Vertex preselection

for data and Monte Carlo

Sarah Gaiser Stanford/SLAC HPS Collaboration Meeting June 2025

University

Outline

Introduction

- 2 Side-band subtraction
- 3 Effect on invariant mass and A' signal
- Track quality in side-bands and signal region
- 5 Dependence on tracking volume
- 6 Requiring an electron ECAL cluster
 - Radiative acceptance and fraction

Data samples and preselection cuts

- Using MC from 'new' pass v7
 - tritrig+pulser, WAB+pulser
- Using data from run 14211 from pass v7
 - Data luminosity of full run: $\mathcal{L} = 0.940\,424\,\text{pb}^{-1}$
- All cuts will refer to the following list of cuts:
 - Track cuts
 - 0.4 GeV $< p_{e^-} < 2.9$ GeV
 - $0.4 \, {
 m GeV} < p_{e^+} < 4.0 \, {
 m GeV}$
 - $\Delta(t_{\mathsf{trk},e^-},t_{\mathsf{clu},e^+}) < 10\,\mathsf{ns}$
 - $\Delta(t_{trk,e^+}, t_{clu,e^+}) < 5 \text{ ns}$
 - $\chi^2_{\rm trk} < 20$
 - $N_{\rm 2d\ hits} \geq 9$
 - Vertex cuts
 - $p_{vtx} < 4.0 \, \text{GeV}$
 - $\chi^2_{\rm vtx} < 20$
 - Cluster cuts
 - $0.2 \, \text{GeV} < E_{clu,e^+} < 4.0 \, \text{GeV}$
 - Requiring single3 trigger for the event

Preslection cutflows

Data samples – MC luminosity scaling

• Calculate effective cross section for MC samples

14211

$$\sigma_{\rm eff} = \sigma_{\rm gen} \times \frac{\mathit{N}_{\rm selected}}{\mathit{N}_{\rm gen}}$$

Use data luminosity (for 4 files: L_{subset} = 0.001 492 pb⁻¹) and cross section to scale MC histograms with scaling factor f_{scale}

$$f_{\text{scale}} = \frac{N_{\text{MC, scaled}}}{N_{\text{selected}}} = \frac{\sigma_{\text{eff}} \times \mathcal{L}_{\text{subset}}}{N_{\text{selected}}} = \frac{\sigma_{\text{gen}} \times \mathcal{L}_{\text{subset}}}{N_{\text{gen}}}$$

$$\frac{\text{sample}}{\text{tritrig}} \frac{\sigma_{\text{gen}}/\text{pb}}{4.025 \times 10^9} \frac{N_{\text{gen}}}{17\,792 \times 10^4} \frac{f_{\text{scale}}}{0.0337}$$

$$\frac{\text{WAB}}{0.0318} = \frac{8.249 \times 10^{10}}{38\,700 \times 10^4} \frac{10.0318}{0.0318}$$

1.00

MC – data comparison: p_{sum} with all cuts

 Seems like we are underestimating the number of events in the low *p*_{sum} region in MC.

- For reference: p_{sum} distributions with all cuts applied except for $\Delta(t_{trk,e^-}, t_{clu,e^+})$ cut compared to fully preselected distribution
- Electron time cut removes low p_{sum} events
 - Effect seems to be more pronounced in data

MC – data comparison: $(t_{trk,e^-} - t_{clu,e^+})$ distribution SLAC

 Idea: excess might come from additional 'random' vertices under (t_{trk,e⁻} - t_{clu,e⁺}) time peak in data

$(t_{\mathsf{trk},e^-} - t_{\mathsf{clu},e^+})$ – signal region and side-bands

• Defining signal region (inside $\Delta(t_{trk,e^-}, t_{clu,e^+}) < 10 \text{ ns cut window})$ and side-bands 15 ns $< \Delta(t_{trk,e^-}, t_{clu,e^+}) < 30 \text{ ns}$

