Hall-B Status Report

- News from Hall-B Group and Collaborations
- Run Schedule and Run Preparation for Hall B
- Update on Hall-B Theses and Publications

There will be a Hall-B Business Meeting this Friday 12:00 pm with information on projects, subcontracts and research tracking

Patrick Achenbach

July 8, 2025

News from Hall-B Group and Collaborations

News from Hall-B Group

JOINT APPOINTMENTS

- **▶ New Joint Appointment with Lamar University**
 - 5-year assistant professor position with Hall B
 - Candidates have been interviewed
- Joint Appointment of Anselm Vossen with Duke U
 - JLab support discontinued after two 3-year terms
 - Continuation of Hall B projects at Duke U with more specialized support from JLab/Hall-B in future

TRANSITIONS

- Donald Williams left Spin-Polarized Fusion Team
 - Transitioned to a permanent Technician position in Physics Division Target Group
 - Continues to work on Hall B projects
- Gagik Gavalian left Hall B Offline Software Group
 - Continues to work on Hall B projects

POSTDOCS

- New LDRD Postdoc position on AI/ML
 - Selected candidate rejected position
 - Position not re-approved by leadership
- Richard Tyson will leave in mid October
 - Regular completion of his 2-year term
 - Regular succession is planned

PROMOTIONS

- Florian Hauenstein to Staff Scientist II
- Rafayel Paremuzyan to Staff Scientist II Congratulations, well deserved!

Awards to Hall-B Staff

Tom W. Bonner Prize in Nuclear Physics

Volker Burkert

 "For exemplary leadership in the development of high-performance instrumentation for large acceptance spectrometers that have enabled breakthroughs in fundamental nuclear physics through electroproduction measurements of exclusive processes"

11/20/1985: Volker's 1st day at CEBAF

Service Award

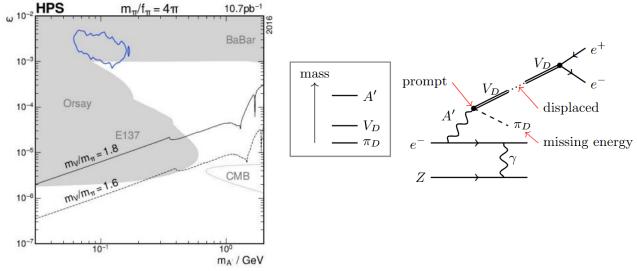
- Calvin Mealer
- For 25 years of dedication to JLab

Employee Excellence Awards

Calvin Mealer, Dontre Tucker, Steve
 Docherty

For their outstanding service to JLab

Feodor Lynen Research Fellowship


- Bhawani Singh
- Declined due to incompatibility of JLab as host institution

News from Hall-B Collaborations

HPS COLLABORATION

- Semi-annual HPS Collaboration Meeting at JLab from June 3–5, 2025 with 23 registered participants
- SIMPs paper draft "Displaced Vertex Searches for Electroproduced Strongly Interactive Massive Particles with the 2016 HPS Dataset" based on two analysis notes from Alec Spellmann and Tom Eichlersmith using full unblinded 2016 statistics:

Improvements in calibration, alignment, processing

PRAD COLLABORATION

- PRad-II/X17 passed the Experimental Readiness Review on May 8–9, 2025
 - Review committee provided constructive comments and few recommendations
 - Preparations for PRad-II/X17 run in FY26 continuing with close monitoring of procurements and installation schedule
- McMule Group joined PRad Collaboration as collaborators on radiative corrections:

Run Schedule

FY25 Run Status

SAD or scheduled Run Group	Setup / Status	Target	Beam Energy	Start Date	End Date	Scheduled Calendar Days	Remaining PAC Days Before Run	Scheduled PAC Days = Cal Days/2	Actual PAC Days from ABUs	Remaining PAC Days After Run	
SAD 2024				2024-05-19	2025-03-19	304					
RG-L	ALERT	high pressure gas	2,1	2025-04-05	2025-04-12	7	55,0	3,5	1,0	54,0	
	pass change			2025-04-12							
RG-L	ALERT	high pressure	11	2025-04-12	2025-07-01	80	54,0	40,0	36,0	18,0	last week
RG-L	ALERT	high pressure gas	11	2025-07-01	2025-08-04	34	18,0	17,0		1,0	\leftarrow
	pass change			2025-08-04							
RG-L	ALERT	high pressure gas	2,1	2025-08-04	2025-08-07	3	1,0	1,5		-0,5	end of
	pass change			2025-08-07							run in Sept.
RG-L	ALERT	high pressure gas	6,6	2025-08-07	2025-09-03	27	17,0	13,5		3,5	←
SAM 2025	reconfigure					151	sum:	75,5			

pass change

- We are at about 60% of the run time with about 50% of ABUs collected [with 1 significant digit]
- 2 additionally approved weeks compensating for 2 lost weeks because of accelerator issues

Change-over from ALERT DIS to SRC Run

- Two consecutive pass changes in one week should be scheduled on Monday & Thursday
 - Option 1: week starting July 28, 2025
 - Option 2: week starting August 4, 2025
- ALERT DIS (high-energy) run
 - Still recovering from particularly low accelerator availability in early May (about 1 week behind)
 - Running median current (325 nA) while originally low- and high current parts were planned;
 scheduled run time is expected to provide sufficient statistics for all approved analyses
 - Assuming high run efficiency in July, Option 1 would complete the experiment
- ALERT SRC (low-energy) run
 - Benefits from commissioning/debugging/repairs
 - Assuming high run efficiency in August, Option 2 would complete the experiment

Note: assuming high run efficiencies both in July and August, we are fine either way

Update on Run Schedule Planning

- ► PRad-II/X17 passed Experiment Readiness Review on 8-9 May, 2025
 - Hall C plans a program that requires reducing energy gain to around 700 MeV/pass
 - This fits well with the low beam energies required for PRad-II
 - Such beam energies will not be available during the coming years of MOLLER running
- **ERR for RG-G will not happen in FY26:** Irradiation infrastructure and LiD samples will not be ready in January 2026 to produce highly-polarized target material
 - Chris Keith: "It is looking more and more like we'll get one chance per year at the injector and that is the month or so before beam is delivered to the halls."
- RG-A / RG-B / RG-E / RG-K will be ready: small modifications to the Hall-B cryotarget planned
- HPS could be ready for FY27

Many scheduling aspects were discussed during the last Hall-B Business Meeting in March 2025

FY26 Run Schedule

					sum:	154	sum:	68,5		
X17 Search	HyCal/GEMs	Ta foil	2,2	2026-05-09	2026-06-29	51	60,0	25,5	34,5	
	reconfigure			2026-05-04	2026-05-09	5				
PRad-II	HyCal/GEMs	H2 gas	2,2	2026-04-04	2026-05-04	30	12,0	15,0	-3,0	setup change
	CEBAF rescale			2026-03-23	2026-04-04	12				4
PRad-II	HyCal/GEMs	H2 gas	0,7	2026-03-02	2026-03-23	21	22,5	10,5	12,0	
	pass change			2026-03-02						
PRad-II	HyCal/GEMs	H2 gas	3,5	2026-02-02	2026-03-02	28	36,5	14,0	22,5	
PRad-II/X17	HyCal/GEMs	Radiator	3,5	2026-01-26	2026-02-02	7	40,0	3,5	36,5	
Scheduled Experiment	Setup / Status	Target	Beam Energy	Start Date	End Date	Scheduled Calendar Days	Remaining PAC Days Before Run	Scheduled PAC Days = Cal Days/2	Remaining PAC Days After Run	

CEBAF

rescale

- PRad-II scheduled for completion of the experiment including non-standard beam energies
- X17 Search scheduled for ~50% of the experiment with one of two planned beam energies

