AHDC Al Tracking

Mathieu Ouillon (Mississippi State University)

07/08/25

CLAS Collaboration Meeting (8-11 July, 2025)

ALERT Experimental Setup

 ALERT have two sub-detectors: A Hyperbolic Drift Chamber (AHDC) and A Time of Flight (ATOF)

ATOF

- Time of flight: used for Particle IDentification
- Small barrel of segmented scintillators
- The TOF measurement is degenerate for ²H and ⁴He, but dE/dx can distinguish the two nuclei bands

AHDC

- Aluminum wires: 2 mm apart
- 20-degree stereo angle (hyperbolic shape)
- 5 superlayers, each composed of 2 layers
- 576 signal wires (6 ground wires of each signal)

Track Finding

- Track finding is a clustering problem:
- Set of points (hits) ⇒ cluster in sets (tracks)
 originating from the same particle
- Hits: particles deposit energy when interacting with the detector material
- Tracks: reconstructed sequences of hits representing charged particle trajectories

- Different algorithms:
- Distance between hits + fit
- Hough transform
- Combinatorial Kalman Filter
- o Artificial Intelligence models (MLP, GNN...)

Al-assisted model: Description and Training

- Model: MultiLayer Perceptron, 10 inputs, 1/3/5 hidden layer (15/20/100 neurons), 1 output
- Inputs: x and y values of the five inter-clusters
- For the training ⇒ Need good and bad tracks:
- Good tracks: GEANT4 simulation (particle with p \in [0.07, 1.5] GeV/c, $\varphi \in$ [0, 360]°, $\theta \in$ [30, 150]°, and $\forall z \in$ [-15, 15] cm)
- False tracks: Interchanging randomly up to two inter-clusters with another event
- o Generate 5M events composed of all light nuclei (flat distribution for all variables)
- Output: Number between 0 and 1, with 0/1 means bad/good track

Simulation Validation: Efficiency and Purity vs. Threshold

- Threshold: if output above/lower than the threshold ⇒ good/bad tracks
- To evaluate the model:
 - Efficiency: Number of good tracks classified as good normalized by the number of events.
 - Purity: Number of good tracks classified as good normalized by the number of tracks (good or bad) classified as good.
 - Events need to have at least one track candidate.
 - Set the threshold to 0.2 to have a higher efficiency

- o Blue: model with 20 neurons in 3 hidden layers
- Violet: model with 100 neurons in 3 hidden layers 0.0
- Red: model with 20 neurons in 5 hidden layers
- Gray: model with 15 neurons in 1 hidden layer

Simulation Validation: Efficiency and Purity vs. Current

- Efficiency is always higher than 90% and the purity is between 55% and 95%
- More current means more background
- \circ Efficiency: Number of good tracks classified as $^{1.0}$

good normalized by the number of events.

- Purity: Number of good tracks classified as good normalized by the number of tracks (good or bad) classified as good.
- Events need to have at least one track candidate.
- Threshold set to 0.2 to have a higher efficiency
- Blue: model with 20 neurons in 3 hidden layers
- Violet: model with 100 neurons in 3 hidden layers
- Red: model with 20 neurons in 5 hidden layers
 Gray: model with 15 neurons in 1 hidden layer

Mathieu Ouillon

Validation with Proton data: Elastic Scattering

- To evaluate the performance of the AI, use elastic scattering on proton
- For the AHDC, want the low momentum proton \Rightarrow use electron at low θ
- Compute $\Delta \phi$ using electron and AHDC hits \Rightarrow shift in $\Delta \phi$ approx. 20°

Validation on Proton Data: Al Efficiency and Purity

- Efficiency and purity as a function of the threshold:
- Threshold: if output above/lower than the threshold ⇒ good/bad tracks
- Efficiency: Number of good tracks classified as good normalized by the number of events.
- Purity: Number of good tracks classified as good normalized by the number of tracks (good or bad) classified as good.
 - We have an efficiency of 96%, and a purity of 90% at 0.2

Validation with ⁴He Data: Elastic Scattering

- To evaluate the performance of the AI, use elastic scattering on 4He
- For the AHDC, want the low momentum ⁴He ⇒ use electron in FD
- Compute Δφ using electron and AHDC hits

Validation with ⁴He data: AI Efficiency and Purity

- Efficiency and purity as a function of the threshold:
- Threshold: if output above/lower than the threshold ⇒ good/bad tracks
- Efficiency: Number of good tracks classified as good normalized by the number of events.
- Purity: Number of good tracks classified as good normalized by the number of tracks (good or bad) classified as good.
- We have an efficiency of 81%, and a purity of 93% at 0.2

07/08/25

ALERT AI-Assisted PID

- Ongoing efforts to deploy AI techniques to improve particle identification by a teammate Uditha Weerasinghe:
- perfect task for machine learning
- o can learn non-trivial relations between different track parameters and PID
- MultiLayer Perceptron model has been used to classify recoil nuclear-target fragments that are detected by ALERT
- A set of 27 features to include:
 - momentum, energy deposited, inter-cluster position, AHDC residual, ATOF cluster position, time, and path length.
- Main limitation: Quality of the classifier will depend on the MC sample

07/08/25

ALERT AI-Assisted PID

Helium-3: 64.4% Helium-3: 75.4%

Helium-4: 79.3% c Helium-4: 89.7% Mathieu Ouillon July 2025)

Summary and Outlook

- An MLP have been developed to improve track finding for ALERT:
- o Evaluated efficiency and purity as a function of momentum, threshold, and current for simulation
- Evaluated efficiency and purity as a function of momentum and threshold for elastic data
- Efficiency is always higher than 90% on proton and 80% on ⁴He
- Worked on a classifier for the PID

- Remaining works:
 - Matching hit in the ATOF with track in the AHDC using AI
 - o Improve the performance of the PID classifier

THANKS