Fitting $(t_{trk,e^-} - t_{clu,e^+})$ background

Example distribution - data

- Fit function $f_{bkg} = a + bx + cx^2 + dx^3$
- Excluding the signal region $(\Delta(t_{{\rm trk},e^-},t_{{\rm clu},e^+})<10\,{\rm ns})$ region from fit
- All fits in backup

SI AC

Determining scaling factors

- Following this explanation
- Find number of events in side-bands N_{bkg}^{SB} and signal region N_{bkg}^{SR}

$$N_{\rm bkg}^{\rm SB} = \int_{-30}^{-15} f_{\rm bkg} + \int_{15}^{30} f_{\rm bkg} \, , \, N_{\rm bkg}^{\rm SR} = \int_{-10}^{10} f_{\rm bkg}$$

- Determine scaling factor $\xi_{\rm bkg}$ between side-bands and signal region

$$\xi_{\rm bkg} = {\it N_{\rm bkg}^{\rm SR}}/{\it N_{\rm bkg}^{\rm SB}}$$

• Rescale $\frac{dN_{bkg}}{dp_{sum}}\Big|_{SB}$ to get estimate in of random background in signal region $\frac{dN_{bkg}}{dp_{sum}}\Big|_{SB} = \xi_{bkg} \cdot \frac{dN_{bkg}}{dp_{sum}}\Big|_{SB}$

Determining scaling factors

fit parameters							
sample	а	Ь	с	d	$\chi^2/{ m ndf}$		
tritrig	828.00	-12.40	-0.59	0.0081	6.55		
WAB	11.06	-0.19	-0.01	0.0001	1.19		
14211	67.39	0.17	-0.02	-0.0004	1.22		

• Fit for tritrig not ideal, but good enough for now!

- Tried different functions: pol3 is the best for all three samples
- Determining integrals and scaling factor:

sample	$N_{ m bkg}^{ m SB}$	$N_{ m bkg}^{ m SR}$	$\xi_{\sf bkg}$
tritrig	16 165	15507	1.042
WAB	216	202	1.07
14211	1336	1761	0.759

*p*_{sum} distributions – data

*p*_{sum} distribution for data in signal region and side-bands, as well as side-band subtracted distribution in signal region

*p*_{sum} distributions – tritrig

*p*_{sum} distribution for tritrig in signal region and side-bands, as well as side-band subtracted distribution in signal region

*p*_{sum} distributions – WAB

*p*_{sum} distribution for WAB in signal region and side-bands, as well as side-band subtracted distribution in signal region

MC – data comparison: p_{sum} side-band subtracted

• Side-band subtracted and luminosity scaled MC compared to data

Achieve higher low p_{sum} count in MC compared to data than before

 Simply applying the preselection to data and MC leads to underestimating the number of low-psum events in Monte Carlo.

SLAG

- Simply applying the preselection to data and MC leads to underestimating the number of low-psum events in Monte Carlo.
- The (t_{track,e⁻} t_{clu,e⁺}) peak in data sits on a higher plateau of background events.

si ac

- Simply applying the preselection to data and MC leads to underestimating the number of low-psum events in Monte Carlo.
- The (t_{track,e}⁻ t_{clu,e}⁺) peak in data sits on a higher plateau of background events.
 - Using side-bands to estimate the background under the peak enables us to remove these random events.

SI AC

- Simply applying the preselection to data and MC leads to underestimating the number of low-psum events in Monte Carlo.
- The (t_{track,e}⁻ t_{clu,e}⁺) peak in data sits on a higher plateau of background events.
 - Using side-bands to estimate the background under the peak enables us to remove these random events.
- The side-band subtraction equalizes the number of events at low p_{sum} in data and MC.

Effect on invariant mass and A' signal

- How does the side-band subtraction affect the signal samples?
 - Similar to tritrig and WAB samples, the A' $(t_{\text{trk},e^-} - t_{\text{clu},e^+})$ time peak sits atop random background.

