μ**CLASI2: electro- and photoproduction of muon pairs** Double Deeply Virtual Compton Scattering, Timelike Compton Scattering, and J/ψ production

A Proposal to PAC 53 by N. Baltzell, M. Bondi, P. Chatagnon (presenter), R. De Vita, M. Hoballah, V. Kubarovsky, R. Paremuzyan, S. Stepanyan (contact), and the **CLAS Collaboration**

PAC 53, Jefferson Lab, 21st of July 2025

Physics with muon pairs: Motivations and Challenges

Fundamental properties of the nucleon

Protons and neutrons are the main building blocks of the visible matter, yet their fundamental properties are still not fully understood.

Generalized Parton Distributions

Probing the fundamental properties of the nucleon...

Spin, Mass and Forces in the nucleon

Nucleon tomography

R. Dupré, M. Guidal, M.Vanderhaeghen,

PRD95, 011501 (2017)

-3

$$\int_{-1}^{1} dx \ xH^{q}(x,\xi,t) = A^{q}(t) + \xi^{2}D^{q}(t)$$
Mass Spin Forces
$$\int_{-1}^{1} dx \ xE^{q}(x,\xi,t) = B^{q}(t) - \xi^{2}D^{q}(t)$$

$$\frac{1}{2} = J(0) = \frac{1}{2}(A(0) + B(0)) = \frac{1}{2}\Delta\Sigma + \Delta L$$

$$q(b_{\perp}, x) = \int_{0}^{\infty} \frac{d^{2} \Delta_{\perp}}{(2\pi)^{2}} e^{\Delta_{\perp} b_{\perp}} H(x, 0, -\Delta_{\perp}^{2})$$

Moutarde, H., Sznajder, P. & Wagner, J. Border and skewness functions from a leading order fit to DVCS data. *Eur. Phys. J. C* **78**, 890 (2018)

10⁻¹ X

... via the experimental measurement of exclusive reactions

 $b_x (fm)_{0.0}$

The Compton Form Factors: an inverse problem to access GPDs

Deeply Virtual Compton Scattering

$$ep \rightarrow e'\gamma^*p \rightarrow e'p'\gamma$$

$$e \rightarrow e'\gamma^* p \rightarrow e'p'\gamma$$

$$e \rightarrow e'p'\gamma$$

$$gPD \qquad p'$$

$$\mathcal{H}_{\rm DVCS}(\xi,t) = \int_{-1}^{1} dx H(x,\xi,t) \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon}\right)$$

$$\operatorname{Im}\mathcal{H}_{DVCS}(\xi,t) = H(\xi,\xi,t) - H(-\xi,\xi,t)$$
$$\operatorname{Re}\mathcal{H}_{DVCS}(\xi,t) = \mathcal{P}\int_{-1}^{1} dx \left(\frac{1}{\xi-x} - \frac{1}{\xi+x}\right) \left[H(x,\xi,t) - H(-x,\xi,t)\right]$$

Electro- and photo-production of muon pairs with μ CLASI2 – A proposal to PAC 53 – 21st of July 2025

Double Deeply Virtual Compton Scattering

$$ep \to e'\gamma^* p \to e'p'\gamma^* \to e'\mu^+\mu^-p'$$

$$\mathcal{H}_{\text{DDVCS}}(\xi',\xi,t) = \int_{-1}^{1} dx H(x,\xi,t) \left(\frac{1}{\xi'-x-i\epsilon} - \frac{1}{\xi'+x-i\epsilon}\right)$$

Im
$$\mathcal{H}_{\text{DDVCS}}(\xi',\xi,t) \propto H(\xi',\xi,t) - H(-\xi',\xi,t)$$