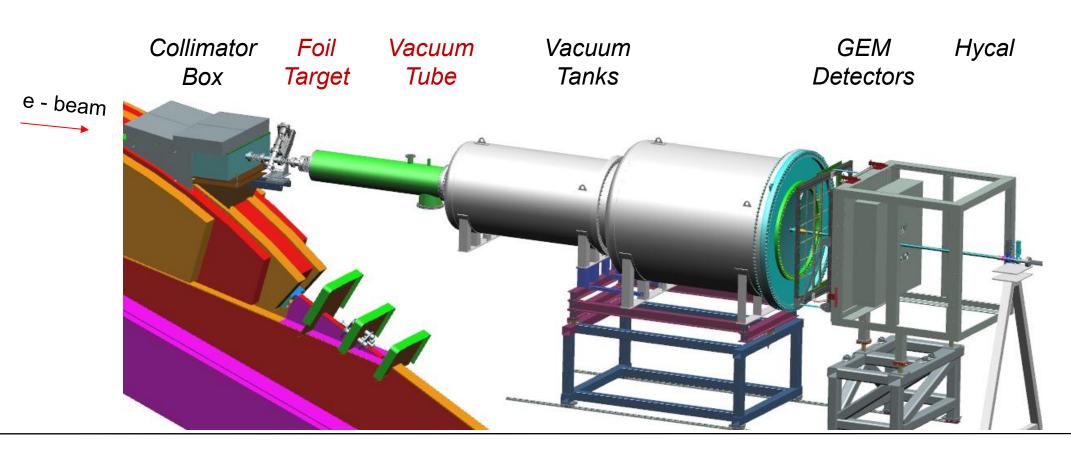
Possible FY27 Run Schedules

SAD or scheduled Run Group	Setup / Status	Target	Beam Energy	Start Date	End Date	Scheduled Calendar Days		Scheduled PAC Days = Cal.Days/2	Actual PAC Days from ABUs	Remaining PAC Days After Run
RG-E		liq. D2 & nucl. doublet	11			66	33	33		0
	reconfigure	change				7		4		
RG-K		liq. H2	8.8			120	52	60		0
							sum:	97		

Or:

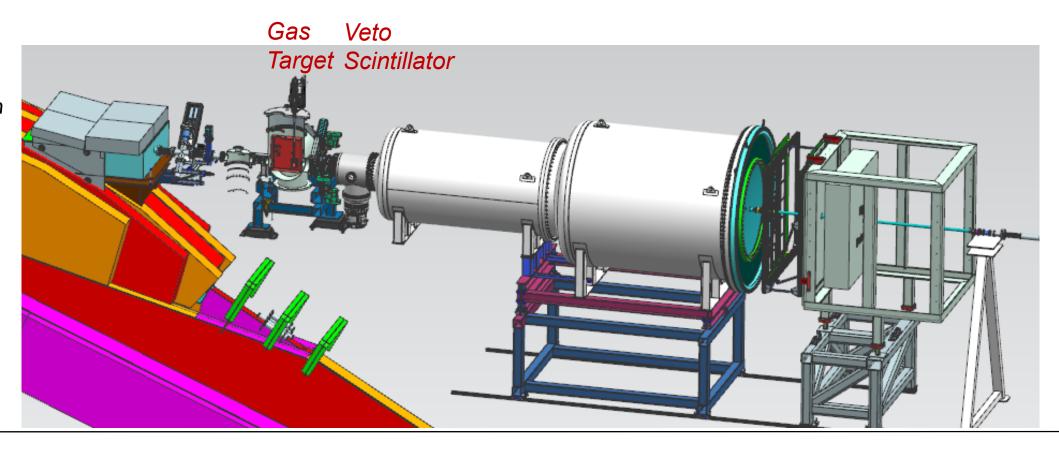
SAD or scheduled Run Group	Setup / Status	Target	Beam Energy	Start Date	End Date	Scheduled Calendar Days	•		Actual PAC Days from ABUs	Remaining PAC Days After Run
RG-E		liq. D2 & nucl. doublet	11			66	33	33		0
	reconfigure	change				7		4		
HPS	HPS setup	nuclear	4.4			120	105	60		45
							sum:	97		

Combinations with RG-A and RG-B are also possible, some months with Hall-B cryotarget are a must!


PRad Run Preparations

PRad-II/X17 Setup in Hall B

Experimental setup based on existing PRad equipment


- For X17 specific: foil targets (1 μm Ta) and new vacuum tube
- Large vacuum tanks to minimize scattering
- Two planes of GEM detectors for tracking
- HyCal Calorimeter for electron/positron detection

PRad-II/X17 Setup in Hall B

Experimental setup based on existing PRad equipment

- For PRad specific: gas flow target and scintillator assembly
- Large vacuum tanks to minimize scattering
- Two planes of GEM detectors for tracking
- HyCal Calorimeter for electron/positron detection

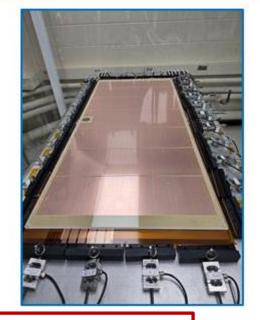
GEM Detector Status

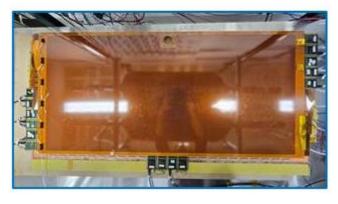
Two planes (4 layers) of newly constructed and characterized GEMs

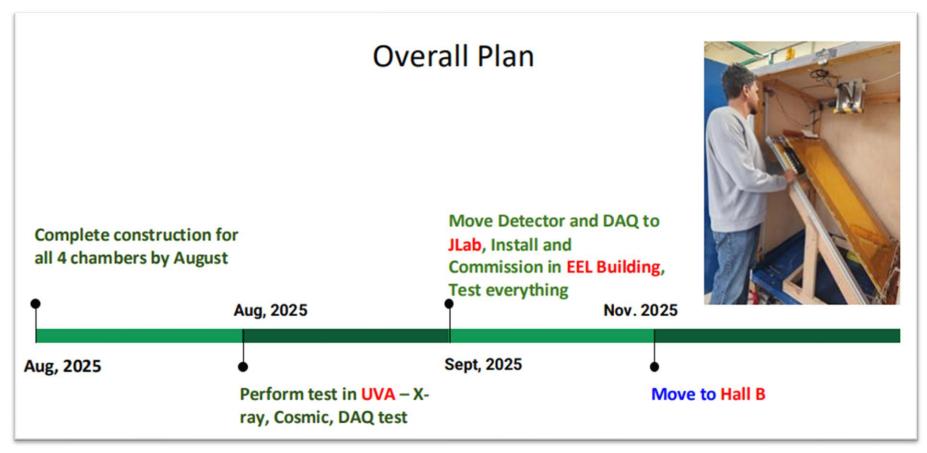
Procurement

Pre-cleanroom activities

Cleanroom activities

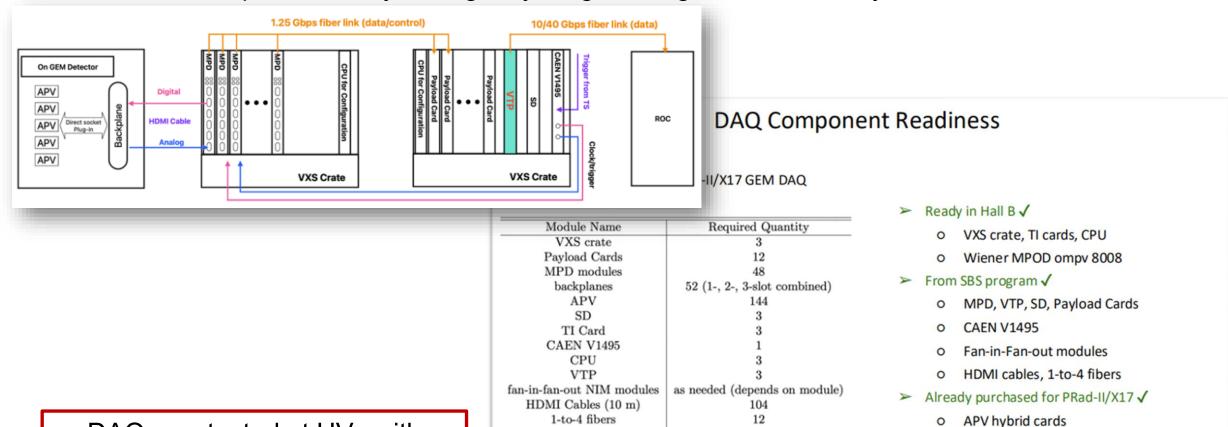

Post-cleanroom activities




- Frames
- Foils
- Honeycomb plates

UVa is subcontracted for procurement, fabrication, and tests

Readiness of GEM Detector Integration


- First module assembly completed and with on-going characterization
- Timeline presented by Nilanga Liyanage during the ERR in May:

Collaboration is on track to provide the equipment this summer

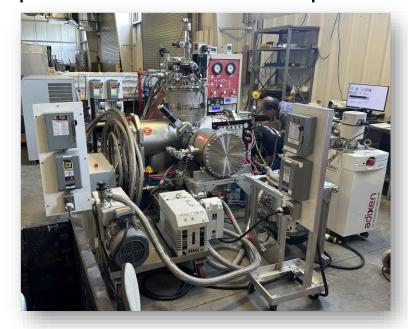
Readiness of GEM Detector DAQ

- Based on VTP-MPD system currently used in SBS program
- Status presented by Nilanga Liyanage during the ERR in May:

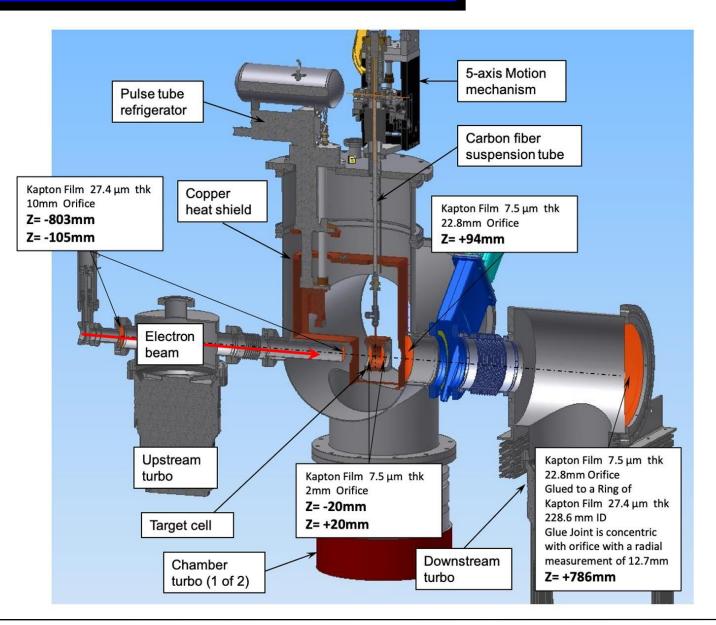
Wiener MPOD ompv 8008

13 (ready in Hall B)

Table 1: List of Modules

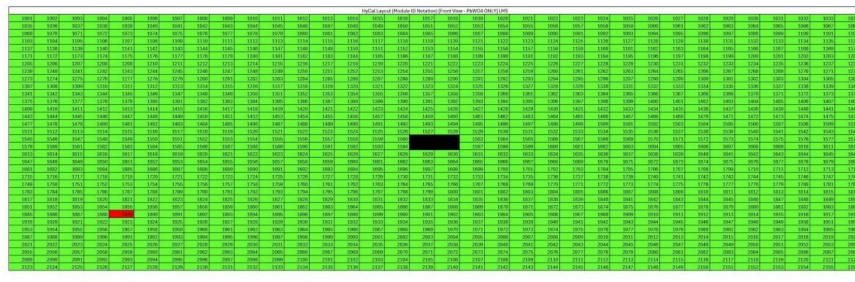

DAQ was tested at UVa with 25 kHz event rate

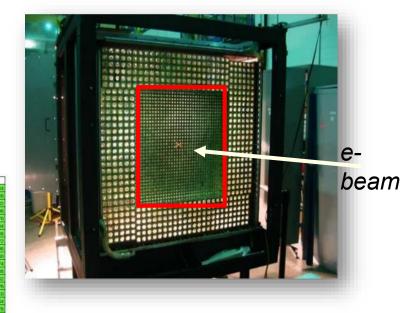
Manufacturing in Progress (expected June 2025)


backplanes

Windowless Hydrogen Gas Flow Target

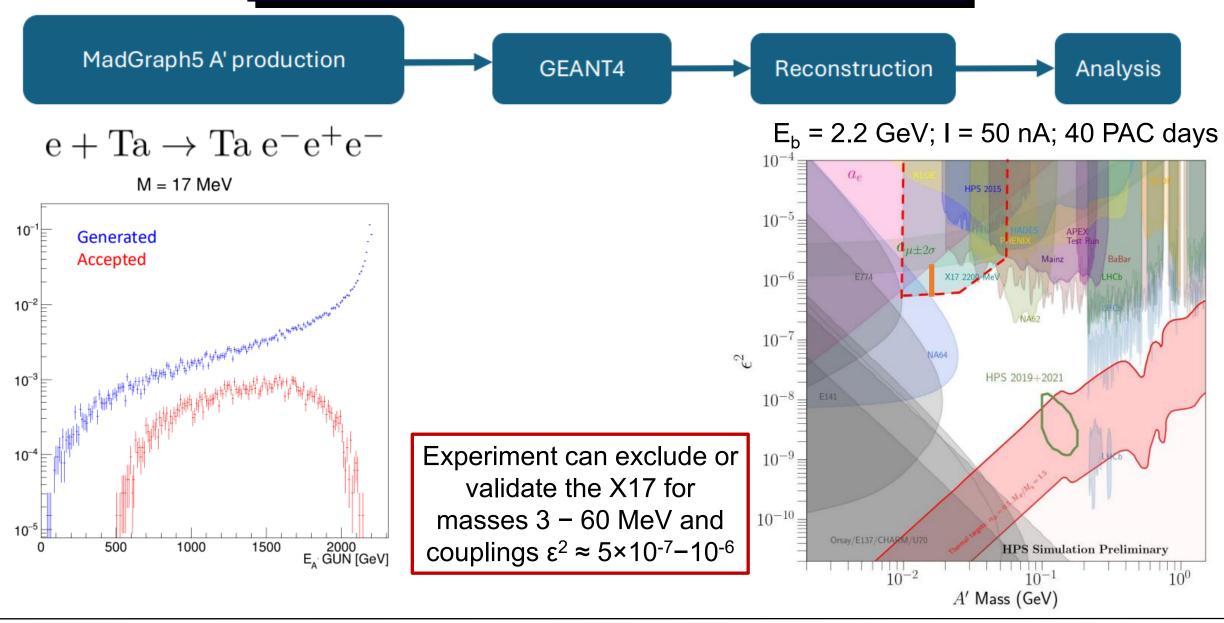
- Target cell: 75 x 75 x 40 mm³
- Windowless: beam enters and exits via 2 mm orifices in 7.5 µm thin polyimide foils
- 40 mm target thickness at 0.63 mbar pressure and 19.5 K temperature




Target was tested with helium in ESB

HyCal Electromagnetic Calorimeter

- 34 x 34 =1156 PbWO₄ modules, each 2 x 2 x 18 cm³
- 68 x 68 cm² total detection area
- 2 x 2 crystals removed from center for beam passage



Legend
Bad
Issue
Good

HyCal is ready for the experiments

Signal cable conversion and testing – DONE; fADC testing – DONE; HV CAEN crate testing; – DONE; LMS test – DONE; LMS fiber repairs – DONE; HyCal module testing – repair of one remaining channel

