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Data samples and preselection cuts
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= Using MC from ‘new’ pass v7

— tritrig+pulser, WAB—+pulser
= Using data from run 14211 from pass v7

— Data luminosity of full run: £ = 0.940424 pb~!
= All cuts will refer to the following list of cuts:

— Track cuts

0.4GeV < p.- < 2.9GeV
0.4GeV < po+ < 4.0GeV
A(t'trk,e*7 cIu,e*) <10ns
A(ttrk,e+7 tclu,e*) <bns
xfrk <20

Nog hits > 9

— Vertex cuts

Putx < 4.0 GeV
Xstx < 20

— Cluster cuts

0.2GeV < Egyer < 4.0GeV

— Requiring single3 trigger for the event
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Preslection cutflows
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Data samples — MC luminosity scaling
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= Calculate effective cross section for MC samples

Outft = O % Nselected

e gen Ngen

= Use data luminosity (for 4 files: Lqpser = 0.001492pb~1) and cross
section to scale MC histograms with scaling factor fic,je

NMC, scaled Oeff X Esubset __ Ogen X Esubset

fscale = = =
Nselected Nselected N gen

sample Ugen/pb Ngen fscale

tritrig 4.025 x 10° 17792 x 10* 0.0337
WAB  8.249 x 101 38700 x 10*  0.318
14211 - - 1.00
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MC - data comparison: pg,, with all cuts
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= Seems like we are underestimating the number of events in the low
Psum region in MC.
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MC — data comparison: effect of A(tyke . teuet) Cut
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= For reference: psum distributions with all cuts applied except for
Atk e telu,et) cut compared to fully preselected distribution
= Electron time cut removes low pg,m events
— Effect seems to be more pronounced in data
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MC — data comparison: (tyke — tee+) distribution
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= ldea: excess might come from additional ‘random’ vertices under
(tirke~ — tou,et) time peak in data
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(terke- — tewer) — signal region and side-bands
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= Defining signal region (inside A(tyy e, teu,e+) < 10ns cut window)
and side-bands 15ns < A(ty e telu,e+) < 30ns

8 /50



Fitting (tuke — touer) background
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Example distribution — data

= Fit function
@kg==a4-bx—kcx24-dx3

s Excluding the signal region
(A(terk,e— s telu,er) < 10ns)
region from fit

= All fits in backup

N

g T
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Determining scaling factors

ol Ay

p=_ iy O8

= Following this explanation

= Find number of events in side-bands kag and signal region kag

SB ~15 30 <R 10
ka = / fbk + fbk ka = / fbk
& Sz T s B & J10®
= Determine scaling factor £,z between side-bands and signal region

fbkg - kag/kag

dkag
= Rescale Do

to get estimate in of random background in signal

region
dNpkg

dpsum SR

dNpkg
CIpsum SB

= gbkg :
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https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuidePhysicsToolsSideBandSubtraction

Determining scaling factors
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fit parameters
sample a b c d x2/ndf
tritrig  828.00 —12.40 —0.59 0.0081 6.55
WAB 11.06 —-0.19 -0.01 0.0001 1.19
14211  67.39 0.17 —0.02 —0.0004 1.22

= Fit for tritrig not ideal, but good enough for now!
— Tried different functions: pol3 is the best for all three samples

= Determining integrals and scaling factor:

sample Ntff’g Na?g Ebkg
tritrig 16165 15507 1.042
WAB 216 202 1.07
14211 1336 1761 0.759
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psum distributions — data
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= psum distribution for data in signal region and side-bands, as well as
side-band subtracted distribution in signal region
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Psum distributions — tritrig
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= peum distribution for tritrig in signal region and side-bands, as well as
side-band subtracted distribution in signal region
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Psum distributions — WAB
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= peum distribution for WAB in signal region and side-bands, as well as
side-band subtracted distribution in signal region
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MC - data comparison: pg,, side-band subtracted
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= Side-band subtracted and luminosity scaled MC compared to data
= Achieve higher low pgum count in MC compared to data than before
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Summary |
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= Simply applying the
preselection to data and MC
leads to underestimating the No side-band subtraction, luminosity scaled
number of low-psum events in
Monte Carlo.
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Summary |

SLAC
= Simply applying the
preselection to data and MC
leads to underestimating the (tyacko— — tety,et) for data, tritrig, and WAB
number of low-psum events in
Monte Carlo. )

= The (ttrack,e— - tclu,e+) peak in
data sits on a higher plateau of
background events.

