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Data samples and preselection cuts

• Using MC from ‘new’ pass v7
– tritrig+pulser, WAB+pulser

• Using data from run 14211 from pass v7
– Data luminosity of full run: L = 0.940 424 pb−1

• All cuts will refer to the following list of cuts:
– Track cuts

• 0.4 GeV < pe− < 2.9 GeV
• 0.4 GeV < pe+ < 4.0 GeV
• ∆(ttrk,e− , tclu,e+ ) < 10 ns
• ∆(ttrk,e+ , tclu,e+ ) < 5 ns
• χ2

trk < 20
• N2d hits ≥ 9

– Vertex cuts
• pvtx < 4.0 GeV
• χ2

vtx < 20
– Cluster cuts

• 0.2 GeV < Eclu,e+ < 4.0 GeV
– Requiring single3 trigger for the event
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Preslection cutflows
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Data samples – MC luminosity scaling

• Calculate effective cross section for MC samples

σeff = σgen × Nselected
Ngen

• Use data luminosity (for 4 files: Lsubset = 0.001 492 pb−1) and cross
section to scale MC histograms with scaling factor fscale

fscale = NMC, scaled
Nselected

= σeff × Lsubset
Nselected

= σgen × Lsubset
Ngen

sample σgen/pb Ngen fscale
tritrig 4.025 × 109 17 792 × 104 0.0337
WAB 8.249 × 1010 38 700 × 104 0.318
14211 – – 1.00
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MC – data comparison: psum with all cuts
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• Seems like we are underestimating the number of events in the low
psum region in MC.
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MC – data comparison: effect of ∆(ttrk,e−, tclu,e+) cut

no ∆(ttrk,e− , tclu,e+ ) cut
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full preselection applied
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• For reference: psum distributions with all cuts applied except for
∆(ttrk,e− , tclu,e+) cut compared to fully preselected distribution

• Electron time cut removes low psum events
– Effect seems to be more pronounced in data

6 / 50



MC – data comparison: (ttrk,e− − tclu,e+) distribution
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• Idea: excess might come from additional ‘random’ vertices under
(ttrk,e− − tclu,e+) time peak in data
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(ttrk,e− − tclu,e+) – signal region and side-bands

• Defining signal region (inside ∆(ttrk,e− , tclu,e+) < 10 ns cut window)
and side-bands 15 ns < ∆(ttrk,e− , tclu,e+) < 30 ns
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Fitting (ttrk,e− − tclu,e+) background

Example distribution – data

60− 40− 20− 0 20 40 60
/ns, clu+e - t, trk-et
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data_dt distribution, unscaled

3
 + (-0.0003938)x2pol3 fit: (67.39) + (0.1674)x + (-0.01654)x • Fit function

fbkg = a + bx + cx2 + dx3

• Excluding the signal region
(∆(ttrk,e− , tclu,e+) < 10 ns)
region from fit

• All fits in backup
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Determining scaling factors

• Following this explanation
• Find number of events in side-bands NSB

bkg and signal region NSR
bkg

NSB
bkg =

∫ −15

−30
fbkg +

∫ 30

15
fbkg , NSR

bkg =
∫ 10

−10
fbkg

• Determine scaling factor ξbkg between side-bands and signal region

ξbkg = NSR
bkg/NSB

bkg

• Rescale dNbkg
dpsum

∣∣∣∣
SB

to get estimate in of random background in signal

region
dNbkg
dpsum

∣∣∣∣
SR

= ξbkg · dNbkg
dpsum

∣∣∣∣
SB
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Determining scaling factors

fit parameters
sample a b c d χ2/ndf
tritrig 828.00 −12.40 −0.59 0.0081 6.55
WAB 11.06 −0.19 −0.01 0.0001 1.19
14211 67.39 0.17 −0.02 −0.0004 1.22

• Fit for tritrig not ideal, but good enough for now!
– Tried different functions: pol3 is the best for all three samples

• Determining integrals and scaling factor:

sample NSB
bkg NSR

bkg ξbkg
tritrig 16 165 15 507 1.042
WAB 216 202 1.07
14211 1336 1761 0.759

11 / 50



psum distributions – data
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• psum distribution for data in signal region and side-bands, as well as
side-band subtracted distribution in signal region
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psum distributions – tritrig
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tritrig: signal region

tritrig: scaled side bands

tritrig: cleaned signal region

• psum distribution for tritrig in signal region and side-bands, as well as
side-band subtracted distribution in signal region
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psum distributions – WAB
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wab: signal region

wab: scaled side bands

wab: cleaned signal region

• psum distribution for WAB in signal region and side-bands, as well as
side-band subtracted distribution in signal region
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MC – data comparison: psum side-band subtracted
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• Side-band subtracted and luminosity scaled MC compared to data
• Achieve higher low psum count in MC compared to data than before
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Summary I

• Simply applying the
preselection to data and MC
leads to underestimating the
number of low-psum events in
Monte Carlo.