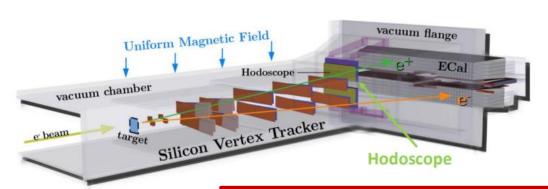
Updated X17 Signal Simulations

HPS Run Preparations

Expected Improvements Compared to 2021 Run

Operations

SVT alignment, field-off runs with acceptance in all layers, fully surveyed detector


Hardware

SVT modules, ECal chiller, DAQ update, servicing of Frascati magnet system

Optimized run periods

- Optimum is ~7 weeks at 4 GeV and ~6 weeks at 2 GeV beam energy
- HPS has requested 60 PAC days of two-pass running, to be followed by a final one-pass run

[Timothy Nelson, "HPS Overview", HPS Collaboration Meeting (June 2025)]

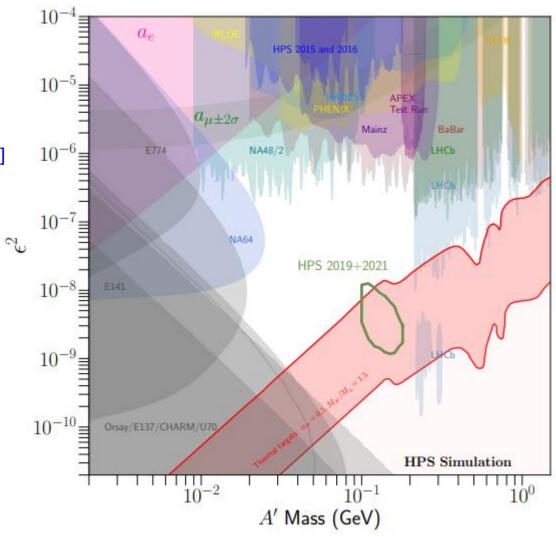
Readiness of **sensors** seems to be most relevant component

HPS Sensitivity in Minimal A' Scenario

HPS 2019+2021 Run

"Existing data (75 days) opens up significant region of sensitivity"

[Timothy Nelson, "HPS Overview", HPS Collaboration Meeting (June 2025)]


Two physics runs completed with upgraded detector

2019 run:

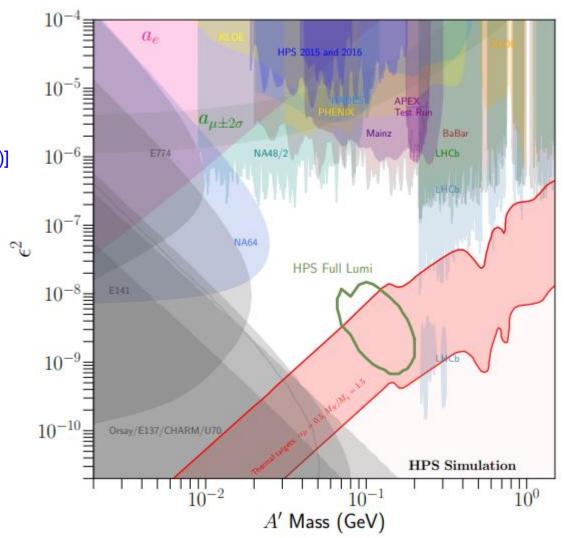
- $E_{h} = 4.55 \text{ GeV}$
- Lumi = 128 pb^{-1}
- Target $8\mu m$ and 20 μm W foils

2021 run:

- $E_b = 3.74 \text{ GeV}$
- Lumi = 168 pb^{-1}
- Target: 20 μm W foil

HPS Sensitivity in Minimal A' Scenario

HPS Full Luminosity


"Future run plan (105 days) more than doubles this region"

[Timothy Nelson, "HPS Overview", HPS Collaboration Meeting (June 2025)]

Progress in dark photon searches has been incremental.

What happened?

- a) These are hard experiments
- b) These are difficult searches

Updates on Theses and Publications

Two New Completed PhD Theses in CLAS

THE STRUCTURE FUNCTION OF THE FREE NEUTRON AT HIGH X-BJORKEN

b

Madhusudhan Pokhrel

B. Sc. December 2013, Tribhuvan University, Nepal
 M. Sc. December 2016, Tribhuvan University, Nepal
 M. S. May 2019, Old Dominion University, USA

A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

PHYSICS

OLD DOMINION UNIVERSITY May 2025

In 2025:

- Madhusudhan Pokhrel
- Krishna Neupane

Approved by:

Stephen Bueltmann (Director)

Sebastian Kuhn (Member)

Raul Briceno (Member)

Yuan Zhang (Member)

Sylvain Marsillac (Member)

First CLAS12 Double-Pion $(N\pi\pi)$ Electroproduction Analysis

bv

Krishna Chandra Neupane

Bachelor of Science Tribhuvan University, 2011

Master's Degree in Physics Tribhuvan University, 2014

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Physics

College of Arts and Sciences

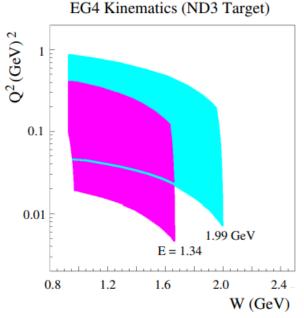
University of South Carolina

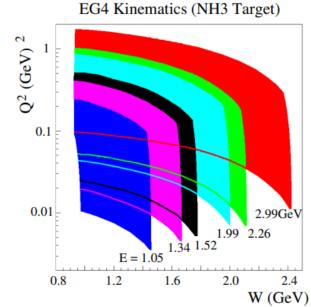
2025

Accepted by:

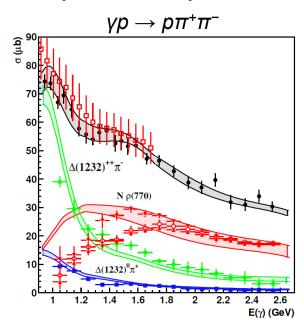
Ralf Gothe, Major Professor

Fred Myhrer, Committee Member

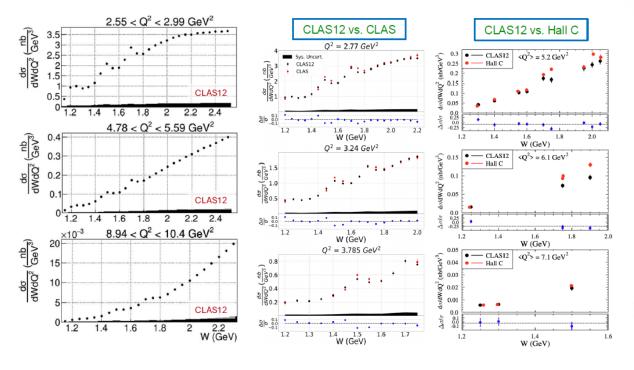

Steffen Strauch, Committee Member


Viktor Mokeev, Committee Member

Ann Vail, Dean of the Graduate School


Update on Publications Using CLAS Data

A. Deur et al. (CLAS Collaboration), "Measurement of the nucleon spin structure functions for $0.01 < Q^2 < 1 \text{ GeV}^2$ using CLAS", Phys. Rev. C 111, 035202 (Mar. 2025)



A.V. Sarantsev, et al. (CLAS Collaboration), "Photoproduction of two charged pions off protons in the resonance region", Phys. Rev. C 111, 035203 (Mar. 2025)

