Reconstruction & Calibration Update

June 3rd 2025

Matthew Gignac & Nathan Baltzell

Introduction

- Focus of reconstruction efforts has been on preparing and improving performance of 2021 dataset
 - Alignment of SVT detector (see talk tomorrow)
 - Implemented and tested data reduction scheme
 - Assessment of track reconstruction efficiency
 - Stability of track and cluster times as a function of run
 - Derived vertex (x,y) positions from 2D beam spot fits
- Throughout the process, we identified (and largely fixed) various issues with software and specific runs
- Moller mass analysis from recent reconstruction of the 10% Moller run dataset

Data reduction

- Data volume from the 1% production over Christmas was very large (40 TB) and clearly needed to be reduced
- Approached from two directions:
 - Reduce event size
 - Hit containers the largest offender, but were being used in hpstr to compute hit layer and multiplicity
 - Reworked to save hit layers as a track property and unpacked when converting from LCIO to ROOT
 - Removed all other unnecessary collections
 - Reduce number of events
 - Skim events, based on V0s, Mollers, FEEs, etc..
 - V0 skimming has been ~validated

Skimming validation

- Skimmed and non-skimmed outputs were saved to allow validation of the skimming infrastructure and cuts
- Applying preselection to skimmed data returns fewer events than running on no-skim data
 - Skimming cuts are not matching preselection cuts
 - Applying the skimming cuts above preselection yields agreement up to single event differences

cut	skimming	preselection		officiency					
$E_{e^+,clu}$	-	> 0.2 GeV		enciency					
N _{2D hits}	≥ 9	\geq 9		14211		14487		14611	
$\chi^2_{ m vtx}$	< 30.0	< 20.0	cut	no-skim	skimmed	no-skim	skimmed	no-skim	skimmed
<i>p</i> _{sum}	< 4.5 GeV	< 4.0 GeV	$\Lambda(t, t, t, t)$	00 83 %	00 83 %	00.83%	00 83 %	00.82%	00.81 %
p	< 4.5 GeV	< 2.9 GeV	$\Delta(\iota_{trk,e^{-}}, \iota_{trk,e^{+}})$	99.05 /0	99.05 /0	99.05 /0	99.05 /0	99.02 /0	99.01 /0
	-	$> 0.4{ m GeV}$	$\chi^2_{trk.e^-}$	89.00 %	89.83 %	89.88 %	90.71%	87.92 %	88.84 %
${oldsymbol{ ho}_{e^+}}$	< 4.5 GeV	-	χ^2	85 93 %	87 31 %	87 22 %	88 41 %	87 80 %	88 89 %
	_	> 0.4 GeV	λ_{trk,e^+}	05.55 /0	07.51 /0	01.22 /0	00.41 /0	01.00 /0	00.09 /0
$\Delta(t_{{ m trk},e^-},t_{{ m trk},e^+})$	< 20.0 ns	_	total	76.24 %	78.15%	78.24 %	80.01 %	77.00 %	78.75 %
$\Delta(t_{trk,e^-},t_{clu,e^+})$	-	$< 6.9 \rm ns$	N						
$\Delta(t_{trk}, e^+, t_{clu}, e^+)$	_	< 6.0 ns	/vevents						
χ^2_{trk,e^-}	< 80.0	_	preselected	33 386	32 571	33 316	32 578	32 240	31 520
χ^2_{trk,e^+}	< 80.0	-	skim cuts	25 455	25 454	26 068	26 066	24 824	24 822
$\chi^2_{ m trk,e^-}/ m ndf$	–	< 20.0				1		1	
$\chi^2_{\rm trk,e^+}/{\rm ndf}$	-	< 20.0							

Skimming validation

- Skimmed and non-skimmed outputs were saved to allow validation of the skimming infrastructure and cuts
- Applying preselection to skimmed data returns fewer events than running on no-skim data
 - Skimming cuts are not matching preselection cuts
 - Applying the skimming cuts above preselection yields agreement up to single event differences

Skimming validation

SLAC

- Skimmed and non-skimmed outputs were saved to allow validation of the skimming infrastructure and cuts
- Applying preselection to skimmed data returns fewer events than running on no-skim data
 - Skimming cuts are not matching preselection cuts
 - Applying the skimming cuts above preselection yields agreement up to single event differences

cut	skimming	preselection	
$E_{e^+,clu}$	-	> 0.2 GeV	-
N _{2D hits}	\geq 9	\ge 9	
$\chi^2_{ m vtx}$	< 30.0	< 20.0	
p _{sum}	< 4.5 GeV	< 4.0 GeV	
p _e -	< 4.5 GeV	$< 2.9\mathrm{GeV}$	-
	-	> 0.4 GeV	
$oldsymbol{p}_{e^+}$	< 4.5 GeV	-	
	-	> 0.4 GeV	
$\Delta(t_{trk,e^-},t_{trk,e^+})$	< 20.0 ns	-	
$\Delta(t_{trk,e^-},t_{clu,e^+})$	-	< 6.9 ns	
$\Delta(t_{trk,e^+},t_{clu,e^+})$	_	< 6.0 ns	
χ^2_{trk,e^-}	< 80.0	-	
χ^2_{trk,e^+}	< 80.0	-	
$\chi^2_{ m trk,e^-}/ m ndf$	-	< 20.0	
$\chi^2_{trk,e^+}/ndf$	-	< 20.0	

