nTPE+: Measurement of the Two-Photon Exchange in Electron-Neutron and Positron-Neutron Elastic Scattering A Proposal to PAC53

Eric Fuchey College of William & Mary

Sheren Alsalmi – King Saud University Peter Blunden – University of Manitoba Provakar Datta – Lawrence Berkeley National Lab **On behalf of the nTPE collaboration**

PWG Meeting July 9th, 2025

Elastic e-N scattering: Rosenbluth

Rosenbluth Measurements in *e⁻p* Scattering

- Rosenbluth technique extensively used on the proton to extract G_{F}^{p}
- Linearity in ε well tested up to $Q^2 \leq 3$ (GeV/c)²

Global Fit on Rosenbluth Slope in *e*⁻*p* Scattering

- Until GEp-I at Jefferson Lab [Phys. Rev. Lett. 84, 1398 (2000)], OPE accepted to be a sufficient approximation
- Large discrepancy between Rosenbluth and polarization transfer (for measurements at Q² ≥ 2 GeV²);
- Missing contribution likely due to Two-Photon Exchange (TPE).

July 9th 2025

Two-Photon Exchange with Positrons

- TPE in elastic e^+N scattering:
- Hard TPE amplitude interferes with OPE amplitude:

Interference term depends on the lepton charge to the power 3:

□ TPE expected to be of same magnitude opposite sign in e^+N and e^-N ; □ measurement $e^+N / e^-N => 2$ TPE

e⁺*p* measurements

- Ratio of e^+p/e^-p measured in several experiments;
- Latest measurements in Olympus, with Q² up to 2 GeV²:

• Essentially inconclusive results

• Note: Rosenbluth/polarization discrepancy not very significant at low Q²

en Scattering Measurements

• Measurements of G_{E}^{n} :

 \square Most data below Q² = 2 GeV²;

 \square All measurements beyond Q² = 3.5 GeV² from SBS (analysis underway);

□ Rosenbluth measurements on the neutron:

• old (1960-70s), low accuracy data for $Q^2 < 2.0 \text{ GeV}^2$

♦ SBS nTPE (2022) at Q² = 4.5 GeV² (analysis underway)

Two-Photon Exchange in en Scattering

- Lack of "contradictory" measurements to evidence TPE in en scattering
- Predictions from Phys. Rev. C72, 034612 (2005) on *en* scattering:

 \square small TPE contribution at Q² around 1 GeV²;

 \Box significant at 3 GeV² and beyond;

• nTPE+: E.F. (contact), S. Alsalmi, P. Blunden, P.Datta, E. Wertz

□ Followup of LOI12+24-008: neutron TPE at $Q^2 = 3 \text{ GeV}^2$, 4.5 GeV², 5.5 GeV² □ Direct measurement of nTPE via e⁺n/e⁻n ratio → *Suggested by LOI 2024 review* □ Rosenbluth measurements of e⁻n and e⁺n cross section

 $\Box =>$ disentangle contribution of TPE in Rosenbluth/polarization discrepancies

nTPE+ with Jefferson Lab Positron Upgrade

- New injector to produce polarized positrons (and electrons)
- Promised specifications:

\Box 1µA e^+ without polarization;

 \square 60nA with polarization;

• SBS:

□ Major part of Hall A 12 GeV program at Jefferson Lab; □ SBS coupled with Bigbite for electron measurement; □ SBS uses Hadron Calorimeter (HCal) for nucleon detection / identification;

• SBS form factor program

D GMN □ *nTPE* (E12-20-010) **D**GEN **D**GEN-RP D GEP

• Other Physics: **D** KLL **D** TDIS **D** nDVCS

Neutron Measurement with Durand Technique

- Established by Durand in Phys. Rev. 115, 1020 (1959).
- Used for SBS experiments GMN, nTPE (2020), **nTPE+**:

 \square simultaneous *enlep* measurement on D_2

 \square Separation of p and n with magnet

 $\Box \sigma_{en} / \sigma_{en}$ with reduced systematics (cancellation of Fermi momentum,...)

nTPE+ Kinematics

• NTPE+ will be proposed in Hall C:

□ SBS, BigBite and target installed downstream of pivot;

D SBS, BigBite locations for our kinematics don't interfere with

HMS/SHMS at their largest angles;

nTPE+ Kinematics

• NTPE+ will be proposed in Hall C:

D SBS, BigBite and target installed downstream of pivot;

D SBS, BigBite locations for our kinematics don't interfere with

HMS/SHMS at their largest angles;

• Six kinematic settings:

 \Box each will run e^+ , e^- , LD_2 , LH_2 ;

TAC recommendation: use longer targets (30cm instead of 15cm);

□ Three settings at 2 pass, two settings at 3 pass, one setting at 1.5 pass.

Kinematic	e^+/e^- - I_{beam}	Q^2	Ε	E^{\prime}	θ_{BB}	p'	$ heta_{SBS}$	ϵ
	(μA)	$({\rm GeV/c})^2$	(GeV)	(GeV)	degrees	$({\rm GeV/c})$	degrees	
1+/-	$e^{+/-}$ (1.0)	4.5	4.4	2.00	41.9	3.20	24.7	0.600
2+/-	$e^{+/-}$ (1.0)	4.5	6.6	4.20	23.3	3.20	31.2	0.838
3+/-	$e^{+/-}$ (1.0)	3.0	3.3	1.71	42.8	2.35	29.5	0.638
4+/-	$e^{+/-}$ (1.0)	3.0	4.4	2.81	28.5	2.35	34.7	0.808
5+/-	$e^{+/-}$ (1.0)	5.5	4.4	1.47	54.9	3.75	18.7	0.420
6+/-	$e^{+/-}$ (1.0)	5.5	6.6	3.67	27.6	3.76	26.9	0.764

July 9th 2025

nTPE+ Measurements: e+le- ratios R_{2v}

• R^{n}_{2v} measurement with Durand technique:

□ Measure $R_{n/p} = \sigma_{en} / \sigma_{ep}$ consecutively for positrons and electrons; □ $\rho_{\pm} = \left(\frac{\sigma_{e^{+n}}}{\sigma_{e^{+p}}}\right) / \left(\frac{\sigma_{e^{-n}}}{\sigma_{e^{-p}}}\right) = R_{2y}^n / R_{2y}^p$ for **Q**² = **3 GeV**², **4.5 GeV**², **5.5 GeV**² □ e⁻ data at same beam intensity as e⁺ data (1µA)

July 9th 2025

nTPE+ Measurements: Rosenbluth slopes Sⁿ

• Rosenbluth measurement with Durand technique:

□ Measure
$$R_{n/p} = \sigma_{en}/\sigma_{ep}$$
 for both ε points;
□ $A = \frac{R_{n/p}^{\epsilon_1}}{R_{n/p}^{\epsilon_2}} \simeq \frac{1 + \epsilon_2 S^p}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
□ Rosenbluth e^+p up to $Q^2 = 5.5 \text{ GeV}^2$ sourced from PR12+23-012
(M. Nycz et al.):
1.5
 $A = \frac{R_{n/p}^{\epsilon_1}}{C_2} \simeq \frac{1 + \epsilon_2 S^p}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{R_{n/p}^{\epsilon_2}} \simeq \frac{1 + \epsilon_1 S^p}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
(M. Nycz et al.):
1.5
 $A = \frac{R_{n/p}^{\epsilon_2}}{C_2} \simeq \frac{1 + \epsilon_2 S^p}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{R_{n/p}^{\epsilon_2}} \simeq \frac{1 + \epsilon_2 S^p}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{R_{n/p}^{\epsilon_2}} \simeq \frac{1 + \epsilon_2 S^p}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{R_{n/p}^{\epsilon_2}} \simeq \frac{1 + \epsilon_2 S^p}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{R_{n/p}^{\epsilon_2}} \simeq \frac{1 + \epsilon_2 S^p}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{R_{n/p}^{\epsilon_2}} \simeq \frac{1 + \epsilon_2 S^p}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{R_{n/p}^{\epsilon_2}} \simeq \frac{1 + \epsilon_2 S^p}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$
 $A = \frac{R_{n/p}^{\epsilon_2}}{1 +$