Update on Publication Using CLAS12 RG-A Data

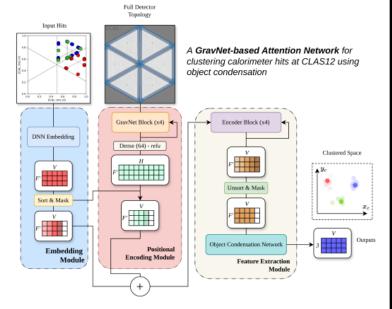
V. Klimenko *et al.* (CLAS Collaboration), "Inclusive Electron Scattering in the Resonance Region off a Hydrogen Target with CLAS12", accepted in Phys. Rev. C (June 2025)

- First inclusive electron scattering cross sections
- JLab press release is prepared

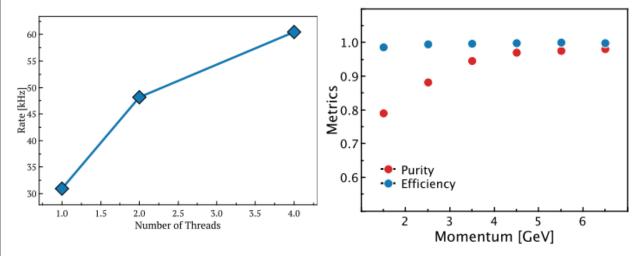
CLAS12 Provides a New View of the Proton Spectrum

New data bring physicists closer to a full understanding of the proton's structure

NEWPORT NEWS, VA – The small but mighty proton serves as a foundation for our universe. It abides at the very heart of matter, giving rise to everything we see around us as it anchors the nucleus of the atom. Yet, its own structure is unbelievably complex and the quest to understand the details of that structure has occupied theorists and experimenters alike since its discovery over a century ago.


"The visible universe is made of protons," said Kyungseon Joo, a physics professor at the University of Connecticut. "And so, if you want to understand the universe, it's important to understand how the proton is structured. We think we understand it quite well, but a lot of things are still missing."

In 2018, an international team of researchers began taking new measurements of the proton in experiments conducted at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility with a new apparatus called CLAS12. Now, the first results

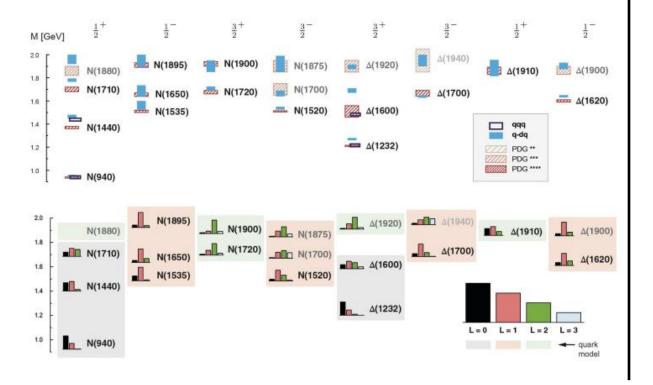

New Publications on Analysis Methods

Gregory Matousek and Anselm Vossen, "Al-Assisted Object Condensation Clustering for Calorimeter Shower Reconstruction at CLAS12", arXiv: 2503.11277 [physics.ins-det], DOI: https://doi.org/10.48550/arXiv.2503.11277

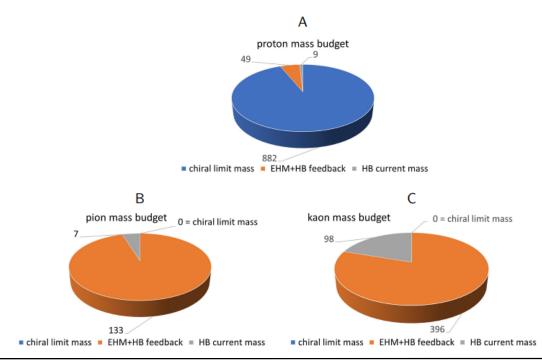
- Al-based clustering method for calorimeter
- Networks for hit representations
- Object condensation for hit clustering

Gagik Gavalian and Richard Tyson, "Online Electron Reconstruction at CLAS12", submitted to Comput. Phys. Commun. (2025)

- Al-based electron reconstruction
- Electron identification purity above 75% retaining an efficiency close to 100% within fiducial region

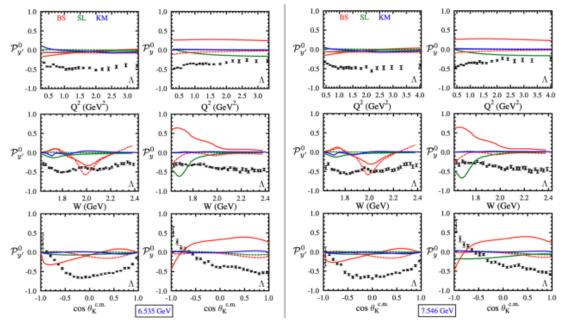

New Publication on Data Presentation

V.D. Burkert, A. Camsonne, P. Chatagnon, K. Cichy, M. Constantinou, H. Dutrieux, I. M. Higuera-Angulo, C. Mezrag, D. Richards, P. Sznajder, "*Open database for GPD analyses*", arXiv: 2503.18152 [hep-ph], DOI: https://doi.org/10.48550/arXiv.2503.18152, submitted to Eur. Phys. J. C (?)

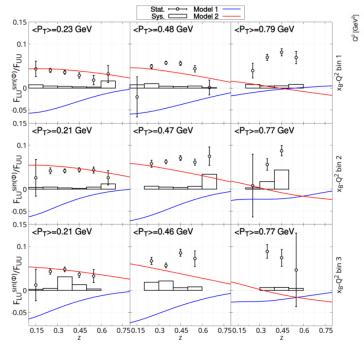

- Open database for use in exploration of GPDs
- Designed to store experimental and lattice-QCD data
- Can aid in benchmarking GPD models
- Utilizes a new data format based on YAML

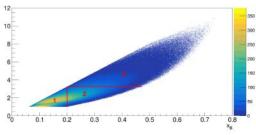
New Reviews

Volker Burkert, Gernot Eichmann, Eberhard Klempt, "The impact of γN and γ*N interactions on our understanding of nucleon excitations", arXiv: 2506.16482 [hep-ph], DOI: https://doi.org/10.48550/arXiv.2506.16482, submitted to Prog. Part. Nucl. Phys.


Patrick Achenbach, Daniel S. Carman, Ralf W. Gothe, Kyungseon Joo, Victor I. Mokeev, Craig D. Roberts, "Electroexcitation of Nucleon Resonances and the Emergence of Hadron Mass", arXiv: 2505.23550 [hep-ph], DOI: https://doi.org/10.48550/arXiv.2505.23550, accepted in Symmetry (July 2025)

New Publications Using CLAS12 Data


D.S. Carman *et al.* (CLAS Collaboration), "Recoil Polarization in K+Y Electroproduction in the Nucleon Resonance Region with CLAS12", arXiv: 2505.12030 [nucl-ex], DOI:


https://doi.org/10.48550/arXiv.2505.12030, submitted to Phys. Rev. C

• Polarization observables extend existing data on Λ and first electroproduction measurements for Σ^0

A. Kripko *et al.* (CLAS Collaboration), "*Multi-dimensional Measurements of Beam Single Spin Asymmetries in Semi-Inclusive Deep-Inelastic Charged Kaon Electroproduction off Protons in the Valence Region",* arXiv:2504.0858 [hep-ex], DOI: https://doi.org/10.48550/arXiv.2504.08580, submitted to Phys. Rev. Lett.