The Compton Form Factors: an inverse problem to access GPDs

Double **D**eeply **V**irtual **C**ompton **S**cattering (DDVCS)

$$ep \to e'\gamma^* p \to e'p'\gamma^* \to e'\mu^+\mu^-p'$$

The 5-fold DDVCS cross-section:

$$\frac{d\sigma^5}{dQ^2 dt dx_B d\phi dQ'^2} = \int_0^{2\pi} d\varphi_l \int_0^{\pi} d\vartheta_l \sin\vartheta_l \frac{d\sigma^7}{dQ^2 dt dx_B d\phi dQ'^2 d\Omega_l}$$
$$= d^5 \sigma_{BH1} + d^5 \sigma_{BH2} + d^5 \sigma_{VCS} + d^5 \sigma_{Int_1} + \lambda (d^5 \tilde{\sigma}_{VCS} + d^5 \tilde{\sigma}_{Int_1})$$

 $\Delta \sigma_{LU} \propto \operatorname{Im}[\boldsymbol{F_1 \mathcal{H}(\xi',\xi,t)} + \xi'(F_1 + F_2)\tilde{\mathcal{H}}(\xi',\xi,t) - \frac{t}{4M^2}F_2\mathcal{E}(\xi',\xi,t)]\sin\phi$

Projected DDVCS BSA

DDVCS Challenges

ρ

• Muon detection is essential.

 ν^*

 Small cross-section requires high luminosity experiment.

y ∧ x

Timelike Compton Scattering (TCS)

$\frac{d^4 \sigma_{INT}}{dQ'^2 dt d\Omega} = A \left[\cos(\phi) \frac{1 + \cos^2(\theta)}{\sin(\theta)} \operatorname{Re} \mathcal{H} + \dots \right] - \nu \cdot B \left[\sin(\phi) \frac{1 + \cos^2(\theta)}{\sin(\theta)} \operatorname{Im} \mathcal{H} + \dots \right]$ Photon polarization asymmetry: $A_{\odot U} = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} \propto \frac{\frac{L_0}{L} \sin \phi \frac{(1 + \cos^2 \theta)}{\sin(\theta)} \text{Im}\mathcal{H}}{d\sigma_{\text{D} U}}$

Previous TCS measurement with CLAS12

al. (CLAS Collaboration), Phys. Rev. Lett. 127, 262501 (2021)

- TCS probes similar CFFs as DVCS.
- Direct access to the D-term.
- TCS is measurable with a muon pair in the final state.
- **Recoil proton detection** is needed to ensure exclusivity.

Near-threshold J/ ψ production

$$ep \to e'\gamma^* p \to e'p'J/\psi \to e'\mu^+\mu^-p'$$

$$\frac{d\sigma}{dt} = \frac{\alpha_{EM} e_Q^2}{4(W^2 - M_N^2)^2} \frac{(16\pi\alpha_S)^2}{3M_V^3} |\phi_{NR}(0)|^2 |G(t,\xi)|^2$$

"QCD analysis of near-threshold photon-proton production of heavy quarkonium", Yuxun Guo, Xiangdong Ji, and Yizhuang Liu, Phys. Rev. D 103, 096010, 2021

$$\frac{d\sigma}{dt} = \mathcal{N}^2 \frac{e^2}{64\pi (s - M_N^2)^2} \frac{[A^g(t) + \eta^2 D^g(t)]^2}{A^{g^2}(0)} \cdot \tilde{F}(s) \cdot 8$$

"J/ ψ near threshold in holographic QCD: A and D gravitational form factors", Kiminad A. Mamo and Ismail Zahed, Phys. Rev. D 106, 086004, 2022

Access to the gluon content of the proton... ... if other contributions can be understood.

Current experimental status

- J/ψ production offers a window to the gluon dynamics in the nucleon, even at JLab energies.
- Requires large statistics.

The µCLASI2 setup

The µCLASI2 configuration

- The μCLASI2 setup will mostly use existing CLASI2 detectors.
- The CLASI2 FD detector will be effectively used as a muon detector.
- The CTOF, CND, CVT, HTCC, FT, LTCC and BAND will be removed.