120 MeV A' – all cuts but ($t_{{
m trk},e^-} - t_{{
m clu},e^+}$) applied

Effect on invariant mass and A' signal

- How does the side-band subtraction affect the signal samples?
 - Similar to tritrig and WAB samples, the A' $(t_{trk,e^-} - t_{clu,e^+})$ time peak sits atop random background.
- What is the effect of the side-band subtraction on the invariant mass distributions?
 - Taking a look at data, luminosity scaled tritrig and WAB samples, as well as 120 MeV A' signal

No side-band subtraction, luminosity scaled

p_{sum} distributions – 120 MeV A'

*p*_{sum} distribution for A' in signal region and side-bands, as well as side-band subtracted distribution in signal region

$m_{\rm vtx}$ distributions – 120 MeV A'

- *m*_{vtx} distribution for *A*' in signal region and side-bands, as well as side-band subtracted distribution in signal region
 - Side-band subtraction removes only very few events from invariant mass peak.

SL AC

MC – data comparison: m_{vtx} with all cuts

 Without side-band subtraction MC underestimates the number of events in the peak of the invariant mass distribution.

MC – data comparison: m_{vtx} side-band subtracted

 While shape of p_{sum} does not agree fully after side-band subtraction, the invariant mass distribution looks pretty good.

- Side-band subtraction preserves $A' p_{sum}$ and invariant mass distribution
 - Only very few events are subtracted from invariant mass peak at $m_{A'} = 120 \,\mathrm{MeV}$
- After side-band subtraction, the tritrig+WAB MC invariant mass distribution follows the data distribution more closely.
- Overall, side-band subtraction seems to remove discrepancies between data and MC without introducing obvious new problems.

Track quality in side-bands and signal region

- Why do we have more low p_{sum} a events in data than in MC?
- 'Excess' low p_{sum} events in data seem to be part of the random time background under the (t_{track,e⁻} - t_{clu,e⁺}) peak.
- Do these background events have any other distinct characteristics?

$\chi^2_{{ m trk},e^-}/{ m ndf}$ and $N_{{ m 2d\ hits},e^-}$ distributions – data

- χ^2 /ndf looks similar in signal region and side-bands
 - Perhabs slightly higher χ^2/ndf in SB?
- Side-bands have more low $N_{2d \text{ hits},e^-}$ tracks compared to signal region

p_{e^-} and p_{e^+} distributions – data

- The slight double-peak structure in the uncut p_e- distribution comes from a plateau at low p_e- in the signal region and a rising contribution from the side-bands.
- The positron momentum looks similar across the sample regions

 The vertex fits in the side-bands are not obviously worse than in the signal region.

- The higher contribution of random in-time background in data might come from more low-momentum and low $N_{2d \text{ hits},e^-}$ in data compared to MC.
 - Side-bands have tracks with lower $N_{2d \text{ hits},e^-}$ than in the signal region.
 - The electron momentum distribution seems to peak more strongly towards low values in the side-bands.
- Does this come from reconstruction inefficiencies in data?
- Or is our MC not including enough low-momentum tracks?

<u>-CI A</u>(

Dependence on tracking volume

- At the moment: alignment of bottom volume of SVT is better than top
- If tracking inefficiencies in data are causing an excess of events at low p_{sum}, we should see a difference in the distributions between top and bottom volume.

No side-band subtraction, luminosity scaled

Tracking volume – data $(t_{trk,e^-} - t_{clu,e^+})$

- Applying all cuts except for $\Delta(t_{\mathsf{trk},e^-},t_{\mathsf{clu},e^+})$ cut

Time peaks are slightly shifted for electron in top or bottom

Tracking volume – tritrig $(t_{trk,e^-} - t_{clu,e^+})$

• Applying all cuts except for $\Delta(t_{\mathsf{trk},e^-}, t_{\mathsf{clu},e^+})$ cut

Top and bottom time peaks mostly overlap for MC

Tracking volume – WAB
$$(t_{trk,e^-} - t_{clu,e^+})$$

• Applying all cuts except for $\Delta(t_{\mathsf{trk},e^-},t_{\mathsf{clu},e^+})$ cut

Top and bottom time peaks mostly overlap for MC
Tracking volume – signal region

- Applying all cuts and splitting sample into top $\tan\lambda_{e^-}>0$ and bottom $\tan\lambda_{e^-}<0$

