)

YAML:

```
- class: org.jlab.jnp.grapes.services.LambdaWagon
  name: LAMBDA1
 - class: org.jlab.jnp.grapes.services.LambdaWagon
 name: LAMBDA2
 - class: org.jlab.jnp.grapes.services.LambdaWagon
 name: LAMBDA3
configuration:
 services:
  LAMBDA1:
  id: 1
   forward: 11:2212:-211:X+:X-:Xn
  LAMBDA2:
  id: 2
  tagger: 11:2212:-211:X+:X-:Xn
  LAMBDA3:
  id: 3
   noetrig: 11:2212:-211:X+:X-:Xn
```

											ticle]	[REC::Pai
wagon #1	22	2112	2112	2112	2112	2112	2112	2112	0	2212	-11	pid :
Wagon #1	4010	2010	2010	4100	4130	2010	2010	2010	2000	4100	-2231	status :
		0	0	0	0	0	0	0	1	1	1	charge :
]												0
											Particle]	[RECFT::F
				22	211	2212	1	13	11	-211	11	pid:
				2010	2100	2100	LO 2	-111	1110	2220	2221	status :
wagon #2											ticle]	[REC::Pai
				2	1 2	212 21	22	11	11	-211	11	pid:
				10	20	0 210	210	1110	1110	2220	-2221	status :
				0	,		1	-1	-1	-1	-1	charge :
											rticle]	[REC::Pa
wagon #3			<u>)</u>	2112	22	22	22	211	11	-211	211	pid :
				2010	2010	2010	2020	2230	1110	2210	-2200	status :
				0	0	0	0	1	-1	-1	1	charge :

Summary and Outlook

- Common Vertex Finder service available in current release used for cooking should be included in data processing YAML
- Decays reconstruction service available
 - Sequential decays (multiple sequential decays still in development)
 - Combinations of charged tracks validated
 - Used for Lambda analyses I presented at previous meetings
 - Combinations of charged+neutral or neutral+neutral tracks → validations needed
 - 3-body decays implemented → validations needed
 - Most analyses that would use the Decays service need combination of charged tracks \rightarrow test using other channels besides Λ 's. Used for Beam Spot calibration analysis (Derek Holmberg).
- Lambda skim in trains to be included in upcoming data cooking(s)