- Large kinematic range of z, x_B, p_T and Q²
- Constrains on twist-3 PDFs

New Publications Using CLAS Data

P. Roy et al. (CLAS Collaboration), "Measurement of Single- and Double-Polarization Observables in the Photoproduction of $\pi^+\pi^-$ Pairs off the Proton Using CLAS at Jefferson Laboratory", arXiv: 2504.21119 [nucl-ex], DOI: https://doi.org/10.48550/arXiv.2504.21119, submitted to Phys. Rev. C

 Beam and target asymmetries, and beam-target double-polarization observables measured using a transversely polarized target (FROST)

	•			
0.5 W=1.512 GeV W=1.575 GeV W=1	1.573 GeV W=1.573 GeV W=1.573 GeV	W=1812 BeV W=1872 BeV W=1872 BeV	2 GeV W=1.512 GeV W=1.512 Ge	V W=1512 GeV W=1512 GeV
		It - Fancit 4		
-1.0 = cos(0,) = 0.0	me)-m	03 *CON (_) * 13		
0.5 W=1.832 GeV W=1.832 GeV W=1.885 GeV W=	1.850 GeV (3,1=1.0 -1.0 = cos(1,1=1.0 = cos(W-1829 9W W-1829 9W W-1829 9W	(1+43 45×cea(0,)+44 42×cea(0,)+	
0 +++++++++++++++++++++++++++++++++++++	#=1.880 GeV W=1.880 GeV	+24-4-45-45	104V W-1492 04V W-1492 04	
			F 7	The state of the s
	128 Gay (1.) + 1.0 (1.	08 x cm (4,) x 16		13 12 <com (1,)<04="" (1,)<08<="" 18<com="" td=""></com>
	3 GeV W=1.736 GeV W=1.736 GeV		3 GeV W= 1.743 GeV W= 1.743 GeV	V W-1745 GeV W-1745 GeV
F	+++++++++++++++++++++++++++++++++++++++	W-1873 GeV	W=1512 GW	may seem -
	10000	10 <mm(n,)<80 08<mm(n,)<10<="" td=""><td></td><td>7 7 9</td></mm(n,)<80>		7 7 9
	1890 GeV (3) 48 × cos(1,) × 68 10 × cos(1,) × 10	W=1898 GeV W=1898 GeV	W=1.047.04	
0 +++++++++++++++++++++++++++++++++++++	W-1355 GW W-1355 GW	20*cau(0,)*18	++ W-1520W	Cotton production
-1.0 < com(n ,) < 0.0	H(v,)*13	W=1.880 GeV -1.0 < cos(0,) < 1.0		√ × 1 × 1
0.5 W=1.545 GeV W=1.546 GeV W=1.554 GeV W=	1394GeV 1,3<18 .48<000(0,3<88 .88<000(0,3<18	W-1894 DAV W-1894 DAV	+++++++++ == == com(a.)	
0 +++++++++++++++++++++++++++++++++++++	W=1894 GeV W=1894 GeV	\$3<004 (1,1<12 1+1++++++++++++++++++++++++++++++++	# 1.948 Go	W-1306 GeV W-1306 GeV
The state of the s	M () + 1	W=1786 GeV -(0 = com (),) = 60 0.0 = com (),) = 1.0	W= 1743 GeV	1 1 1 1
0.5	22840W ()<18 (1844W(1,)<68 1844W(1,)<18	W-258 GW W-258 GW	++++++++++++++++++++++++++++++++++++++	19 12-cay 1,724 12-cay 1,7-22 mg
0	+++++ W=2.880 GeV W=2.888 GeV	20 x con 0,1×18 +1+++++++	## ## ## W= 2041 Gr	W-2341 GeV W-2341 GeV 18.5
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			W = 1.847 GeV	
-0.5	+++++	-100 0 100 -100 0 10		THE RESERVE THE PARTY OF THE PA
-100 G 100 -100 D 100 -100 D 100 -103		-100 0 100 -100 0 100		10 -100 0 100 -100 0 100 -100
	ф _{д*} 100 -100 0 100 -100 0 100	2.0 < cos(H,) < 1.0	March W-1848 GW	
4	Φ,	W=13M GeV		Ψ,
0 ++14++++++++++++++++++++++++++++++++++	0 +++++++++++++++++++++++++++++++++++++			1806 GeV W=1806 GeV W=1806 GeV
-18 * cos(t,) * -8.0 -0.6 * cos(t,) * -6.4 -4.2 * cos(t,) * 6.8 -6.2 * cos(ABSCORP (, 1500 BBSCORP, 1518 ABSCORP, 1508			emi(0,1<0.0 0.2 <emi(0,1<0.4 0.6<emi(0,1<0.6<="" td=""></emi(0,1<0.4>
0.5 w=2.041 GeV W=2.041 GeV W=2.041 GeV W=2.0	0.5 W = 2.001 DeV W = 2.000 DeV	W=2.586 GeV =2.541 GeV W=2.041 GeV W=2	2041 GeV W = 2.841 GeV	
0 +++++++++++++++++++++++++++++++++++++	0 +++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	- + paper + total and the many	2 SM Cay Wa 2 SM Cay Wa 2 SM Cay
-1.8 = cos(0,) = -0.5 = cos(0,) = -0.40.2 = cos(0,) = 0.8 - 0.2 = cos(43 cm () 1 () 43 cm () 1 () 43 cm () 1 ()	COMP. 14 04 03 COMP. 1.1480 03 COM		2541 GeV W=2541 GeV W=2541 GeV cos(1),)<0.0 0.2 <cos(1), (<0.4="" 0.6<="" 0.6<cos(1),="" td=""></cos(1),>
-0.5 -100 0 100 -100 0 100 -100 0 100 -100 0	-0.5 -100 0 100 -100 0 100 -100 0 100		0 100 -100 0 100 D 100 -100	0 100 -100 0 100 -100 0 100
		de la	φ_,	ф
		T ₁₁ *	· K	

A.V. Sarantsev, E. Klempt, K.V. Nikonov, T. Seifen, U. Thoma, Y. Wunderlich, P. Achenbach, V.D. Burkert, V. Mokeev, V. Crede, "Decays of N* and Δ^* Resonances into Np, $\Delta \pi$, and Nf₀(500)", arXiv: 2503.16636 [nucl-th], DOI:

https://doi.org/10.1103/qfpf-tcs3

Phys. Rev. C 112, 015202 (2 July, 2025)