Tracking volume – signal region

- Applying all cuts and splitting sample into top $\tan\lambda_{e^-}>0$ and bottom $\tan\lambda_{e^-}<0$

Tracking volume – signal region

- Applying all cuts and splitting sample into top $\tan\lambda_{e^-}>0$ and bottom $\tan\lambda_{e^-}<0$

MC – data comparison: no side-band subtraction

Applying all preselection cuts, no side-band subtraction

MC – data comparison: with side-band subtraction

Applying all preselection cuts, with side-band subtraction

- There seem to be more background low p_{sum} events in the top than in the bottom.
 - This could point to alignment effects that are present in the top but not in the bottom of the SVT.
- For data, the t_{trk,e} t_{clu,e} distribution in the top has a small shoulder on the right side of the time peak.
- Generally, we need to make an effort to equalize the track time distributions between top and bottom, e.g. by introducing separate track and/or cluster time shifts for each half.

SI AG

Requiring an electron ECAL cluster

- Lastly, I wanted to check if mimicking a pairs trigger would improve the data – MC ratio.
- Adding e^- energy requirement and $\Delta(t_{{\rm clu},e^-},t_{{\rm clu},e^+})<10\,{\rm ns}$ cut
- Study effect on p_{sum} and $\Delta(t_{trk,e^-}, t_{clu,e^+})$ distribution

No side-band subtraction, luminosity scaled

SI AC

Preslection cutflows – including e⁻ cluster cuts

MC – data comparison: p_{sum} with e^- cuts

Electron cluster cuts don't remove the difference at low p_{sum}

N_{selected} is reduced drastically compared to standard preselection.

MC – data comparison: p_{sum} with e^- cuts

- Requiring an e⁻ cluster and applying a Δ(t_{clu,e⁻}, t_{clu,e⁺}) removes many out of time background events.
- However, we now see a 'strange' peak structure with secondary peaks/shoulders.

si ac

MC – data comparison: summary

- The number of background events at low p_{sum} is higher in data than in MC.
 - This is probably the reason why we are getting fewer than expected MC events using luminosity scaling.
 - Side-band subtraction using the $(t_{trk,e^-} t_{clu,e^+})$ is an effective tool to remove random background events under the in-time peak.
 - We should either
 - Improve our data reconstruction and selection,
 - Create more accurate conditions in MC to reflect the real experimental conditions, or both
- There are some notable differences between the top and bottom of the detector
 - Timing distributions peak at slightly different values.
 - Requiring tan $\lambda_{e^-}>0$ gives more events at low $p_{\rm sum}$ than tan $\lambda_{e^-}<0$
- Switching to a pairs-like trigger is not an easy fix to the differences that we see between data and MC

si ac

• For now: trust luminosity scaled MC

No side-band subtraction, luminosity scaled

- For now: trust luminosity scaled MC
- Apply additional requirements:
 - Tracks have hits in L2
 - Selecting radiative peak $(p_{sum} > 3 \,\text{GeV})$

No side-band subtraction, luminosity scaled, radiative selection

- For now: trust luminosity scaled MC
- Apply additional requirements:
 - Tracks have hits in L2
 - Selecting radiative peak $(p_{sum} > 3 \,\text{GeV})$

No side-band subtraction, luminosity scaled, radiative selection

- For now: trust luminosity scaled MC
- Apply additional requirements:
 - Tracks have hits in L2
 - Selecting radiative peak $(p_{sum} > 3 \, \text{GeV})$
- To calculate the radiative fraction, we need the correct scaling.
 - Follow same process as for other MC samples

$$f_{\mathsf{scale}} = rac{\sigma_{\mathsf{gen}}^{\mathsf{rad}} imes \mathcal{L}_{\mathsf{subset}}}{N_{\mathsf{gen}}^{\mathsf{rad}}}$$

- For now: trust luminosity scaled MC
- Apply additional requirements:
 - Tracks have hits in L2
 - Selecting radiative peak $(p_{sum} > 3 \,\text{GeV})$
- To calculate the radiative fraction, we need the correct scaling.
 - Follow same process as for other MC samples

