Alignment of 2021 Detector

June 4th 2025

Matthew Gignac

General alignment strategy

- Local alignment of the detector using data from early run
- Perform *global movements* to align top/bottom detectors
 - Translational movements to align vertex positions
 - Calibrate opening/closing of top and bottom detectors to theoretical Moller mass
- Capture time dependent movements of the (top) detector with *run-by-run millepede corrections*
 - Obtained from a subset of the dataset and interpolated to all runs using simple polynomial fit
 - Most notably, large tu movements needed in the outer most tracking layers. Some small Rw also applied in v7

Alignment 2021 efforts

• Alignment progressed through several iterations in last year:

- v6 alignment model:

- First attempt at run-by-run parameterization above v4
- Used for 1% pass over Christmas holiday

- v7 alignment model:

- Built upon v6 "template model" (no run-by-run)
- Global translations and opening/closing of detector to align top/bottom vertex (x,y) and target z-position
- Additional run-by-run iterations to improve momentum scale
- Used for ~0.3% pass in April 2025

- v8 alignment model:

• Aiming to improve momentum scale and impact parameter resolution across entire detector

Run-by-run tu: L7 hole side

Large tu corrections needed in the outer layers

Run-by-run tu: L7 slot side

Large tu corrections needed in the outer layers

Run-by-run tu: L6 hole side

Large tu corrections needed in the outer layers

Run-by-run tu: L6 slot side

Large tu corrections needed in the outer layers

Run-by-run tu: L7 Rw corrections

Some small Rw run dependency

Rw movements in v7 alignment

- Additional Rw movements in L6 and L7 to fix v-slopes
 - One of the last runs heavily relying on extrapolated millepede constants and performing well!

Red squares: v7 alignment model

Rw movements in v7 alignment

- Additional Rw movements in L6 and L7 to fix v-slopes
 - One of the last runs heavily relying on extrapolated millepede constants and performing well!

Red squares: v7 alignment model

Global movements in matrix representation

- Aligning top and bottom detectors to a common vertex position need to take into account correlations
- Relate the vertex position to these global distortions:

Global movement along z-axis

slac

Comparisons: vertex x-coordinate

- Using multi-track vertex fits to get (x,y,z) positions
- Demonstrated method by moving vertex to (0,0,0)
 - Global movements derived using run 14185
 - Works well with agree between top/bottom across runs

Comparisons: vertex x-coordinate

- Using multi-track vertex fits to get (x,y,z) positions
- Demonstrated method by moving vertex to (0,0,0)
 - Global movements derived using run 14185
 - Works well with agree between top/bottom across runs

Comparisons: vertex x-coordinate

- Using multi-track vertex fits to get (x,y,z) positions
- Demonstrated method by moving vertex to (0,0,0)
 - Global movements derived using run 14185
 - Works well with agree between top/bottom across runs

Calibrating to correct Moller Mass

- Perform opening/closing of detector around beam spot
 - Does not affect residuals or vertex positions (see back up slides)
- Adjusted opening angle of detector (by 0.6mRad) to give theoretical predicted Moller mass of 44.3 MeV

- Aside from obtaining top-bottom agreement, thought should be given on where to move the final vertex
- The (x,y) position is informed by wire-scan data and agrees well between v0, multi-track and wire-scan data

- However, no measurement for target z-position, but several methods can be used to cross-check each other
 - Multi-track vertex fits & "z0 vs tanL" method

- However, no measurement for target z-position, but several methods can be used to cross-check each other
 - Multi-track vertex fits & "z0 vs tanL" method
 - From MC studies, extracting target position from z0 vs tanL method accurate to ~1mm z-target from tritrig MC

	100	Bottom			
Z = -7.5 mm	7.35 +/- 0.05	7.82 +/- 0.09			
Z = 0.0 mm	-0.55 +/- 0.06	0.4 +/- 0.1			
Z = +7.5 mm	-8.48 +/- 0.06	-7.61 +/- 0.07			
Effect of (top)mis-alignments for 0mm					
	Тор	Bottom			
Nominal	-0.55 +/- 0.06	0.4 +/- 0.1			
L1tS tu +20um	-0.668,0.061	0.397,0.089			
L1tA tu +20um	-1.227,0.058	0.397,0.089			
L1tA tu +20um L2tS tu +20um	-1.227,0.058 -0.214,0.055	0.397,0.089 0.397,0.089			
L1tA tu +20um L2tS tu +20um L2tA tu +20um	-1.227,0.058 -0.214,0.055 -0.273,0.052	0.397,0.089 0.397,0.089 0.397,0.089			
L1tA tu +20um L2tS tu +20um L2tA tu +20um Middle run (det)	-1.227,0.058 -0.214,0.055 -0.273,0.052 -0.654,0.063	0.397,0.089 0.397,0.089 0.397,0.089 0.397,0.089			

- Aside from obtaining top-bottom agreement, thought should be given on where to move the final vertex
- However, no measurement for target z-position, but several methods can be used to cross-check each other
 - Multi-track vertex fits & "z0 vs tanL" method

- For the v7 alignment, the z0 vs tanL method coefficients were used to perform the global movements
 - Long standing issue: introduces (but previously there) tension between top/bottom multi-track fits
- The two methods rely on very different information
 - Z0 vs tanL axial view
 - Multi-track vertex fits will incorporate curvature
- Issue is likely a combination effects relating to global movements and momentum scale