 Changed definition of the chi2 cut in the skimming to divide through by nDOF: <u>https://github.com/JeffersonLab/hps-java/pull/1098</u>

Track reconstruction efficiency

- Method developed and documented by M. Graham in the 2016 Physics Run studies (<u>link</u>)
- Uses the ECal to select events that look consistent with a 2-prong (e+e-) trident event and has at least one track pointing to a the cluster in the ECal.
- Track matched in the ECal to "tag" the event as a likely (e+e-) event and then use the other ECal cluster to "probe" the track efficiency on the other side.
- Efficiency defined as:

 $\epsilon(E/X/Y) = \frac{N(matched \ probe \ track)}{N(tag \ events)}$

Track reconstruction efficiency in v7

 Comparable to v6 — good! Higher efficiency for skimmed outputs, but agree well after fiducial selections (bottom)

Track reconstruction efficiency in v7

- Comparable to v6 good! Higher efficiency for skimmed outputs, but agree well after fiducial selections (bottom
- Stable as a function of run!
 - Efficiency plotted for various track momentum benchmarks
 - For p>1 GeV, maintain efficiency close to 1 across entire datasets

Electron efficiency

0.8

0.6

All runs in 2021 dataset

trkEffFiducial2InTrigClusters_clE_ele_foundpos_foundele_h

Data (pass_v7, v0skimmed) Data (pass_v7, Unskimmed)

MC (v6)

Determining the (x,y) beam position

- SVT wire scan data was taken sporadically throughout the 2021 dataset: useful to determine beam position
- Fits to counters in "HPS_SC" as a function of the SVT motor position, separately for top & bottom

Beam position by physics run number

X-Y beam spot determination

- Beam spot in (x,y) determined from 2D fit
 - Summarized in json format and used as input for analysis quantities
 - Added to (local) conditions database, which will be used as input for next pass for BSC and TC vertex fits

X-Y beam spot determination

- Beam spot in (x,y) determined from 2D fit
 - Summarized in json format and used as input for analysis quantities
 - Added to (local) conditions database, which will be used as input for next pass for BSC and TC vertex fits

15

rotated mean y vs Run Number

Track & cluster times

- Track and cluster times very important quantity at analysis level — studied as a function of run number
 - Fit a gaussian to the data to extract mean and sigma, and used to adjust mean value to zero

Track time

- Electron minus positron track times used in skimming and should be stable as a function of run number
- Observe much broader tails in data than MC for electron track to positron cluster time difference
 - Need to devise strategy to ideally reduce these contributions and/or estimate (see Sarah's <u>talk</u>)

Phase issue

- In validating pass2, uncovered a bimodal peak in the time distribution for a few runs: 14210 and 14232.
- Suspected phase offset problem, where phase and layer dependent time shifts are needed for each layer
 - This was a recurrence of a problem that is ~2-3 yr old
 - Promptly fixed: https://github.com/JeffersonLab/hps-java/pull/1099

v6 alignment model 1% pass1 (Jan. 2025)

v7beta alignment model Preparations for pass2 (March. 2025)

v7beta-2 alignment model Preparations for pass2 (March. 2025)

Moller mass studies: v7 alignment model

- Reconstructed 10% of Moller run dataset @1.92 GeV
- Average Moller mass extracted using BSC and TC vertices, showing good agreement UC vertex fits

Note: vertex (x,y,z) positions were taken from a single Moller run; small evolution in (x,y) already known. The z-vertex position disagrees between different approaches (z0 vs tanL, e+e-, e-e-, and multitrack give different results spanning ~1mm)

Moller mass studies

- Reconstructed 10% of Moller run dataset @1.92 GeV
- Differential analysis: Moller mass vs theta_x shows strong dependency, especially in the top detector
 - More details in Lewis' talk on Wednesday morning

Conclusions

- Lots of studies on the reconstructed ~0.3% of 2021 dataset and great progress towards the next pass
- Alignment work ongoing for v8
 - Lots of studies performed to understand origins of momentum scale as a function of phi0 and tanL
 - Beam spot constrained alignment technically working, but work needed to better understand vertex z-position
 - It may make sense to move to v8 for the next pass
 - <1% pass, also enabling flags needed for hit killing and smearing studies Elizabeth is working on
- Efforts starting on calibration work for 2019 dataset

Momentum scale: through the versions...