• The (ttrack,e− − tclu,e+) peak in
data sits on a higher plateau of
background events.

– Using side-bands to estimate
the background under the
peak enables us to remove
these random events.

• The side-band subtraction
equalizes the number of events
at low psum in data and MC.

No side-band subtraction, luminosity scaled
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Summary I

• Simply applying the
preselection to data and MC
leads to underestimating the
number of low-psum events in
Monte Carlo.

• The (ttrack,e− − tclu,e+) peak in
data sits on a higher plateau of
background events.

– Using side-bands to estimate
the background under the
peak enables us to remove
these random events.

• The side-band subtraction
equalizes the number of events
at low psum in data and MC.

Side-band subtracted, luminosity scaled
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Effect on invariant mass and A′ signal

• How does the side-band
subtraction affect the signal
samples?

– Similar to tritrig and WAB
samples, the A′

(ttrk,e− − tclu,e+) time peak
sits atop random background.

• What is the effect of the
side-band subtraction on the
invariant mass distributions?

– Taking a look at data,
luminosity scaled tritrig and
WAB samples, as well as
120 MeV A′ signal

120 MeV A′ – all cuts but (ttrk,e− − tclu,e+ ) applied

60− 40− 20− 0 20 40 60
/ns, clu+e - t, trk-et
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ap120_dt distribution, unscaled

3 + (0.007695)x2pol3 fit: (867.0) + (-12.05)x + (-0.6272)x
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Effect on invariant mass and A′ signal

• How does the side-band
subtraction affect the signal
samples?

– Similar to tritrig and WAB
samples, the A′

(ttrk,e− − tclu,e+) time peak
sits atop random background.

• What is the effect of the
side-band subtraction on the
invariant mass distributions?

– Taking a look at data,
luminosity scaled tritrig and
WAB samples, as well as
120 MeV A′ signal

No side-band subtraction, luminosity scaled
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psum distributions – 120 MeV A′
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ap120: cleaned signal region

• psum distribution for A′ in signal region and side-bands, as well as
side-band subtracted distribution in signal region
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mvtx distributions – 120 MeV A′
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• mvtx distribution for A′ in signal region and side-bands, as well as
side-band subtracted distribution in signal region

– Side-band subtraction removes only very few events from invariant
mass peak.
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MC – data comparison: mvtx with all cuts
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• Without side-band subtraction MC underestimates the number of
events in the peak of the invariant mass distribution.
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MC – data comparison: mvtx side-band subtracted
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• While shape of psum does not agree fully after side-band subtraction,
the invariant mass distribution looks pretty good.
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Summary II

• Side-band subtraction preserves A′ psum and invariant mass
distribution

– Only very few events are subtracted from invariant mass peak at
mA′ = 120 MeV

• After side-band subtraction, the tritrig+WAB MC invariant mass
distribution follows the data distribution more closely.

• Overall, side-band subtraction seems to remove discrepancies between
data and MC without introducing obvious new problems.
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Track quality in side-bands and signal region

• Why do we have more low psum
events in data than in MC?

• ‘Excess’ low psum events in
data seem to be part of the
random time background under
the (ttrack,e− − tclu,e+) peak.

• Do these background events
have any other distinct
characteristics?

No side-band subtraction, luminosity scaled
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χ2
trk,e−/ndf and N2d hits,e− distributions – data
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• χ2/ndf looks similar in signal region and side-bands
– Perhabs slightly higher χ2/ndf in SB?

• Side-bands have more low N2d hits,e− tracks compared to signal region
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pe− and pe+ distributions – data
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• The slight double-peak structure in the uncut pe− distribution comes
from a plateau at low pe− in the signal region and a rising
contribution from the side-bands.

• The positron momentum looks similar across the sample regions
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χ2
vtx distribution – data
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• The vertex fits in the side-bands are not obviously worse than in the
signal region.
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Summary III

• The higher contribution of random in-time background in data might
come from more low-momentum and low N2d hits,e− in data compared
to MC.