Masses, widths and branching ratios of N* and Δ*

$N^*, \Delta^* J^P$	$M_{\rm prin}$	$\Gamma_{\rm jode}$	M_{SCW}	$\Gamma_{\rm BW}$	A _{1/2}	phase	Ajra	phase	$A_{1/2}^{BW}$	ADW/
N(1440) 1/2*	1396:13	192:14	1410:10	290±30	-0.080±0.000	-(30±7)°			-0.076±0.008	
N(1520) 3/2"	1506±2	112±3	1515±3	114±4	-0.028±0.005	-(17±8)°	0.184 ± 0.007	(2±4)**	-0.029±0.004	0.133±0.006
N(1536) 1/2-	1494±7	115±10	1517±4	110±7	0.110±0.006	(0±5)°			0.102±0.008	
N(1650) 1/2"	1664±10		1670±6	110±7	0.081±0.005	(2±5)*			0.081±0.034	
N(1675) 1/2"	1002±5	130:18	1668±4	130±8	0x021±0.004	30±15*	0.090±0.004	$-(25\pm10)^{\rm st}$	0.022±0.004 0.018±0.008	0.000±0.005
N(1680) N2 ⁺	1676±6	117±4	1689±5	122±5	-0.016±0.004	-(35±15)**	0.184 ± 0.005	(2±5]°	0.016±0.004	0.183±0.005
N(1700) %=		420±50	1770±39		0.035±0.014	-(20±35)°	-0.100±0.000	(5±20)*	0.032±0.013	-0.000±0.025
N(1730) 1/2*	1696±10		1710±8	155±14	0.045±0.012	(30±30)°			0.049±0.008	
N(1720) %/o*			1716±18		0.1003,0.025	-(5±30)°	0.045±0.020	$\{120{\pm}30\}^{o}$	0.10010.025	-0.041 ± 0.020
N(1860) 5/5*			1920±25		0.030±0.006	(85±25)*	0.062±0.015	-(5±15)+	0.053 T 0.000.	0.063±0.013
N(1875) ½-	1855±17		1885±15	270±20	0.012±0.008	-(100±10)*	0.014±0.000	(175±30)°	-0.013±0.006	-0.015±0.000
$N(1880)^{-1/2^{\pm}}$			1865±25		0.015±0.005	-(10±30)"			0.016±0.006	*************
N(1896) 1/2"		189±26	1907±15	196±20	0.021±0.000	(150±30)*			-0.021±0.008	
N(1906) N/2*			1930±15		-0,050±0,013	(40±40)**	(0.044±0.012)	(85±30)**	0.050±0.012	-0.044±0.014
N(1975) 8/4*			1950±60		0.075±0.025	-(72±4)[°	0.075±0.030	-(35±43)°	0.076±0.025*	0.077±0.030
N(1990) 1/2+	2005 1.25	270 ± 30	2020 25	2501.30	0.011±0.006	(40 ± 20)=	0.017±0.008	(90.L25)^c	0.0121.0.010	0.01740.008
N(2000) 5/2"			2030±40	500:100	0.033±0.000	(35±25)°	0.043±0.012	-(100±30)°	0.033±0.000	
N(2060) 7/2	2020-2130	608-430	2040±30	560.416	0.065±0.015	(20±10)*	0.000±0.000	(100 ± 20).	0.005±0.015	-0.000±0.000
N(2100) 1/2*	2055 1.25 2006 2140	4301.65	2070 - 35	430.160	(0:020 T0:008)	(65 / 20] e			0.021 10.007	
N(2120) %5"	2130±40	350 3.15	2140-35	310±35	-0.025±0.015	$(40\pm25)^{\nu}$	-0.045±0.015	$(25\pm 25)^{\circ}$	0.026±0.015	0.047±0.015
N(2190) 7/s=	2130±35	370±45	2170±25	420±45	0.060±0.019	(150±25)°	0.050±0.015	-(10±25) ^a	-0.000 ¥ 0.010	0.051±0.006
N(2230) %/2*	21.65±30		2230±30		0.015±0.010	(90±30)°	0.018 ± 0.010	·(20±30)*	0.017±0.010°	0.000±0.010
N(2250) %:-	2220±40 1100-2200	470±40	2810±40 200+100	520±50	0.020±0.010	-(10±30)«	0.025 ± 0.009	-(10±20)e	0.015±0.008	0.005±0.008
Δ(1232) 3/2+	1210,11	101,52	1230 4.1	116±2	-0.133±0.003	-(17.i;2)°	-0.255±0.005	(-10 à 2)°	-0.1351,0.003	-0.259 j. 0.005
$\Delta(1600)$ $5/2^{+}$	1550±15		1575±15		0.040±0.008	(120±20)°	0.038±0.012	(150±20)°	-0.042±0.010	
$\Delta(1620)^{-1/2}$	1598.17	130±10	1000128	135.110	0.047±0.007	(10:215)*			0.045±0.007	and the
Δ(1700) No-	1656±15	300±15	1690±15	320±15	0:150±0:020	(30±15)*	0.155±0.000	(40±15)°	0.153±0.018	0.158±0.017
Δ(1790) 1/2°	1778±30		1790±30	305±35	0x020±0.007	-(85±30) ^m			0.020±0.007	113071100
Δ(1990) ½"	1815±20		1825±20	350±35	0.075±0.015	-(65±35)"			0.075±0.015	
Δ(1905) 1/2"		2501-20	1845 20		0.03016.007	-(35±15)°	-0.072±0.010	-(104:20)°	0.03210.036	-0.075 (-0.010
A(1910) 1/1+	1550±20		1890±20	520±60	0.090±0.009	(40±40)°			6 100±0.640	4.810+9.000
$\Delta(1920).2/2^{+}$	1880±30	260 (.40	1890±25	250.1.40	0.04010.025	-(30±25)°	0.055 (.0.025	-(50135)°	0.043±0.025	0.0581.0.030
Δ(1990) 5/2-	1812±10	420±25	1834±10	425-125	0.036±0.008	(117±30)*	0.020±0.008	-(150±30)°	-0.037±0.008	-0.020±0.008
Δ(1940) ½=	2040±40		2000:2000	450±50	0.045±0.025	-(40±30)°	0.089±0.000	-(75±30)°	0.05210.025	G.08/5 E-0.030
Δ(1950) 7/s*	1892±5	250±10	1919±5	358±8	-0.076±0.006	-(10±5)°	-0.092±0.004	-(10±5)*	-0.077±0.006	0.001±0.001
$\Delta(2200)$ 7/2"	2010±20	300±35	2180±80	420±50	0.120±0.015	-(35±20)°	0.073 ± 0.012	-(80±20)*	0.125±0.016	
Δ(2210) %-	2010 2110 2200±35		2005-220	345+35	0.057+0.012	(7+90)**	0.001 = 0.010	(160+25)*	6 047+0 612	-0.018±0.010

	$(\Delta \pi)_{tot}$	- 6	Δe	$(N\rho)_{1cc}$		$N\rho$		$Nf_0(500)$
		Les	657		S=1/3	S = 3/2 L < J	6-00	
N(1440) 1/2+	15±7	-	15:17	18±6	9±4		9±4	15±5
N(1520) 3/1-	26±6	12±4	14±4	28±4 10 - 10	4±3	24±3	<1	< 2
N(1535) 1/2-	5±3	15-23	5±3	3 - 17	< 1	10 - 10		6±3
N(1650) 1/2-	6±5		6±5	17±6	12±5		5±3	3±2
N(1675) 5/2-	19±4	19±4	6 - 15	30±9	20±7	10±5	19 - 15	5±3
N(1680) 5/2+	23±7	9±3	14±6	9±4	< 0.0	9±4		3-7
N(1700) 3/s=	5848	4 - 10 54 ± 8	442	2149	543	6-9	2-1 1648	9 - 19 24-2
N(1710) 1/2*	55 - 65 7±4	50 - 93	744	1744	6±2	92 - 44	1143	2-14 11±4
	201-7		1145		12+5	1746		< 16
N(1720) 3/2+	67 - 89	9±5 47 - 77	< 12	29±8 1 - 2	1 - 2			25±6 2 - 14
N(1860) 5/2*	7±3	2±2 4 - 16	5±2	54±16 < 8.6	16±9	13±5	25±12	9±3
N(1875) 3/2-	14-15	10+15	4±2	-		76 - 56	-	33±20
$N(1880)^{-1/2}$	6±3		6±3	28±7	20±6		8±3	20±4
N(1895) 1/2-	843		843	434.15	18 4.5		25 ± 14	1846
N(1900) 3/2+	13 45	844	5±3	46 - 50 46 ± 13	7.64	943	30±12	1043
N(1975) 3/2+	15±7	1±1	14±7	15±5	1±1	2±2	12±4	18±5
N(1990) 7/2+	72±15	72415		10.65	844	242		
N(2000) 5/2+	25±6	8±4	17±4	15±4	8±3	7±3		28±10
N(2060) 5/2=	30 - 90 12±3	12 - 92 12 ± 3	19 - 45	28±11	24±10	4.4		5 - 15 34.2
N(2100) 1/2+	10 44	4 - 10	1044	5 - 99 17 ± 7	12±6	5 - 23	543	1 - 9 25 i 6
N(2120) 3/s-	19 4.5	843	1144	2816	95 - 90 4±2	1945	543	14 - 26 5 ± 3
N(2190) 7/2-	> 28 4±2	15 - 29	8 - 45	8±7	412	8±7	343	4 - 19
		10 - 31				< 11		2 - 9
N(2220) 9/2*	15±10	15±10		10±10		10±10		5±5
N(2250) 9/2-	10±7	10±7	***	11±7	5±5	6±4		
Δ(1000) 3/2*	44±7 58-60	40±6	4±3	7±4	2±2	5±3		
Δ(1620) 1/2-	28±11		28±11	52±17 23-02	30±12		22±12	
Δ(1700) 3/2	35±13	23±13	1248	15±4		1544		
$\Delta(1750)^{-1/2}$	32±10		32±10	27±13	17 ± 10		10±8	
Δ(1900) 1/2	64±15		64±15 30-70	35±13 22-08	18±8 11-05		20±10 11-25	
$\Delta(1905)^{-5/2}$	19±8	1447	543	25±10		25±10		
$\Delta(1910)^{-3/2+}$	74±10		74±10	10±4	5 ± 3		5±8	
$\Delta(1920)^{-3/2}$	38±15	6±4	32±15	57±8	8±4	14±5	85±6	
Δ(1980) 5/2-	33±9	28±7	5±5	33±8	3 ± 2		30±8	
$\Delta(1940)^{-3/2}$	38±10	21 ± 8	17±9	24±6	6±4	10±5	8±4	
$\Delta(1950)^{-7/2}$	4±3	4±3		10±5	10 ± 5			
$\Delta(2200)^{-7/z^{-1}}$	2±2	249	1±1					
Δ(2210) 5/2 ⁻	40±7	80±6	10±4	35±8		18+6	17±5	