L2 L AL SR LU A UL
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Summary |
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= Simply applying the
preselection to data and MC
leads to underestimating the (tyaco— — tety,et) for data, trtrig, and WAB
number of low-psum events in 3 = T o
Monte Carlo. 10 iy My
; [ 5
= The (ttrack e~ — telu e+) peak in y It
. ) . ’ 102 JP 11‘\ |
data sits on a higher plateau of s e S
: 7 e
background events. o g \\i |
— Using side-bands to estimate J ho
the background under the o [ M H‘
peak enables us to remove J 1] ‘
these random events. L e e H J"Ll°
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Summary |
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= Simply applying the
preselection to data and MC
leads to underestimating the Side-band subtracted, luminosity scaled
number of low-psum events in  °
Monte Carlo.

= The (ttrack,e— - tclu,e+) peak in
data sits on a higher plateau of
background events.

g

El

g

5

— Using side-bands to estimate
the background under the
peak enables us to remove
these random events.

= The side-band subtraction
equalizes the number of events
at low psym in data and MC.
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Effect on invariant mass and A’ signal
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= How does the side-band
subtraction affect the signal 120 MOV A' — all cuts but (6~ — .+ oppled

samples?
— Similar to tritrig and WAB Ty
samples, the A’
(tike- — teu,er) time peak
sits atop random background.
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Effect on invariant mass and A’ signal

e An

How does the side-band
subtraction affect the signal
samples?
— Similar to tritrig and WAB
samples, the A’
(tike- — teu,er) time peak

sits atop random background.

What is the effect of the
side-band subtraction on the
invariant mass distributions?
— Taking a look at data,
luminosity scaled tritrig and
WAB samples, as well as
120 MeV A’ signal
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No side-band subtraction, luminosity scaled
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Psum distributions — 120 MeV A’
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= psum distribution for A’ in signal region and side-bands, as well as
side-band subtracted distribution in signal region
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myix distributions — 120 MeV A’
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= my distribution for A’ in signal region and side-bands, as well as
side-band subtracted distribution in signal region
— Side-band subtraction removes only very few events from invariant
mass peak.
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MC - data comparison: my, with all cuts
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= Without side-band subtraction MC underestimates the number of
events in the peak of the invariant mass distribution.
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MC - data comparison: m,;, side-band subtracted
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= While shape of psym does not agree fully after side-band subtraction,
the invariant mass distribution looks pretty good.
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Summary |l

SLAC
= Side-band subtraction preserves A’ psum and invariant mass
distribution
— Only very few events are subtracted from invariant mass peak at
ma = 120 MeV

= After side-band subtraction, the tritrig+WAB MC invariant mass
distribution follows the data distribution more closely.

= Overall, side-band subtraction seems to remove discrepancies between
data and MC without introducing obvious new problems.
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Track quality in side-bands and signal region

ol ARy
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No side-band subtraction, luminosity scaled

= Why do we have more low psym 3 . o
events in data than in MC? 0 i vt
= ‘Excess’ low pgym events in \L t\
102 ,f"’ ..l‘
data seem to be part of the e fﬁ’/ S ‘
random time background under - 1 \\i N
the (ttrack,e— — Loy e*) peak J 7’1
107
= Do these background events I by |
have any other distinct o | o] |spuun) |smoma] ‘H
. . -60 -40 -20 0 20 40 60
characteristics? el
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Xirke /ndf and Nag pigs .~ distributions — data
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= x2/ndf looks similar in signal region and side-bands
— Perhabs slightly higher x?/ndf in SB?

= Side-bands have more low Ny pits ¢~ tracks compared to signal region
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pe- and p.+ distributions — data

a1 An

T I\

5 F 3 E
< r data: no " time cut < 4000— data: no € time cut
2500— data: signal region = data: signal region
r 35001~
r data: background region C data: background region
2000 3000~
S 2500
1500/— E
C 2000
1000~ 1500~
r 1000
500— £
L 500(—
Py P R IR it : [N . = il
5 1 15 2 25 3 35 4 35 4
p,/GeV p,/GeV

= The slight double-peak structure in the uncut p.- distribution comes
from a plateau at low p.- in the signal region and a rising
contribution from the side-bands.

= The positron momentum looks similar across the sample regions
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X2, distribution — data
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= The vertex fits in the side-bands are not obviously worse than in the
signal region.
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Summary IlI
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= The higher contribution of random in-time background in data might

come from more low-momentum and low N pits .- in data compared
to MC.

— Side-bands have tracks with lower Nyg hits o~ than in the signal region.
— The electron momentum distribution seems to peak more strongly
towards low values in the side-bands.

= Does this come from reconstruction inefficiencies in data?