The µCLASI2 configuration

- A **lead shield** to reduce pion background in the FD.
- A **PbWO4 calorimeter** will identify scattered electron.
- A **GEM Forward Vertex tracker** will be used for vertexing.
- A **µRWELL recoil tracker** surrounds the target to detect recoil proton,
- associated with a Central Scintillator Hodoscope for timing.

Experimental conditions and beam time request

Beam	Beam	Beam	Target	Target	Beam time			
Energy	Current	Requirements	Material	Length	(days)			
(GeV)	(μA)			(cm)				
Commisionning								
11				5	15			
Calibration								
11	7.5		Empty target	5	10			
11	<1		LH2	5	20			
Production								
	7.5	> 85% longitudinal polarization	LH2	5	200			
Total time								

The wECAL calorimeter & forward vertex tracker systems

wECAL calorimeter

softwares.

PbWO4 Calorimeters in Hall B

<complex-block>

.

wECal design based on the existing

Expected rates: 2 MHz (~HPS calo.)

CLASI2 FTCal \rightarrow Same MC and recon

APD readout (used in CLAS12 FT & HPS)

Electro- and photo-production of muon pairs with μ CLASI2 – A proposal to PAC 53 – 21 – 91 July 2023

Forward tracking in Hall B

- FVT is used for **vertexing only**.
- 4 out of 6 layers for track matching.
- Forward tracks reconstructed in the CLAS12 FD DC.
- No changes to the tracking from CLASI2.

CLASI2 MicroMegas FVT \rightarrow 6-layer assembly

3-layer assembly used in many CLAS12 experiments (eg. Barrel Micromegas)

The wECAL calorimeter & forward vertex tracker systems

PbWO4 Calorimeters in Hall B

wECAL calorimeter

- wECal design based on the existing CLAS12 FTCal \rightarrow **Same MC and recon softwares**.
- APD readout (used in CLAS12 FT & HPS)
- Expected rates: 2 MHz (~HPS calo.)

• Expected rates: 500 kHz/cm²

Forward tracking in Hall B FVT is used for vertexing only.

- 4 out of 6 layers for track matching.
- Forward tracks reconstructed in the CLAS12 FD DC.
- No changes to the tracking from CLASI2.

CLASI2 MicroMegas FVT \rightarrow 6-layer assembly

3-layer assembly used in many CLAS12 experiments (eg. Barrel Micromegas)

The $\mu RWELL Recoil Tracker$

sh index of layers and strip

Same number of layers and strip readout as in CLAS12 BMT. First version of the detector implemented in simulation.

Electro- and photo-production of muon pairs with μ CLAS12 – A proposal to PAC 53 – 21st of July 2025

Cylindrical MPGD in Hall B

CLASI2/BoNuS

GEM detector

Extensive experience in building and operating cylindrical MPGD detectors

Significant R&D efforts are underway in different labs & at JLAB for high-rate μ RWELL detectors (EIC, SoLID, and Hall B LDRD-2507).

Rates, backgrounds and trigger

The μ CLAS12 configuration is **fully implemented** in GEMC, the CLAS12 simulation package.

Drift Chambers occupancies

Trigger

- Single MIP Trigger rate: 21kHz.
- Maximum CLAS12 DAQ rate: **30kHz** with >90% live time.
- All proposed physics channels included in the trigger and measured at the same time.

Expected results

Expected results on DDVCS

Analysis strategy

$$ep \to e'\gamma^* p \to e'p'\gamma^* \\ \to e'\mu^+\mu^-(X)$$

- Electron detected in the new PbWO4 calorimeter.
- Muons in μ CLASI2.
- Missing proton is reconstructed from energymomentum conservation.

Electro- and photo-production of muon pairs with μ CLASI2 – A proposal to PAC 53 – 21st of July 2025

Impact on Shadow GPDs

Expected results for TCS

Analysis strategy

Expected results with 7.7M expected events

Photon polarization asymmetry

 \rightarrow First precision measurement of TCS

Expected results for J/ψ electro-production

Analysis strategy

$$ep \rightarrow e'\gamma^*p \rightarrow e'p'J/\psi$$

 $\rightarrow e'\mu^+\mu^-(X)$

- Electron detected in the wECAL.
- Muons in µCLASI2.
- Peak in the invariant mass of the muon pair.