New Outreach Publication

Raffaella De Vita, "The CLAS12 Experiment at Jefferson Lab", to appear in the Encyclopedia of Particle Physics (2026)

Patrick Achenbach, "Experiments at Jefferson Lab", to appear in the Encyclopedia of Particle Physics (2026)

ů

Encyclopedia of Particle Physics Kindle Edition

Format: Kindle Edition

Encyclopedia of (Hadron- and) Particle Physics will be a brand new, up to date reference work consisting of approximately 180 articles, headed up by an editorial board of world-leading hadron- and particle physicists. It will provide a first point of entry to the literature for all graduate/post-graduate students and early career-researchers working in and studying physics, especially those with an interest in hadron- and particle physics within the standard model and beyond. It will also be indispensable to all serious readers in the interdisciplinary areas (astrophysics, nuclear physics, particle therapy, accelerator physics) where particle physics is of utility. With a clear and logical template binding all chapters, content will be divided into the following six sections, each of which will contain chapters written by leading scientists who have pursued theoretical tools and methods and/or gathered and evaluated the most important data published within the field: Section 1: General Concepts of Particle Physics. This will provide an overview on general concepts that play a major role in every area of hadron and particle physics. Section 2: Hadron Physics. The strong interaction of quarks and gluons and the resulting hadron physics provides a broad field of interest with major discoveries (exotic hadrons) in the past decade. Understanding the strong interaction also provides the background for the search of physics beyond the standard model. Section 3: Lepton, Flavour and Higgs Physics. The electromagnetic and weak interaction of quarks, leptons and the Higgs particle provides a unique testing ground for the physics of the standard model with major advances in the past decades. Section 4: Neutrino Physics. This area has emerged in the past decade as a separate and highly innovative field with major discovery potential in the next years. Section 5: Beyond standard model physics. This section will provide introductions into the landscape of concepts of physics beyond the standard

S3,300.00

Pre-order with 1-Click®

This title will be auto-delivered to your Kindle on August 1, 2026.

By placing an order, you're purchasing a content license & agreeing to Kindle's Store Terms of Use.

Sold by Amazon.com Services LLC.

Read with our free app

Deliver to your Kindle Library ✓

Add to List

New Outreach Publication

Raffaella De Vita, "The CLAS12 Experiment at Jefferson Lab", to appear in the Encyclopedia of Particle Physics (2026)

The CLAS12 Experiment at Jefferson Lab

R. De Vita -a.b

²Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, United States of America ⁵Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy

© 20xx Elsevier Ltd. All rights reserved.

Chapter Article tagline: update of previous edition, reprint.

Contents

Nomenclature

Objectives

- 1 Introduction 2 History of the experimen
- 3 From data to physics
- 3.1 The "raw" data
- 3.2 Event reconstruction 3.3 The physics analysis
- 4 Physics topics addressed by the experiment
- 5 Complementarity with other experiments in the field
- 6 Future development 7 Conclusions

Acknowledgmen

Acknowledgme References

Abstrac

The CLAST2 experiment in Hall B at Jefferson Lab utilizes high-energy electrons produced by the CEBAF accelerator to probe the nuclear medium and understand its structure and the forces that govern it. The core of the experiment is a large acceptance spectrometer designed to detect, over broad linematics, the particles emerging from the interaction of the electron beam with a fixed target. In operation since 2018, CLAST2 has already completed several measurements on different targets, from hydrogen to heavy nuclei, studying the microscopic structure of the proton and the neutron, the spectrum of hadrons produced in these reactions, and the behavior of the strong force in the student medium. These measurements will shed light on fundamental questions about the proporties of the strong force and the structure of ordinary watter.

Keywords: CLAS12, spectrometer, large acceptance, luminosity, electron beam, hadron physics

Fig. 1 The CLAS12 experiment in Hall B at Jefferson Lab. The photograph shows the CLAS12 detector complex. The overall extension of CLAS12 in the horizontal direction is about 13 m. Click on this link to view a video on the experiment.

Patrick Achenbach, "Experiments at Jefferson Lab", to appear in the Encyclopedia of Particle Physics (2026)

Experiments at Jefferson Lab

Patrick Achenbach 101,a

^aThomas Jefferson National Accelerator Facility, Experimental Nuclear Physics Division, Newport News, Virginia 23606, USA

@ 20xx Elsevier Ltd. All rights reserved.

Contents

	Nomenclature	2
	Objectives	3
	Introduction	3
	Experiments description	4
	2.1 Organization of experiments	4
	2.2 Electron beams	4
	2.3 Magnetic spectrometers	5
	2.4 Detector systems	6
	2.5 Target systems	7
	2.6 Experimental setups	9
	From data to physics	16
	Physics topics addressed by the experiments	16
	4.1 Electromagnetic structure of hadrons	17
	4.2 Three-dimensional imaging of the nucleon	18
	4.3 Parity-violation and precision measurements	19
	4.4 Other properties of nuclei	20
	4.5 Searches for signatures of dark-sector particles	21
	Complementarity with other experiments in the field	22
i	Future development	24
	6.1 Future directions of accelerator operation	24
	6.2 Future directions of experiments	24
	Conclusions	24
	Acknowledgments	25
	References	25

Abstract

This chapter presents experiments conducted at Thomas Jefferson National Accelerator Facility (Jefferson Lab), a U.S. Department of Energy national laboratory in Newport News, Virginia. There, physicists exploring the nature of matter make use of the Continuous Electron Beam Accelerator Facility (CEBAF), a DOE Office of Science user facility that enables the research of more than 1,650 scientists worldwide. CEBAF's precise electron beams can reach energies up to 12 billion electron-volts and exhibit high degrees of polarization. Jefferson Lab's first experiment began taking data in 1995. Since then, the facility has become a world leader in the study of quantum chromodynamics. Today, experiments are carried out simultaneously in four experimental halls, each with specialized capabilities. The primary instruments in use are focusing or large-acceptance magnetic spectrometers, many of which feature superconducting elements. Jefferson Lab's physics program provides unprecedented insight into the particles and forces that shape the visible universe.

Keywords: Jefferson Lab, electron scattering, magnetic spectrometer, quarks and gluons, hadron structure, hadron spectroscopy Standard Model tests, nuclear structure, QCD spectroscopy

¹patricka@jlab.org

Concluding Remarks

- Hall B had an initially difficult but so far successful run in Hall B
- It is scheduled to complete all ALERT experiments in this run period
- The SAM until January 2026 will be used for **installation of PRad-II/X17 setup**
- These experiments are scheduled to run in 2026 to
 - Validate existence or set an experimental upper limit on the X17
 - Search for hidden sector particles in the 3–60 MeV mass range
 - Validate existence or resolve discrepancy in proton form factor data
 - Improve the precision on the proton charge radius
- CLAS Collaboration in Hall B continues to deliver high-level physics results

Thanks to all collaborators for their valuable contributions!