= Or is our MC not including enough low-momentum tracks?
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Dependence on tracking volume
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= At the moment: alignment of
bottom volume of SVT is
better than top

= If tracking inefficiencies in data
are causing an excess of events
at low psym, we should see a
difference in the distributions
between top and bottom
volume.
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No side-band subtraction, luminosity scaled
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Tracking volume — data (tyke — touet)
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data: top and bottom
10°

data: e top

data: " bottom

= Applying all cuts except for A(ty e tei,et) Cut
= Time peaks are slightly shifted for electron in top or bottom
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Tracking volume — tritrig (tuk.e- — teiet)
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= Applying all cuts except for A(ty e tei,et) Cut
= Top and bottom time peaks mostly overlap for MC
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Tracking volume — WAB (tyk e — teluet)
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= Applying all cuts except for A(ty e tei,et) Cut
= Top and bottom time peaks mostly overlap for MC

p=_ iy O8
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Tracking volume — signal region
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= Applying all cuts and splitting sample into top tan A.- > 0 and
bottom tan A\.- < 0
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Tracking volume — signal region
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= Applying all cuts and splitting sample into top tan A.- > 0 and
bottom tan A\.- < 0
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Tracking volume — signal region
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= Applying all cuts and splitting sample into top tan A.- > 0 and
bottom tan A\.- < 0
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MC - data comparison: no side-band subtraction

electron in top volume electron in bottom volume
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= Applying all preselection cuts, no side-band subtraction

35 / 50



MC - data comparison: with side-band subtraction

electron in top volume

electron in bottom volume
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= Applying all preselection cuts, with side-band subtraction
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MC - data comparison IV
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= There seem to be more background low pg,, events in the top than
in the bottom.
— This could point to alignment effects that are present in the top but
not in the bottom of the SVT.
= For data, the ty o~ — toy e+ distribution in the top has a small
shoulder on the right side of the time peak.

= Generally, we need to make an effort to equalize the track time
distributions between top and bottom, e.g. by introducing separate
track and/or cluster time shifts for each half.
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Requiring an electron ECAL cluster
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No side-band subtraction, luminosity scaled

= Lastly, | wanted to check if
mimicking a pairs trigger would
improve the data — MC ratio.

= Adding e~ energy requirement
and A(tclu,e—a tclu,e‘*') <10ns
cut

L
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= Study effect on psym and
A(ttrk,gr7 c|u,e+) distribution
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Preslection cutflows — including e~ cluster cuts
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MC - data comparison: pg,, with e~ cuts
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= Electron cluster cuts don't remove the difference at low psym

n Nyelected IS reduced drastically compared to standard preselection.
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MC - data comparison: pg,,» with e~ cuts
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a.u.

data: single3 trigger
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= Requiring an e~ cluster and applying a A(ty e telu,et) removes
many out of time background events.
= However, we now see a ‘strange’ peak structure with secondary

peaks/shoulders.
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MC - data comparison: summary
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= The number of background events at low psum is higher in data than
in MC.
— This is probably the reason why we are getting fewer than expected
MC events using luminosity scaling.
— Side-band subtraction using the (tyx e~ — tau,e+) is an effective tool to
remove random background events under the in-time peak.
— We should either
= Improve our data reconstruction and selection,
= Create more accurate conditions in MC to reflect the real experimental
conditions, or both

= There are some notable differences between the top and bottom of
the detector

— Timing distributions peak at slightly different values.
— Requiring tan A.- > 0 gives more events at low pgm than tan A.- < 0

= Switching to a pairs-like trigger is not an easy fix to the differences
that we see between data and MC
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Radiative acceptance and fraction
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= For now: trust |uminOSity No side-band subtraction, luminosity scaled

scaled MC
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Radiative acceptance and fraction

ol AL

NS

= For now: trust |uminOSity No side-band subtraction, luminosity scaled, radiative selection

scaled MC
= Apply additional requirements:

— Tracks have hits in L2
— Selecting radiative peak
(psum > 3 GeV)
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Radiative acceptance and fraction

ol AL

NS

= For now: trust |uminOSity No side-band subtraction, luminosity scaled, radiative selection

scaled MC

= Apply additional requirements:

— Tracks have hits in L2
— Selecting radiative peak

(psum > 3 GeV)

m. /e
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Radiative acceptance and fraction

ol AN
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= For now: trust luminosity
scaled MC
= Apply additional requirements:
— Tracks have hits in L2
— Selecting radiative peak U;ﬂ X Leubset
(psum > 3 GeV) fscale = ~ pgrad
gen