10^{0} σ [nb] Total cross-section MZ22 MZ22 + Dipole Q^2 dependence ($Q^2=0.5 \text{ GeV}^2$) 10^{-1} CLAS12 photoproduction (Premiminary) μ CLAS12 (200 days @ 10.6 GeV @ 10^{37} cm⁻²s⁻¹) μ CLAS12 (200 days @ 11 GeV @ 10³⁷cm⁻²s⁻¹) 11.0 8.5 9.0 9.5 10.0 10.5 E_{v} [GeV] E_v in [8.50, 8.90] GeV E_v in [8.90, 9.30] GeV E_v in [9.70, 10.10] GeV E_v in [9.30, 9.70] GeV £ 10-E_v in [10.10, 10.50] GeV Differential crosssection -t [GeV²]

Projected results with 30k expected events

- I0 times more events than the current largest J/ψ sample at JLab.
- $\frac{3}{4}$ of the expected SoLID J/ ψ rate.
- Energy reach limited by the wECAL threshold.

D. E. Kharzeev, "Mass radius of the proton", PRD (2021)

Key takeaways

- The μCLASI2 experiment will provide the unique opportunity to measure Double Deeply Virtual Compton Scattering and access the full kinematic dependence of Generalized Parton Distributions.
- Large statistics **TCS and J/\psi production** will also be measured, at the same time.
- The μCLASI2 setup will use most of the existing CLASI2 detector package with the additions of shielding, calorimeter and tracking in front of the Forward Detector.
- All the planned detector technologies have already been demonstrated in Hall B or at JLab.
- µCLASI2 has been **fully implemented in CLASI2 simulation** framework.
- Rates, trigger rates, pion background rates and expected number of events are based on realistic simulation and existing CLASI2 data.

Beam	Beam	Beam	Target	Target	Beam time			
Energy	Current	Requirements	Material	Length	(days)			
(GeV)	(μA)			(cm)				
Production								
11	7.5	> 85% longitudinal polarization	LH2	5	200			
Total time								

Back-up

Addressing the increased beam current in Hall B

Environmental assessment

- The current EA-1534 has a total operating limit of 2 MW for CEBAF operations.
- Both Hall A and C have a respective I MW limit.
- The proposed experiment will Hall B power from 27.5 kW to 82.5 kW, with no significantly effect on the total limit.
- To date, four EA assessments have been conducted (1987, 1997, 2002, and 2007) to support the experimental program.
- It is expected that EA updates will be done in the future, for example, for positron running.

Beam dump upgrade

Phase-I upgrade: 5 kW to 10 kW - Completed

The Faraday cup and the retractable, water-cooled Copper dump are relocated to the end of the downstream tunnel.

Phase II upgrade: 10 kW to 100 kW

(required for the approved experiment C12-20-002)

- Replace the existing water-cooled retractable Copper dump with a new, high-power dump with closed-loop cooling.
- Preliminary design, similar to the Hall D electron dump exists.

Back-up: backgrounds and rates

Electro- and photo-production of muon pairs with μ CLASI2 – A proposal to PAC 53 – 21st of July 2025

Back-up: simulations

Muon momentum corrections

Electro- and photo-production of muon pairs with μ CLASI2 – A proposal to PAC 53 – 21st of July 2025

Resolutions: kinematic variables

Electro- and photo-production of muon pairs with μ CLAS12 – A proposal to PAC 53 – 21st of July 2025

Pion survival rates

Back-up: expected results

More on Timelike Compton Scattering: kinematic coverage

$$ep \to (e')p'\mu^+\mu^-$$

More on J/ ψ electro-production: kinematic and missing mass

More on DDVCS: error bars on BSA 3

Electro- and photo-production of muon pairs with μ CLASI2 – A proposal to PAC 53 – 21st of July 2025

Back-up: systematics