Status of RG-E inclusive analysis

Ryan Milton UC Riverside

CLAS Collaboration Meeting July 10th, 2025

Overview of analysis

- Goal: dσ/dxdQ² for different nuclei with improved electron selection with RGE
- LD2 + C data from runs 20131-20176 pass 0.7

Represents about 1% of the inbending LD2 + C data (25.8 mil./2.7 bil. events)

Event builder electrons

- Start with particles labelled as electrons by Event Builder
 - >2 photoelectrons in HTCC
 - >60 MeV in PCAL
 - Negative track
 - ±5σ cut on sampling fraction vs E_{dep}

Additional cuts

- Status cut to ensure electron is in forward detector:
 - -4000 < status ≤ -2000
- DIS cuts:
 - \circ Q² > 1 GeV²
 - W > 2 GeV
 - o y < 0.8
- Extra cuts:
 - \circ $\theta > 5^{\circ}$
 - o 2 GeV < p < 8 GeV
- Cuts follow procedures from RGA and RGM analysis notes

UCR

PCAL fiducial cuts

- Decrease in sampling fraction near the edges of the PCAL
- Remove edge effects by cutting out non-constant electron SF area:
 - PCAL V > 14 cm, PCAL W > 14 cm

DC fiducial cuts

- Remove tracks with high χ²/NDF
- Cut on track distance to DC edge:
 - Region 1: Distance > 4.5 cm
 - Region 2: Distance > 3.5 cm
 - Region 3: Distance > 7.5 cm

Partial sampling fraction cut

 Remove high energy pions by removing >4.5 GeV particles below linear region

SF vs. E_{dep} cut

- Tighten sampling fraction vs. E_{dep} to μ ± 3.5σ
- Fit sampling fraction distribution in every E_{dep} bin with a Gaussian
 Fit Gaussian mean and standard
- Fit Gaussian mean and standard deviations with a trinomial

Target selection

- Fit z vertex distribution with sum of two Gaussians
- LD2: μ_{LD2} ± 3σ_{LD2}
 C: μ_C ± 5σ_C

Fraction of particles removed

- 7.6% of particles are labelled as electrons by Event Builder
- Go from ~112.7 million particles to ~8.8 million e⁻ to ~2.9 million e⁻

Cut Name	% of Event Builder electrons remaining after cut
Status cut	99.1%
DIS cuts and extra kinematic cuts	58.7%
PCAL & DC fiducial cuts	39.9%
Partial sampling fraction cut	38.2%
SF vs. E _{dep} cut	37.5%
Vertex cuts	33.9%

Vertex distributions

Using clasdis simulation data for comparison to data (pass 0.7)

Comparing Monte Carlo to Data

- Reweighting simulation to data (pass 0.7)
- Discrepancies between data and simulation seem consistent with previous analyses (e.g. RGA)

Comparing Monte Carlo to Data

- Will do unfolding with a version of Iterative Bayesian Unfolding
 - IBU used in "Inclusive Electron Scattering in the Resonance Region off a Hydrogen Target with CLAS12" (arXiv:2501.14996)
 - o IBU version we'll use detailed here: R. Milton, et al., JINST 20, P05034 (2025)

Differential cross sections

- After our cuts and target selection, can plot cross sections
- Still needed: Acceptance corrections/unfolding, radiative corrections

Summary

- Interested in dσ/dxdQ² of nuclei
- Refined the Event Builder electron identification with fiducial cuts and selection cuts
- Monte Carlo comparison is looking reasonable based on previous analyses
- Next step is to apply acceptance corrections/unfolding and radiative corrections
- Working on a common analysis note to detail electron selection

Thank you!

Backup

Simulation fiducial cuts

Simulation fiducial cuts

Simulation electron selection

Simulation electron selection

RGA MC distributions

Figure 60: Comparison between pass1 cooked data [black] and MC [red] with torus -1, for the different variables of the scattered electron.