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J/IY Near-Threshold Photoproduction

We are interested in measuring the process:
eN - e'J/YN - e'lTI”N

Close to the 8.2 GeV threshold, )/ photoproduction is
predicted to be mediated by the exchange of two gluons.

Allows to probe the nucleon mechanical form factors via
GPD or holographic QCD models.

The quark mechanical form factors have already been
investigated in the context of DVCS. )/ allows to probe

the gluonic mechanical form factors.
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JIY Photoproduction on the Free Proton

GlueX -Hall D

The GlueX Collaboration has made
measurements of the total and differential
cross section over the full near-threshold

range.

Jip 007 - Hall C

The J/Y - 007 Collaboration has made
precision measurements of the differential
cross section as a function of t in 10 bins

of Ey.

CLAS 12 - Hall B (P. Chatagnon)

Measurements of the total and differential
cross section produced on the free proton
are currently undergoing internal CLAS
collaboration review.
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J/Y Photoproduction On the

Neutron

CLASI12 can make a first measurement of the near-
threshold cross section on the bound neutron (and
proton) in deuteron.

The cross section can be used to compare the
proton and neutron gluonic properties.

Comparing the cross section on proton and neutron
allows to test the isospin invariance of the
production mechanism.
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J/Y Photoproduction in RG-B

We are interested in measuring incoherent J/\ (quasi-real )
photoproduction on the proton and neutron in the RG-B
deuterium target.

Look at the channels:

€ Phouna — €)W p — (e)eTe™p (LD, target)
e Npouna — €'J/P n — (eNeTe™n (LD, target)

Can compare with RG-A measurements:
ep —€'J/p — (e')ete™p (LH, target)

Use all available RG-B data.

Run Period Beam
Energy
(1))

spring2019 10.60

spring2019 10.60

spring2019 10.20

fall2019 10.41

spring2020 10.39
Total

Beam

Current
(nA)

50
50
40

50

Accumulated Fraction of
Charge (mC) Total (%)
7.1 6.63

19.91 18.59
39.39 36.78
12.29 11.48
28.40 26.52
107.09 mC
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Cross Section Calculation

Total cross section as a function of
quasi-real virtual photon energy

Ny E)

Number of |/
from fit in EY bins

O O(Ev)

Luminosity:

Ny is calculated from the photon flux
It and pr are the target length and
density

Photon Flux vs Photon Energy
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Final State Particles

eN — (e')eTe™N

Identification

et /e ID starts with event builder PID & fiducial cuts.
Refine the lepton identification with ML.

Event Builder PID for protons.

No ID for neutrons, only use charge.

Select earliest neutrals to remove secondary neutrons.

Systematic uncertainty around 5-15 % for ID
procedures.

Corrections

Apply some corrections to reconstructed momentum.

Correct for e~ — e~ y by adding momentum of nearby
photons.

Variation <10% for momentum correction

Obtain ratio of neutron detection efficiency in data to
simulation to correct simulation.

Systematic uncertainty ~10 % for efficiency correction.
Jelferson Lab biu
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Event Selection

Efficiency
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Use gaussian or template fit, vary background between
2"d order and exponential.

Exclusivity
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Efficiency Calculation
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The efficiency calculation takes into account geometrical acceptance and
detection efficiency effects on the measured J/ rate.

CLASI2 Data
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This is obtained by looking at the ratio of generated to reconstructed
events.
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Several corrections are applied to the MC:

* Smearing to reconstructed momentum and angles.
* Neutron detection efficiency.

* Reconstruction efficiency as a function of beam current. 14000
* Fiducial cuts. 12000
 Efficiency ratios for e+/e- PID and exclusivity cuts. 10000
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Bethe Heitler Normalisation

Compare the expected number of Bethe Heitler events in MC
to that in CLASI2 data, the ratio of the two gives us our
normalization.

Events / (0.01)

400,
This accounts for errors in the efficiency and flux calculations. :
300
Fit Q% in eTe™ invariant mass region of 2.0 - 2.9 GeV. Only %10° 200[%- CLASI2 Data
5 q 0 . 0 —~45 !
photoproduction events in this region are from Bethe Heitler. 5 2
- 100 %
Add background to MC. =400 -
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The size of the normalization factor is well understood: B : ,':Cf?ati_ f
: 2 15 weight after fit for
* w=0.954 1+ 0.193 = with corrections to MC 5 o uncertainty)
* w=0.695 + 0.140 = without (some) corrections to MC 1OR
5\,
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Total Cross Section

Points plotted at mean of E), distribution in bin, with
error bar given by the uncertainty on the mean.

The comparison between the proton and neutron is
informative in that it suggests that the production
mechanism of |/ near-threshold must be isospin
invariant, or that the isospin breaking is smaller than
the uncertainty on the cross section.

The comparison between the free and bound proton
cross sections demonstrates that the contribution
from final state interactions (or EMC type effects)
must be smaller than the uncertainty on the cross
section.
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Differential Cross Section

The differential cross section can be related to the gluonic
mechanical form factors and the mass radius of the nucleon.

Due to limited statistics in neutron channel, extract cross
sections in one large E,, bin.

Compare bound proton to RG-A & GlueX in smaller E, bin as
sanity check.

The comparison of the cross sections produced on the proton
and neutron suggests a similar distribution of the gluonic content
of both nucleons.