– Side-bands have tracks with lower N2d hits,e− than in the signal region.
– The electron momentum distribution seems to peak more strongly

towards low values in the side-bands.
• Does this come from reconstruction inefficiencies in data?
• Or is our MC not including enough low-momentum tracks?
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Dependence on tracking volume

• At the moment: alignment of
bottom volume of SVT is
better than top

• If tracking inefficiencies in data
are causing an excess of events
at low psum, we should see a
difference in the distributions
between top and bottom
volume.

No side-band subtraction, luminosity scaled
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Tracking volume – data (ttrk,e− − tclu,e+)

60− 40− 20− 0 20 40 60
/ns, clu+e - t, trk-et
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• Applying all cuts except for ∆(ttrk,e− , tclu,e+) cut
• Time peaks are slightly shifted for electron in top or bottom
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Tracking volume – tritrig (ttrk,e− − tclu,e+)
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• Applying all cuts except for ∆(ttrk,e− , tclu,e+) cut
• Top and bottom time peaks mostly overlap for MC
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Tracking volume – WAB (ttrk,e− − tclu,e+)
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• Applying all cuts except for ∆(ttrk,e− , tclu,e+) cut
• Top and bottom time peaks mostly overlap for MC
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Tracking volume – signal region
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• Applying all cuts and splitting sample into top tan λe− > 0 and
bottom tan λe− < 0
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Tracking volume – signal region
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• Applying all cuts and splitting sample into top tan λe− > 0 and
bottom tan λe− < 0
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Tracking volume – signal region
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• Applying all cuts and splitting sample into top tan λe− > 0 and
bottom tan λe− < 0
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MC – data comparison: no side-band subtraction

electron in top volume
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electron in bottom volume
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• Applying all preselection cuts, no side-band subtraction
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MC – data comparison: with side-band subtraction

electron in top volume
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electron in bottom volume
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• Applying all preselection cuts, with side-band subtraction

36 / 50



MC – data comparison IV

• There seem to be more background low psum events in the top than
in the bottom.

– This could point to alignment effects that are present in the top but
not in the bottom of the SVT.

• For data, the ttrk,e− − tclu,e+ distribution in the top has a small
shoulder on the right side of the time peak.

• Generally, we need to make an effort to equalize the track time
distributions between top and bottom, e.g. by introducing separate
track and/or cluster time shifts for each half.
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Requiring an electron ECAL cluster

• Lastly, I wanted to check if
mimicking a pairs trigger would
improve the data – MC ratio.

• Adding e− energy requirement
and ∆(tclu,e− , tclu,e+) < 10 ns
cut

• Study effect on psum and
∆(ttrk,e− , tclu,e+) distribution

No side-band subtraction, luminosity scaled
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Preslection cutflows – including e− cluster cuts
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MC – data comparison: psum with e− cuts
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• Electron cluster cuts don’t remove the difference at low psum

• Nselected is reduced drastically compared to standard preselection.
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MC – data comparison: psum with e− cuts

60− 40− 20− 0 20 40 60
/ns, clu+e - t, trk-et
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data: single3 trigger

) cut
track

(t∆ cluster and -data: e

• Requiring an e− cluster and applying a ∆(tclu,e− , tclu,e+) removes
many out of time background events.

• However, we now see a ‘strange’ peak structure with secondary
peaks/shoulders.
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MC – data comparison: summary

• The number of background events at low psum is higher in data than
in MC.

– This is probably the reason why we are getting fewer than expected
MC events using luminosity scaling.

– Side-band subtraction using the (ttrk,e− − tclu,e+) is an effective tool to
remove random background events under the in-time peak.

– We should either
• Improve our data reconstruction and selection,
• Create more accurate conditions in MC to reflect the real experimental

conditions, or both
• There are some notable differences between the top and bottom of

the detector
– Timing distributions peak at slightly different values.
– Requiring tan λe− > 0 gives more events at low psum than tan λe− < 0

• Switching to a pairs-like trigger is not an easy fix to the differences
that we see between data and MC
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Radiative acceptance and fraction

• For now: trust luminosity
scaled MC

• Apply additional requirements:
– Tracks have hits in L2
– Selecting radiative peak

(psum > 3 GeV)
• To calculate the radiative

fraction, we need the correct
scaling.

– Follow same process as for
other MC samples

No side-band subtraction, luminosity scaled
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Radiative acceptance and fraction

• For now: trust luminosity
scaled MC

• Apply additional requirements:
– Tracks have hits in L2
– Selecting radiative peak

(psum > 3 GeV)
• To calculate the radiative

fraction, we need the correct
scaling.