= To calculate the radiative
fraction, we need the correct
scaling.
— Follow same process as for
other MC samples
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Radiative acceptance and fraction

el An
T e M\
n For now: trust |uminosity generated cross section for radiative tridents
5 250
scaled MC e
- . E | asazosor v
= Apply additional requirements: 2ol suow /M
[ | x/nof 32.16/20 It \
~ Tracks have hits in L2 Sl B
_ Selecting radiative peak 150; Sigma  2.617e+05 + 1.027e+04 / ‘\“
(psum >3 GeV) woi /"“ 1
. . L f
= To calculate the radiative F
fraction, we need the correct sl
scaling. : o
— Follow same process as for 525 w5 s W s 63 " "
Orad/Pt

other MC samples
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Radiative acceptance and fraction

ol AN
P I\
= For now: trust luminosity
scaled MC
= Apply additional requirements:
— Tracks have hits in L2 sample  0gen/pb Nigen froate
— Selecting radiative peak tritrig 4.025 x 109 17792 x 10* 0.0337
(Psum > 3 GeV) WAB  8.249 x 10'° 38700 x 10*  0.318
. rad  3.441x 10" 9595 x 10* 0.0005
= To calculate the radiative 14911 - - 1.00
fraction, we need the correct
scaling.

— Follow same process as for
other MC samples
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Radiative fraction
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darad dh, rad
ﬁad — dmtruth — dmtruth
dUtritrig dowaB dNtritrig dNwag
dMreco dMyeco dMreco dMyreco

= Nrad, Niitrig, and Myap refer to luminosity scaled numbers

= Get true invariant mass myu:h of e e~ vertex from MC truth of
radiative trident event.
— | am pretty confident that | am selecting the correct truth vertex but |
need to double-check some things.

" Myeco IS the reconstructed invariant mass.

= All samples include pulser overlay.
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Radiative fraction
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A’ acceptance
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selected gen
PO /dNA,
dZiruth dzgen

= Applying preselection and additional requirements like before

— Tracks have hits in L2
— Selecting radiative peak (psym > 3 GeV)

= This is by no means a real analysis yet, but | wanted to share my
progress with you!
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Radiative acceptance
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= And because | basically get this for free, | also calculated the radiative

acceptance:
selected gen
A 4= dNrad /dNrad
rad —
dMryth dmgen

= Applying preselection and additional requirements like before

— Tracks have hits in L2
— Selecting radiative peak (psym > 3 GeV)
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Radiative acceptance
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dN/dm [0.5/MeV]
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10
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—— selected vertices

— MCtruth

m,/GeV

P I\
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Summary
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= With the preselection mostly in place, it is possible to start working
on the next steps of the analysis.

= Currently, MC does not include hit killing and smearing effects which
will change the distributions | have just shown.

= We will need to monitor the preselection and the comparison of data
and MC as we improve the alignment and include inefficiencies in MC.
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MC - data comparison: pg,, in SR and SB
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= psum distributions in signal region and side-bands

— Signal region is the same as all preselection cuts applied
— Side-bands see peak at low pg,m, for data and tritrig, WAB seems to be
mostly constant
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Fitting (tuke — tcuetr) background — data
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= Fit function fbdk"igta = ag + bgx + cgx® + dyx3
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Fitting (tuke — touer) background — tritrig
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= Fit function f;&grig = a; + bex + cpx? + dipx®
— Fit not ideal but good enough for now
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Fitting (tuke — toue+r) background — WAB
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= Fit function fb"‘liagb = ay + byx + cux? + d,x3
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Xirk e /ndf distribution — tritrig

ol AR

T I\

A x10
:' A s -,
© 120 — tritrig: no e time cut
— tritrig: signal region
100 — tritrig: side bands

80

60

40

20

0 L L b b by
0 5 10 15 20 25 30 35 40
X2 Indf

‘e track

56 / 50



Xiek.e/ndf distribution — WAB
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Nag hits,e~ distribution — tritrig
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Nag hits,o~ distribution — WAB
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pe- distribution — tritrig
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pe- distribution — WAB

ol AR

T I\

& 450 wab: no e time cut

—— wab: signal region
400
—— wab: side bands

350

300

N
al
o
TTTITTTT [T T[T T[T T[T T T[TTTT[TTTT[TTTT
RN RRRRE RN RRRN RN AN RARR R

Lo Loy

35 4
pe/GeV

0.5 1 15 2 25

OO

61 / 50



pe+ distribution — tritrig

ol AR

a.u.

45000

40000

35000

30000

25000

20000

15000

10000

5000

\H‘\H\‘HH‘\H\‘HH‘HH‘HH‘HH‘H\WHH

T

— tritrig: no e time cut

— tritrig: signal region

— tritrig: side bands

35 4
pe‘/ GeV

T I\

62 / 50



pe+ distribution — WAB
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X2, distribution — tritrig
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X2, distribution — WAB
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