The comparison between the free and bound proton suggests
that the nuclear in-medium effects for the deuteron are smaller
than the uncertainty on the differential cross section.
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Mechanical Form Factors

Fit the mechanical form factors shown below to differential cross

0.5—_
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o =
Some assumptions in fit: 0.2
* Neglect B(t) and C(t). :
* Assume tripole shape for mechanical form factors. 017

* Use bootstrapping to estimate uncertainty.
* Fix A¢—( to the average gluon PDF from CTI8, do N iterations

where vary value of A slope parameter which is fixed during fits.
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Mass Radii
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Nucleon Mass Radius

12.0
. ] W RG-B: npoung Target
VMD Interpretation - # RG-D: b Targe
11.5 ] RG-A: p Target
. # GlueX: p Target
i . . # Hall C: p Target
A scalar mechanical form factor G(t) gives access to 11.0- Pre I mi nar)’
the mass radius of the nucleon. Assuming a dipole i +
form for G(t): 10.5 | E :
g _ 2 — My 2 > i 5
dt G ((1 _ L)Z) é 10.0- —
m2 > - - #
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. —
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JPAC analysis of Hall C and GlueX data showed 8.5-
that VMD might be unsuited to high mass meson -
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Conclusion

JIW near threshold photoproduction has received a lot of
interest in recent times due to its predicted ability to probe
the nucleon gluonic properties.

We can make a first measurement of the cross section of |/
near threshold photoproduction on the neutron.

Preliminary results have been obtained demonstrating good
agreement between the cross section measurements on the

neutron and proton in the deuteron and with the free proton.

The analysis has been submitted for CLAS collaboration
review. YWe aim to submit the article to PRL.
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Simulated Data

Use JpsiGen and TCSGen event generators.
Add fermi momentum of proton and neutron in deuterium.

Calculates simple J/) and Bethe Heitler (BH) cross sections, weight data
using:

W:psf'Lint'U
Ngen

Final state interaction contribution to BH cross section assumed to be
negligible (see M. Cai, T. Liu, B.-Q. Ma, Chinese Phys. C 48 014103 (2024) ).

Rate of change as a function of beam current is corrected.

Ad-hoc smearing obtained by comparing widths of J/( invariant mass peak,
missing mass squared peak and Q? slope.

Missing Spectator Proton Momentum
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Simulated Data

Use JpsiGen and TCSGen event generators.
Add fermi momentum of proton and neutron in deuterium.

Calculates simple J/) and Bethe Heitler (BH) cross sections, weight data
using:

W:psf'Lint'U
Ngen

Final state interaction contribution to cross section assumed to be small
(see M. Cai, T. Liu, B.-Q. Ma, Chinese Phys.C 48 014103 (2024) ).

Rate of change as a function of beam current is corrected.

Ad-hoc smearing obtained by comparing widths of J/( invariant mass peak,
missing mass squared peak and Q? slope.
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Simulated Data

20

Use JpsiGen and TCSGen event generators.
Add fermi momentum of proton and neutron in deuterium.

Calculates simple J/) and Bethe Heitler (BH) cross sections, weight data
using:

W:psf'Lint'U
Ngen

Final state interaction contribution to cross section assumed to be small
(see M. Cai, T. Liu, B.-Q. Ma, Chinese Phys.C 48 014103 (2024) ).

Rate of change as a function of beam current is corrected.

Ad-hoc smearing obtained by comparing widths of J/( invariant mass peak,
missing mass squared peak and Q? slope.

MM? o [GeV?]

MM? o vs E,

0.14

0.12

0.1

0.08

0.06

0.04

0.02

IllllI[|III|III|III|III|III[[

Legend
—&— RG-B Data

—&— MC Data

—ae— MC Data With Smearing

* @0
e o

w0

1 | | 1
9.2

] 1 1
9.4

| | 1 ] 1 | 1 | 1 1 1 | | |
9.6 9.8 10 10.2 104 10.6



21

Electron/positrons

1- False Positives Rate

Identification Momentum Corrections
e® /e™ ID starts with event builder PID & fiducial cuts. Correct for e~ = e~ y by adding momentum of nearby
photons.

Refine the lepton identification with ML.
Add more general momentum corrections.
Systematic uncertainty around 5-15 % for 1D
procedures. Variation <10% for momentum correction.

e- Sampling Fraction vs LV

Missing Mass Squared
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Protons & Neutrons

Identification Corrections

: Apply some corrections to momentum.
Event Builder PID for protons. PPYY
Obtain ratio of neutron detection efficiency in data to

No ID for neutrons, only use charge . : : .
simulation to correct simulation.

Select earliest neutrals to remove secondary neutrons. , , o , ,
Systematic uncertainty ~10 % for efficiency correction.
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Fitting Details |

Models Hall C Assumptions

In holographic QCD a higher dimensional duality relates

spin-2 fields to gravity. J/\J is produced by the exchange Use same assumptions as Hall C analysis:
of gravitons (tensor 2++ glueballs) and scalar (0++) * Neglect B(t) - in concordance with both models and
glueballs. lattice QCD.

e Neglect C(t) when evaluating the cross section and
In the GPD framework, large skewness at threshold radii .
allows to relate the scattering amplitude to gluon GPDs. | ¢ Assume tripole shape for mechanical form factors.
The mechanical form factors are extracted from the * Fix A;~( to the average gluon PDF from CT18.

first moments of the GPDs.

Jeftg-rgon Lab CInga
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Use bootstrapping to correctly estimate uncertainties.

Have four parameters:
« my, A slope and intercept of A form factor
* mg, CY ~ slope and intercept of D form factor

A® was fixed in analyses on free proton, choose to do
the same.

When varying parameters within reasonable range,
several solutions for m, parameter are found = not
enough information in data to constrain all
parameters.

Fix m, parameters when fitting, repeat bootstrapping
for 50 values m, sampled from gaussian with mean/o

taken from free proton fit.

Cut on fit reduced y?, and parameters less than 3 ¢

-#- Mean = 2,572

o
00—

Fixed my,
sampled 50
times

1.00 125 1.50

1.75
m_A

2.00

-#- Mean = 1,842

225 250 275

-#- Mean = 1.784

.ggé-gon Lab CInga
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