Z0 vs tanL issues

- Small issue with the implementation of z0 vs tanL method that were only realized in the last week...
- Z0 vs tanL slope is not linear across entire region
 - In particular, at low tanL has a very steep slope
 - Assuming this is related to acceptance effects and/or misalignments in L1/L2
 - Moreover, acceptance
 effects could be different for
 top bottom detectors, due
 to y-beam offset (~90um)

Updates to z0 vs tanL method

• For now, fitting between tanL [0.025,0.05]. This moves the predicted target position a bit lower than tuned in v7

SLAC

 Decided to shift the top detector a bit more (z+800um) as part of v8 efforts to improve agreement ("dev-v8-gM-v3")

Updates to z0 vs tanL method

- For now, fitting between tanL [0.025,0.05]. This moves the predicted target position a bit lower than tuned in v7
 - Decided to shift the top detector a bit more (z+800um) as part of v8 efforts to improve agreement (dev-v8-gM-v3)

Beam spot constrained vertex alignment

- Improvement of vertex location: start using beam-spot constrained vertex alignment tools developed by PF
- Used (x-y) vertex information V0 and z-target at 1.8mm

Beam spot constrained vertex alignment

- Improvement of vertex location: start using beam-spot constrained vertex alignment tools developed by PF
- Used (x-y) vertex information V0 and z-target at 1.8mm
- However, obtain large chi2 when including BS along track, so can't tune using millepede yet...

Vertex locations: Summary

-SLAC

- Latest status of vertex locations in dev-v8
- Agreement across the two different methods and event streams is around 0.5 to 1mm
 - Notable outlier is the top multi-track for FEEs.
 Depends more strongly on track curvatures, and momentum scale is (again) currently too high in v8

	Z0 vs tanL [mm]		Multi-track [mm]	
	Тор	Bottom	Тор	Bottom
Physics (BSC)	2.31	2.47	1.59	1.78
FEE (PC)	1.79	1.68	0.61	2.16

Momentum scale vs tanL

- Clear trend in the momentum vs tanL for top detector
 - Momentum slope in region of tanL 0.025-0.05
 - Significantly lower (but flat) scale tanL>0.05

Momentum scale vs tanL

- Clear trend in the momentum vs tanL for top detector
 - Momentum slope in region of tanL 0.025-0.05
 - Significantly lower (but flat) scale tanL>0.05
- Was able to "induce" slope in bottom detector with relatively large tw movements in L7 (per millepede)

Momentum scale vs tanL

- Clear trend in the momentum vs tanL for top detector
 - Momentum slope in region of tanL 0.025-0.05
 - Significantly lower (but flat) scale tanL>0.05
- Was able to "induce" slope in bottom detector with relatively large tw movements in L7 (per millepede)

Selecting High tanL

- Studying residuals with explicit tanL>0.05 requirement:
 - Tracks do not leave hits in L7 and very few in L6
 - Strange trend in L4 residuals as tracks loose outer layers
 - Evidence of a L5 Rw but in tension with "inclusive" selection

Selecting High tanL

- Studying residuals with explicit tanL>0.05 requirement:
 - Tracks do not leave hits in L7 and very few in L6
 - Strange trend in L4 residuals as tracks loose outer layers
 - Evidence of a L5 Rw but in tension with "inclusive" selection
- Ran millepede L5 Rw (and few others) fits in tanL>0.05
 - Fixes weird features and flatten momentum scale for tanL ~
 0.02-0.05, but introduce bigger issues into residuals...

Decomposing high tanL further...

 Negative phi0 in tanL>0.05 region responsible for slope and the low momentum scale scale

- From early studies, majority of tracks originating at -phi0 and tanL>0.05 cross from slot (L5) to hole (L6) side
- Current line of thinking is that the z-scale is incorrect for this configuration (L5 slot/hole side have different tw)

d0 bias issue

- Top detector suffers from many unique features in d0
 - Some improvements achieved from local alignment (these are included into the tw variations on right)
 - Sensitive to out-of-plane tw movements on slot side, which haven't been the focus with FEEs

d0 bias issue

- Top detector suffers from many unique features in d0
 - Some improvements achieved from local alignment (these are included into the tw variations on right)
 - Sensitive to out-of-plane tw movements on slot side, which haven't been the focus with FEEs
 - Started incorporating physics e+e- data into alignment procedure, and clear need for additional slot side work

PC vs BSC

- d0 bias is also sensitive to global movements (see backup)
 - Top and bottom alignment based on multi-track z-vertex checked (labelled "Nominal" in plots)
- Beam spot constraint removes the dip at phi0 ~0.05 and reduces z0 vs tanL slope at small tanL
 - Rw movement needed in L1t axial layer?

Conclusions

- Lots of studies on the 2021 alignment model beyond v7
 - Improved tuning in the outer most layers (top&bottom)
 - Global movements to align top and bottom detectors
 - Improved understanding of vertex locations and first usage of beam spot constrained alignment driver
 - Narrowing in on origins of several features and movements that impact d0, z0, and tanL biases
- Strong need to solve BSC alignment driver Chi2 "issue"
- Optimistic to have a v8beta detector in the next month
 - But, would like to revisit initial tw movements made in v6 with focus on d0 and momentum biases in phi0 and tanL

d0 bias issue: global movements

• Also sensitive to global motions of the SVT detector

- Z-movements cause a slope on negative side
- Movements along the x-axis scale effect to d0