• Sources of systematics for $R_{n/p}$:

Preliminary estimation of systematics for GMn/nTPE analysis:
 (*) => Divided by a factor 3 to account for possible improvements
 Introduced factors of covariance for correlations between settings

$Q^2 \; (({\rm GeV/c})^2)$	3.0	4.5	5.5	$\delta_{cov, e+/e-}$	$\delta_{cov, \epsilon_1/\epsilon_2}$
Radiative corrections [*]	0.77	1.11	1.26	+0.80	0.0
Inelastic contamination	0.33	0.75	0.84	+0.5	0.0
Nucleon detection efficiency [*]	0.7	0.7	0.7	+0.95	+0.5
Nucleon charge exchange in FSI	0.04	0.01	0.02	+0.95	0.0
Selection stability	0.16	0.15	0.40	+1.00	0.0
$\Delta R_{n/p}$	1.10	1.52	1.72	-	-
$\Delta \rho_{\pm} / \rho_{\pm}$	0.44	0.74	0.83	_	_
$\Delta A/A$	1.40	2.03	2.32	_	_

Neutron Detection Efficiency Measurement

- Neutron and protons detection efficiencies similar, but not identical;
 Determine absolute detection efficiency for both protons and neutrons;
- Explicit beam request to measure γp → π⁺n at "kinematic end-point":
 □ π⁺ measured by BigBite, n measured by HCal;
 □ Strict kinematic selection to ensure γp → π⁺n exclusivity;
 - \Box LH₂ target with 6 % X_0 copper upstream to enhance photon production ;
 - □ Electron beam to increase luminosity;
 - \square Coverage of ~1/4 of HCal surface sufficient to determine neutron efficiency

• Systematics specific to R_{2v}^{n} and S^{n} :

$Q^2~(({ m GeV/c})^2)$	3.0	4.5	5.5
$\Delta \rho_{\pm}/\rho_{\pm} \ (\text{stat})$	0.28	0.25	0.58
$\Delta \rho_{\pm}/\rho_{\pm} $ (syst)	0.44	0.74	0.83
$\Delta R^p_{2\gamma}/R^p_{2\gamma}$ [13]	0.78	0.42	0.79
$\Delta R_{2\gamma}^n/R_{2\gamma}^n$ (syst)	0.93	0.89	1.28

 $R_{2\gamma}^{n}$

$\rm Q^2((GeV/c)^2)$	$3.0 \ (e^-)$	$3.0 \ (e^+)$	$4.5 \ (e^-)$	$4.5 \ (e^+)$	$5.5~(e^-)$	$5.5 \ (e^+)$
$\Delta A/A \text{ (stat, \%)}$	0.32	0.32	0.40	0.40	0.58	0.58
$\Delta A/A \text{ (syst, \%)}$	1.40	1.40	2.03	2.03	2.32	2.32
$S^{p} \; [3, 14]$	0.1056	-0.0267	0.0616	-0.0608	0.0478	-0.0773
ΔS^p [3, 14]	0.0160	0.0114	0.0165	0.0164	0.0170	0.0254
ΔS^n	0.100	0.096	0.103	0.103	0.087	0.094

