
Trevor Reed

Florida International University

A Modular Software Stack for 

A(i)DAPT

Steven Goldenberg, Daniel Lersch

Jefferson Lab Data Science Group

A(i)DAPT Group

CLAS Collaboration



2

A(i)DAPT: AI to Improve CLAS Simulations

• A(i)DAPT – AI for Data Analysis and PreservaTion

• Broad Goal: Develop a machine learning event generator 

(simulations) 

• Much faster than traditional simulations

• Could potentially extend measurements to regions outside of acceptance



3

Data Science Group Contributions to 
A(i)DAPT

• Convert original Jupyter Notebook implementation to modular software stack

• Improved readability, maintainability, and scalability

• Stored on GitHub

• Reduced code redundancies

• Inner GAN and outer GAN utilize much of the same underlying code

• Incorporate the Python framework Hydra for configuration management

• Utilizes registration system

• Enhance collaboration by allowing for easy swapping of modules

• Includes unit-tests for testing of individual modules/functions

• Reproduce already achieved results in this new framework

• Optimize/improve training



Caption Here

4

Using GAN’s (Generative Adversarial 
Networks) to Model Detector Response

• GAN: Two opposing neural 

networks

• Generator: Takes in GEN 

data and produces 

“synthetic” REC events

• Discriminator: Takes the 

synthetic REC events and 

“real” REC events and 

attempts to distinguish 

them

Inner 
(Folding) GAN

Outer 
(Unfolding) 

GAN

T. Alghamdi et al. 

Toward a generative 

modeling analysis of 

CLAS exclusive 2𝜋 

photoproduction. 

Phys. Rev. D, 

108:094030, 2023.



Running the Software: Getting Started

• Two GitHub repositories you’ll need 

to copy and install:

• https://github.com/JeffersonLab/jlab_dat

ascience_core.git

• https://github.com/JeffersonLab/jlab_dat

ascience_exp_hall.git

• There is a tutorial document with 

detailed instructions

• Will be made available very soon

5

https://github.com/JeffersonLab/jlab_datascience_core.git
https://github.com/JeffersonLab/jlab_datascience_core.git
https://github.com/JeffersonLab/jlab_datascience_core.git
https://github.com/JeffersonLab/jlab_datascience_exp_hall.git
https://github.com/JeffersonLab/jlab_datascience_exp_hall.git
https://github.com/JeffersonLab/jlab_datascience_exp_hall.git


Configurations

• Several yaml files in 

aidapt_toolkit/configs/ 

• For inner GAN, use:

• hydra_basic_config.yaml 

• For outer GAN, use:

• hydra_outer_config.yaml 

• Yaml config files determine inputs, 

network architectures, epochs, etc.

• Configuration options can also be 

specified in the command line

• Configurations files are saved in 

output directory 

6



Configurations: Data Input

• Input data paths should be 

specified according to your 

inputs

• The files at these locations were 

copied from 

/work/data_science/quantom/aidapt

_at_quantom/data/

• 𝜋+𝜋−𝑝 photoproduction (g11 

simulation configurations)

• See 

aidapt_toolkit/data_prep/lab_vari

ables_to_invariants.py for data 

file structure
7



Utilizing Prebuilt Container: Running Interactively

• NOTE: A container is not required to run software

• Provided as a convenience

• Already-built container for both interactive and batch running

• /work/clas12/reedtg/data_science/aidapt_10-14-24-

update/jlab_datascience_exp_hall/Hall_B/AIDAPT/TFContainers/build_1/tensorflow-2.16.1-

gpu.sif

• Run container interactively

• hydra_driver.py is the primary executing file for the inner GAN 8



Utilizing Prebuilt Container: Running on Batch 
Farm

• Command:

• Provide command in SLURM (or SWIF2) submission script

• Can request to run on GPU

• Example SLURM submission script at:
 /work/clas12/reedtg/data_science/aidapt_10-14-24-

update/jlab_datascience_exp_hall/Hall_B/AIDAPT/container_slurm_sub_script

9



Inner GAN Training Results

• Model is trained on 4 kinematic variables (shown on right)

• Input for inner GAN is phasespace simulation of these 4 

variables

• Plots show results after 80,000 epochs

• These plots are saved automatically in output directory

• distributions.png (right)

• training_analysis.png (below)

10

Lo
ss

Gradient Norm



Training Outer GAN

• Once inner GAN is trained, the same 

steps can be used to train outer GAN

• Outer GAN reads from a different yaml 

file, hydra_outer_config.yaml

• Model architecture is a bit different

• Additional configurations:

• folding_id

• folding_path

• These point to the already trained and 

saved inner GAN model

• Appropriate driver to run the outer 

GAN training is outer_gan_driver.py
11



Outer GAN Training Results

• “Realistic” simulation (i.e. not phasespace)

• Considers the 3 dominant intermediate 

resonances

• 𝑝𝜌0

• Δ++𝜋−

• Δ0𝜋+

• Input to outer GAN generator is only 1 

variable

• Mandelstam 𝑠 (∝ 𝐸𝛾)

• Plots show results after 120,000 epochs

• Outer GAN typically takes a bit longer to 

converge

12



Additional Training Feedback

• At the end of the configuration (yaml) 

files is a section called “metrics”

• Here, the user can turn on/off 

additional training metrics

• Layer-specific gradient norms

• 𝜒2 test

• Discriminator accuracy test

• The “<metric_name>_frequency” line 

determines how frequently (in terms of 

epoch) the metrics will be calculated 

and saved

13



Training Metrics Plots

14

𝜒
2

A
cc

u
ra

cy
Layer-specific Gradient Norm



Final Remarks

• This reworked software stack should improve usability, reproducibility, 

debugging, readability, etc.

• The model, metrics plots, and configuration files are saved to the output folder 

after training.

• Some hyperparemeters (epochs, network architecture, learning rate, etc.) will 

likely need to be adjusted for various training datasets

• This newer framework makes it relatively simple to change these values from the 

configuration files

• Should be no need to go into the bulk of the code 

• We’ve produced a document to serve as an overview and guide for using this 

software produced by the JLab Data Science Group for A(i)DAPT

• The tutorial document should be followed, especially when initially setting up the software

• This work was done to make the jobs of those presently in A(i)DAPT easier 

• We also encourage others who are interested to try it out 15



QUESTIONS?

Thank You



Backup Slides



Utilizing Prebuilt Container: Running on Batch 
Farm

• Command:

• singularity exec --nv \

 --bind /absolute/path/to/jlab_datascience_exp_hall:/jlab_datascience_exp_hall \

 /absolute/path/to/container_image/tensorflow-2.16.1-gpu.sif \

 sh -c "cd /jlab_datascience_exp_hall/Hall_B/AIDAPT && \

 python3 aidapt_toolkit/drivers/hydra_driver.py”

• Provide command in SLURM (or SWIF2) submission script

• Can request to run on GPU

• Example SLURM submission script at:
 /work/clas12/reedtg/data_science/aidapt_10-14-24-

update/jlab_datascience_exp_hall/Hall_B/AIDAPT/container_slurm_sub_script

18



Utilizing Prebuilt Container: Running Interactively

• NOTE: A container is not required to run software

• Provided as a convenience

• Already-built container for both interactive and batch running

• /work/clas12/reedtg/data_science/aidapt_10-14-24-

update/jlab_datascience_exp_hall/Hall_B/AIDAPT/TFContainers/build_1/tensorflow-2.16.1-

gpu.sif

• Run container interactively

• > singularity run --bind/path/to/jlab_datascience_exp_hall:/jlab_datascience_exp_hall 

/path/to/container_image/tensorflow-2.16.1-gpu.sif

• Apptainer> cd /jlab_datascience_exp_hall/Hall_B/AIDAPT

• Apptainer> python3 ./aidapt_toolkit/drivers/hydra_driver.py

• hydra_driver.py is the primary executing file for the inner GAN
19


	Slide 1
	Slide 2: A(i)DAPT: AI to Improve CLAS Simulations
	Slide 3
	Slide 4: Using GAN’s (Generative Adversarial Networks) to Model Detector Response
	Slide 5: Running the Software: Getting Started
	Slide 6: Configurations
	Slide 7: Configurations: Data Input
	Slide 8: Utilizing Prebuilt Container: Running Interactively
	Slide 9: Utilizing Prebuilt Container: Running on Batch Farm
	Slide 10: Inner GAN Training Results
	Slide 11: Training Outer GAN
	Slide 12: Outer GAN Training Results
	Slide 13: Additional Training Feedback
	Slide 14: Training Metrics Plots
	Slide 15: Final Remarks
	Slide 16: QUESTIONS?
	Slide 17: Backup Slides
	Slide 18: Utilizing Prebuilt Container: Running on Batch Farm
	Slide 19: Utilizing Prebuilt Container: Running Interactively