– Follow same process as for
other MC samples

fscale =
σrad

gen × Lsubset

Nrad
gen
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scaled MC

• Apply additional requirements:
– Tracks have hits in L2
– Selecting radiative peak

(psum > 3 GeV)
• To calculate the radiative

fraction, we need the correct
scaling.

– Follow same process as for
other MC samples

generated cross section for radiative tridents
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Radiative acceptance and fraction

• For now: trust luminosity
scaled MC

• Apply additional requirements:
– Tracks have hits in L2
– Selecting radiative peak

(psum > 3 GeV)
• To calculate the radiative

fraction, we need the correct
scaling.

– Follow same process as for
other MC samples

sample σgen/pb Ngen fscale
tritrig 4.025 × 109 17 792 × 104 0.0337
WAB 8.249 × 1010 38 700 × 104 0.318
rad 3.441 × 107 9595 × 104 0.0005

14211 – – 1.00
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Radiative fraction

frad =
dσrad

dmtruth
dσtritrig
dmreco

+ dσWAB
dmreco

=
dNrad

dmtruth
dNtritrig
dmreco

+ dNWAB
dmreco

• Nrad, Ntritrig, and NWAB refer to luminosity scaled numbers
• Get true invariant mass mtruth of e+e− vertex from MC truth of

radiative trident event.
– I am pretty confident that I am selecting the correct truth vertex but I

need to double-check some things.
• mreco is the reconstructed invariant mass.
• All samples include pulser overlay.
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Radiative fraction
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A′ acceptance

AA′ = dNselected
A′

dztruth

/dNgen
A′

dzgen

• Applying preselection and additional requirements like before
– Tracks have hits in L2
– Selecting radiative peak (psum > 3 GeV)

• This is by no means a real analysis yet, but I wanted to share my
progress with you!
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A′ acceptance
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Radiative acceptance

• And because I basically get this for free, I also calculated the radiative
acceptance:

Arad = dNselected
rad

dmtruth

/dNgen
rad

dmgen

• Applying preselection and additional requirements like before
– Tracks have hits in L2
– Selecting radiative peak (psum > 3 GeV)
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Radiative acceptance
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Summary

• With the preselection mostly in place, it is possible to start working
on the next steps of the analysis.

• Currently, MC does not include hit killing and smearing effects which
will change the distributions I have just shown.

• We will need to monitor the preselection and the comparison of data
and MC as we improve the alignment and include inefficiencies in MC.
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Backup

BACKUP BEGIN
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MC – data comparison: psum in SR and SB

signal region
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side-bands
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• psum distributions in signal region and side-bands
– Signal region is the same as all preselection cuts applied
– Side-bands see peak at low psum for data and tritrig, WAB seems to be

mostly constant
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Fitting (ttrk,e− − tclu,e+) background – data

60− 40− 20− 0 20 40 60
/ns, clu+e - t, trk-et
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 a
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.
data_dt distribution, unscaled

3
 + (-0.0003938)x2pol3 fit: (67.39) + (0.1674)x + (-0.01654)x

• Fit function f data
bkg = ad + bdx + cdx2 + ddx3
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Fitting (ttrk,e− − tclu,e+) background – tritrig

60− 40− 20− 0 20 40 60
/ns, clu+e - t, trk-et
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tritrig_dt distribution, unscaled

3 + (0.008147)x2pol3 fit: (828.0) + (-12.4)x + (-0.5926)x

• Fit function f tritrig
bkg = at + btx + ctx2 + dtx3

– Fit not ideal but good enough for now
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Fitting (ttrk,e− − tclu,e+) background – WAB

60− 40− 20− 0 20 40 60
/ns, clu+e - t, trk-et
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.
wab_dt distribution, unscaled

3
 + (0.000136)x2pol3 fit: (11.06) + (-0.1886)x + (-0.008275)x

• Fit function f wab
bkg = aw + bw x + cw x2 + dw x3
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χ2
trk,e−/ndf distribution – tritrig
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χ2
trk,e−/ndf distribution – WAB
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N2d hits,e− distribution – tritrig
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N2d hits,e− distribution – WAB
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pe− distribution – tritrig
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pe− distribution – WAB
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pe+ distribution – tritrig
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pe+ distribution – WAB
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χ2
vtx distribution – tritrig
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χ2
vtx distribution – WAB
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