 S^n

[3] Phys.Rev.Lett. 128 (2022) 10, 102002
[13] A. Schmidt *et al.* PR12+23-008
[14] M. Nycz *et al.* PR12+23-012

nTPE+ Time Request

- **TAC recommendation**: use longer targets to maximize luminosity
- 6 kinematics with e+/e- LD2/LH2 30 cm (instead of 15 cm): 34.5 PAC days total □ 536 PAC hours (about 22 days) beam on target:
 - □ 292 additional PAC hours (584 real hours) for setting changes:
 - ♦ 144 PAC hours (288 real hours) for 6 e^+/e^- changes;

♦ 148 PAC hours (296 real hours) for 5 magnet angles and pass changes);

Kin	e^+ or e^-	E_{Beam} (pass)	$I_{\rm Beam}$	Q^2	θ_{BB} / θ_{SBS}	target	PAC (real) Time	(inc	ludin	iq one	we	ek fo	r pass	change at 1	5 pass)
		(GeV)	μA	$({\rm GeV/c})^2$	(degrees)		(hours)			<u> </u>			•		
Optics	e-	4.4 (2)	10.0	3.0	28.5/34.7	C-foil	16		Pass change + BB/SBS magnet configuration change					16(32)	
2-	e^-	4.4(2)	1.0	3.0	28.5/34.7	LD2 $30 \mathrm{cm}/\mathrm{LH2}$ $30 \mathrm{cm}$	8/8	4+	e^+	6.6(3)	1.0	4.5	23.3/31.2	LD2 $30 \mathrm{cm}/\mathrm{LH2}$ $30 \mathrm{cm}$	24/8
Reconfiguration to positrons					24 (48) [†]	Reconfiguration to electrons						24~(48) [†]			
2+	e^+	4.4 (2)	1.0	3.0	28.5/34.7	LD2 $30 \text{cm}/\text{LH2}$ 30cm	8/8	4-	e^-	6.6(3)	1.0	4.5	23.3/31.2	LD2 $30 \mathrm{cm}/\mathrm{LH2}$ $30 \mathrm{cm}$	24/8
BB/SBS magnet configuration change					16 (32)			BB/SB	S magi	net configu	ration chang	ge	16(32)		
3+	e^+	4.4(2)	1.0	4.5	41.9/24.7	LD2 $30 \mathrm{cm}/\mathrm{LH2}$ $30 \mathrm{cm}$	48/16	6-	e^-	6.6(3)	1.0	5.5	27.6/26.9	LD2 $30 \text{cm}/\text{LH2} 30 \text{cm}$	18/6
Reconfiguration to electrons					24 (48) [†]	Reconfiguration to positrons					24~(48) [†]				
NDE	e^-	4.4 (2)	10.0	4.5	41.9/24.7	LH2 30cm+6% Cu Rad	8	6+	e^+	6.6(3)	1.0	5.5	27.6/26.9	LD2 $30 \mathrm{cm}/\mathrm{LH2}$ $30 \mathrm{cm}$	18/6
3-	e ⁻	4.4 (2)	1.0	4.5	41.9/24.7	LD2 $30 \mathrm{cm}/\mathrm{LH2}$ $30 \mathrm{cm}$	48/8	Special Pass change $(1.5 \text{ pass}) + \text{BB/SBS}$ magnet configuration change					84 (168)		
		BB/SB	S mag	net configu	ration chang	e	16 (32)	1+	e^+	$3.3~(3^*)$	0.5	3.0	42.8/29.5	LD2 $30 \mathrm{cm}/\mathrm{LH2}$ $30 \mathrm{cm}$	24/12
5-	e^-	4.4 (2)	1.0	5.5	54.9/18.7	LD2 30cm/LH2 30cm	60/20	Reconfiguration to electrons						24~(48) [†]	
Reconfiguration to positrons				24~(48) [†]	1-	e^-	3.3(1.5)	0.5	3.0	42.8/29.5	LD2 $30 \mathrm{cm}/\mathrm{LH2}$ $30 \mathrm{cm}$	24/12			
5+	e^+	4.4 (2)	1.0	5.5	54.9/18.7	LD2 30cm/LH2 30cm	60/20	Optics	e^-	3.3(1.5)	10.0	3.0	42.8/29.5	C-foil	16
								Total	beam						536
								Total	time req	uest					828 (1656)