SI AA

- For now: trust luminosity scaled MC
- Apply additional requirements:
 - Tracks have hits in L2
 - Selecting radiative peak $(p_{sum} > 3 \,\text{GeV})$
- To calculate the radiative fraction, we need the correct scaling.
 - Follow same process as for other MC samples

sample	$\sigma_{\sf gen}/{\sf pb}$	Ngen	f_{scale}
tritrig	$4.025 imes10^9$	$17792 imes10^4$	0.0337
WAB	$8.249 imes10^{10}$	38700×10^4	0.318
rad	3.441×10^7	$9595 imes 10^4$	0.0005
14211	-	-	1.00

Radiative fraction

- N_{rad}, N_{tritrig}, and N_{WAB} refer to luminosity scaled numbers
- Get true invariant mass m_{truth} of e^+e^- vertex from MC truth of radiative trident event.
 - I am pretty confident that I am selecting the correct truth vertex but I need to double-check some things.
- *m*_{reco} is the reconstructed invariant mass.
- All samples include pulser overlay.

Radiative fraction

A' acceptance

$$A_{A'} = rac{dN_{A'}^{
m selected}}{dz_{
m truth}} \Big/ rac{dN_{A'}^{
m gen}}{dz_{
m gen}}$$

- Applying preselection and additional requirements like before
 - Tracks have hits in L2
 - Selecting radiative peak ($p_{sum} > 3 \text{ GeV}$)
- This is by no means a real analysis yet, but I wanted to share my progress with you!

A' acceptance

And because I basically get this for free, I also calculated the radiative acceptance:

$$A_{\rm rad} = \frac{dN_{\rm rad}^{\rm selected}}{dm_{\rm truth}} \Big/ \frac{dN_{\rm rad}^{\rm gen}}{dm_{\rm gen}}$$

- Applying preselection and additional requirements like before
 - Tracks have hits in L2
 - Selecting radiative peak ($p_{sum} > 3 \text{ GeV}$)

Radiative acceptance

- With the preselection mostly in place, it is possible to start working on the next steps of the analysis.
- Currently, MC does not include hit killing and smearing effects which will change the distributions I have just shown.
- We will need to monitor the preselection and the comparison of data and MC as we improve the alignment and include inefficiencies in MC.

BACKUP BEGIN

MC – data comparison: p_{sum} in SR and SB

- *p*_{sum} distributions in signal region and side-bands
 - Signal region is the same as all preselection cuts applied
 - Side-bands see peak at low p_{sum} for data and tritrig, WAB seems to be mostly constant

Fitting $(t_{trk,e^-} - t_{clu,e^+})$ background – data

• Fit function $f_{bkg}^{data} = a_d + b_d x + c_d x^2 + d_d x^3$

Fitting $(t_{trk,e^-} - t_{clu,e^+})$ background – tritrig

• Fit function $f_{bkg}^{tritrig} = a_t + b_t x + c_t x^2 + d_t x^3$ - Fit not ideal but good enough for now

Fitting $(t_{\mathsf{trk},e^-} - t_{\mathsf{clu},e^+})$ background – WAB

• Fit function $f_{bkg}^{wab} = a_w + b_w x + c_w x^2 + d_w x^3$

 $\chi^2_{{
m trk},e^-}/{
m ndf}$ distribution – tritrig

 $\chi^2_{\mathrm{trk},\mathrm{e^-}}/\mathrm{ndf}$ distribution – WAB

57 / 50

$N_{2d hits,e^-}$ distribution – tritrig

$N_{2d hits,e^-}$ distribution – WAB

p_{e^-} distribution – tritrig

p_{e^-} distribution – WAB

p_{e^+} distribution – tritrig

p_{e^+} distribution – WAB

-SLAC

 $\chi^2_{\rm vtx}$ distribution – tritrig

-SLAC

 $\chi^2_{\rm vtx}$ distribution – WAB

-SLAC