Total time request

nTPE+ Projections

• $R^n_{2\nu}$ for all 6 settings:

nTPE+ Projections

• Estimations of $e^{+}n$ and $e^{-}n$ Rosenbluth slopes

□ Superimposed on nTPE (2022) preliminary analysis by E. Wertz* "A Measurement of the Neutron Electromagnetic Form Factor Ratio from a Rosenbluth Technique with Simultaneous Detection of Neutrons and Protons", Ph.D Thesis, William & Mary (July 2025).

 $\square \mu_n G_E^n / G_M^n$ calculated from projected Rosenbluth slopes;

 \square Other G_E^n measurements and projections are polarization data;

July 9th 2025

Summary

• nTPE+: unprecedented measurements on Two-Photon Exchange on Neutron:

 \Box Direct measurements of TPE in neutron with R^{n}_{2n}

 \square Rosenbluth measurements for $e^{+}n$ and $e^{-}n$:

• both complementary and "contradictory" to existing G_{F}^{n} measurements;

complements current SBS Form Factors program;

• nTPE+ will benefit from the return of experience of the nTPE analysis

Extraction method worked out;

Systematics mostly under control;

Thank you for your attention !

Super BigBite Spectrometer: BigBite

- Detector package tilted 10% behind dipole magnet
- Function: Electron measurement;
- Detector package:
 - **D** GEMs:

♦ 4 front layers 40 x 150 cm², 1 back layer 60 x 200 cm²

momentum trivector + vertex measurement

♦ 1% momentum resolution, 1mr angular resolution;

- **GRINCH**:
 - C4F8 Cherenkov radiator
 - Cherenkov light readout by 510 PMTs
 - ♦ Electron ID ~98% Pion rejection
- Calorimeter: (shower+preshower)
 - Shower: 7x27 lead glass modules
 - PreShower: 2x26 lead glass modules
 - ♦ Trigger
 - ♦ Electron ID/Pion rejection
- □ Hodoscope:
 - ♦ 90 Scintillators 60 x 2.5 x2.5 cm³
 - scintillators readout on both ends
 - ♦ Precision Timing: 500 ps resolution

Preshower

GRINCH

Hodoscope

Shower

GEMs

BigBite magnet

Super BigBite Spectrometer: HCal

- 12 x 24 iron/scintillator modules 15 x 15 * 90 cm³
- Function: Nucleon measurement:
 - \square Position resolution ~5.5cm
 - □ Timing resolution (ADC only) ~1.5 ns
 - □ Energy resolution ~50 %
- Nucleon identification (see next)

nTPE+ Updated for 2025

Feedback for LOI-E12+24-008

- Reviewers recommends: \Box measuring ratios of cross sections $\left(\frac{\sigma_{e^{+n}}}{\sigma_{e^{+p}}}\right) / \left(\frac{\sigma_{e^{-n}}}{\sigma_{e^{-p}}}\right)$ at each ϵ point;
 - would provide $\delta^{n}_{TPE}(\epsilon_{2}) \delta^{n}_{TPE}(\epsilon_{1})$ and $\delta^{p}_{TPE}(\epsilon_{2}) \delta^{p}_{TPE}(\epsilon_{1})$
 - hydrogen data (e^+ , e^-) needed to check systematics
 - same nucleon footprint on σ_{e+n} , σ_{e-n} may reduce HCal systematics
- Reviewers concerned with:

 \Box difference of current between e⁺ (1µA) and e⁻ (10µA) running;

- Not so relevent for Rosenbluth measurements;
- becomes more important in $\sigma_{e+n}/\sigma_{e-n}$
- Reviewers suggest another point at higher Q^2

Global Fit on Rosenbluth Slope in *e*⁻*p* Scattering

• Note: Rosenbluth/polarization discrepancy not very significant at low Q²

J.Phys.G 47 (2020) 5, 055109

nTPE+ Systematics: GMn/nTPE Analysis

• Analysis: extraction of *n*/*p* ratios:

Systematic uncertainties: Inelastic contamination

Systematic uncertainties: Inelastic contamination

- Latest improvements on estimation of inelastic contamination:

 Inelastic Monte Carlo combined with out-of-time events
 neutron/proton cross section ratio obtained with newest function compared with:
 - ◆ 2nd and 4th order polynomials, gaussian to fit inelastic background;

 $\bullet \Delta y$ side-band selection

□ Reweight MC events with HCal non-uniformity map;

HCAL Non-Uniformity Corrections

 Reweight MC events with HCal non-uniformity map: □ Analysis of all combined SBS8 LH2 settings for map efficiency: Display="block-transform: series of the seri \Box Correction modifies $\sigma_{_{en}}/\sigma_{_{en}}$ by ~0.2 % (SBS8) and ~0.5 % (SBS9); D Other sources of systematics:

- Lack of absolute neutron detection efficiency measurement;
- \bullet Absolute proton detection efficiency uncertainty larger at high Q²;

Systematic uncertainties: Radiative corrections

• Radiative corrections (analysis credit: P. Datta, LBNL):

□ SIMC events with the following configurations for radiative effects:

- ♦ (1) No radiative corrections i.e. none of the tails are radiated
- \bullet (2) One tail = 0 => All (e, e', and p) tails are radiated
- \bullet (3) One tail = -3 => All but p tails are radiated

 \square SIMC events processed through g4sbs \rightarrow libsbsdig \rightarrow SBS-offline;

 \square Properly weighted Δx distribution for all types of events with the same selection \square Extract individual yields and then quantify the correction

34

• Final state interactions calculated by M. Sargsian: \Box calculations of final state charge exchange $ep \rightarrow en$ and $en \rightarrow ep$ on deuterium

 \square Since D is symmetric, $ep \rightarrow en \equiv en \rightarrow ep$:

- ratio $R_{n/p}$ basically not affected
- uncertainty on ratio $R_{n/p}$ extremely small

Preliminary systematic uncertainties

• Systematics analysis credit: P. Datta (LBNL);

 $\hfill\square$ Improvement can be achieved for radiative corrections and nucleon detection efficiency

Table 2: Estimated contributions (in percent) to systematic error on R and $\frac{G_M^n}{\mu_n G_D}$.

	Error Sources			$Q^2~(\epsilon)$		
	Entor Sources	3(0.72)	4.5~(0.51)	7.4(0.46)	9.9~(0.50)	13.5(0.41)
	Inelastic Cont.	0.33	0.75	0.84	0.75	2.67
	Nucleon Det. Effi.	2.00	2.01	2.01	2.02	2.02
$\Lambda(D)$	Radiative Corr.	2.31	3.32	3.77	3.87	5.47
$\Delta(n)_{sys}$	Cut Stability	0.16	0.15	0.40	0.67	0.60
	FSI	0.04	0.01	0.02	0.02	0.03
	Total	3.08	3.95	4.37	4.48	6.44
	Inelastic Cont.	0.17	0.38	0.42	0.37	1.34
	Nucleon Det. Effi.	1.00	1.00	1.01	1.01	1.01
	Radiative Corr.	1.16	1.66	1.88	1.94	2.73
$\Delta(\frac{G_M^n}{\mu_n G_D})_{sys}$	Cut Stability	0.03	0.07	0.20	0.33	0.30
$\mu_n C D^{-1} c$	FSI	0.02	0.00	0.01	0.01	0.01
	σ^p_{Red}	0.82	0.92	1.35	1.52	1.33
	G_E^n	0.55	0.65	0.62	0.66	0.55
	Total	1.83	2.27	2.64	2.79	3.53