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                        Introduction
• Changed particle transport in an EM field:    

• Used for: 
• measuring momenta of charged tracks 
• bending or acceleration of charged tracks or beams  
• drifting charged particles through volumes 
• many other HEP applications

F = q(E + v × B)

3



         Magnetic Field Support in Geant4
• General user interfaces provide for field implementations 

• G4MagneticField (magnetic field base class)  
• G4VUserDetectorConstruction::ConstructSDandField (method to place field in 

detector) 
• G4UniformMagField, G4UniformElectricField (special case for simple fields)  

• Field integration methods  
• Default stepper is G4DormandPrince745 
• Many other Runge-Kutta family integrators, including G4ClassicalRK4 
• QSS (quantized state system) and symplectic algorithms are used in integration   

• Tunable parameters to control accuracy and performance 

• Source code and examples: 
• source/geometry/magneticfield 

• source/geometry/navigation (G4PropagationInField) 

• examples/basic/B2 and B5 

• examples/extended/field
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   Magnetic Field Integration and Driver
• Goal: for a given step within a field, find final position and direction of 

charged particle within a tolerance 

• Guiding principle: 

• stride in a plain (take big steps if field varies slowly) 

• crawl in a valley (small steps in a stiff, rapidly varying field) 
•  better accuracy, performance  

• Elements of field integration  
• Field (E, B, …)  
• Equation of motion 
• Stepper (integration routine, e.g. RK4, … ) 
• Driver (code that guides stepper, controls step size, errors, …)  
• Chord finder (splits complex path into straight segments)  
• Multi-level locator (finds intersection of track with volume boundary) 
• Propagator in field (navigates particle through a field)  
• transportation (advance the particle by integrated step)

→
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             Field Implementation
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         Magnetic Field Implementation
• Derive a user magnetic field class from G4MagneticField and 

implement the method MyField::GetFieldValue(…) 
• Instantiate this field in user detector construction and pass the 

field to G4FieldManager in MyDetector::ConstructSDandField()  

• For a uniform magnetic field, use class G4UniformMagField  
•
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               Global and Local Fields
• One field manager is associated with the World and is set in 

G4TransportationManager  

• Other volumes can override this  
• An alternative field manager can be associated with any logical volume  
• By default, this is propagated to all its daughter volumes  

• where “true” pushes the field to all the volumes it contains, unless a daughter has 
its own field manager 

• A field can be nullified in a volume with a nullptr of G4MagneticField 

•
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                 Field Integration
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     Integrating the Equations of Motion
• Solve the equation of motion of a charged 

particle in a field:       

 

• Decompose equation along the particle 
trajectory, s = vt:  

•  

•  

• Use an integration method to find  for 
any given step size: 
•  

•

m
d2x
dt2

= q[E + v × B] = f (x, t)

dx
ds

= y

dy
ds

= f (x, y)

xn+1, yn+1

xn+1 = xn + h

yn+1 = yn + hf (xn, yn)
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        Explicit Runge-Kutta Integration
•Taylor expansion of right hand side at a set of intermediate points  

where  is the number of stages, subject to  and  :   

•  

•  

•Classical 4th order (4-stage) Runge-Kutta: 

•  

•  

•  

•  

•  

• Adaptive step control by truncation error of difference between two small steps and 
one big step: total of 11 evaluations of right hand side of equation of motion 

• If error is bigger than a given tolerance, propose new substep  and repeat until  

hi = cih (i = 1,...,s)
s Σibi = 1 Σjaij = ci

yn+1 = yn + Σs
i=1biki + O(hs+1)

ki = hf (xn + cih, yn + hΣi−1
j=1aijkj)

yn+1 = yn +
1
6 (k1 + 2k2 + 2k3 + k4) + O(h5)

k1 = hf(xn, yn)
k2 = hf(xn +

h
2

, yn +
k1

2 )
k3 = hf(xn +

h
2

, yn +
k2

2 )
k4 = hf(xn + h, yn + k3)

hi h = Σihi
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           Dormand-Prince RK5(4)7M
•Use higher order (5th order RK) solutions and a 4th order embedded 

solution 

•  

•  

•  

• Uses 6 field evaluations per integration because it provides the derivative at the 
end point 

• RK5(4)7M is the most efficient and stable among algorithms 

• Other steppers available: 
• BogackiShampine45 (and 23)  
• Runge-Kutta Felberg (4th order embedded solution) 
• Cash-Karp (4th order) 
• And more

yn+1 = yn + Σ7
i=1biki + O(h6)

y*n+1 = yn + Σ6
n=1b*i ki + O(h5)

yerr = yn+1 − y*n+1 = Σ7
n=1(b*i − bi)ki
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                 Field Parameters 
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                  Tunable Parameters
• Most important accuracy parameter is the maximum relative tolerance  for the integration 

error for a given step s and particle momentum p 

•  limits the estimated error for large steps: 

•     and 

•   

• The parameter delta one step ( -step) is the accuracy for the endpoint of integration steps that 
do not intersect a volume boundary 

• It also limits the estimated error of the endpoint of each physics step (essentially -step) 

• Values of -intersection and  -step should be within one order of magnitude 

• Further details in Section 4.3 (Electromagnetic Field) of the Geant4 Application Developers Guide

εmax

εmax

|Δx | < εmax s

|Δp | < εmax | p |

δ1

< 1000 δ1

δ δ1
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                      Miss Distance
• Depending on error from integration, Geant4 breaks up curved path into 

linear chord segments, which approximate the path 

• Chords are used to interrogate the G4Navigator to see whether the track has 
crossed a volume boundary 

• One physics/tracking step can create several chords 

• User can set the accuracy of the volume intersection by a miss distance which 
is an indicator of whether or not approximate track intersects a volume 
• CPU performance is sensitive to this value 

•
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                   Delta Intersection
• Parameter  is the accuracy to which 

an intersection with a volume boundary 
is calculated 

• Especially important because it is used 
to limit a bias that our boundary crossing 
algorithm exhibits 

• Intersection point is always on the 
“inside” of that curve 

• By setting a value for this parameter that 
is much smaller than some acceptable 
error, user can limit the effect of the bias  

• User can set this parameter to adjust the 
accuracy and performance of charged 
particle tracking in a field

δint
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     Customizing Field Integration 
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                     Choosing a Stepper
• Runge-Kutta integrations are used to trace a charged particle in a general field 

• Many steppers to choose from 

• And specialized steppers for pure magnetic fields 

• Default: G4DormandPrinceRFK45 

• Embedded 4th-5th order RK stepper (embedded = compares 4th and 5th order 
to estimate error) 

• If field is very smooth, may consider higher-order steppers  

• Of most interest in large volumes filled with gas or vacuum 

• If field calculated from field map, use a lower-order stepper 
• The less smooth the field, the lower-order the stepper  
• Some low-order steppers: 

• G4SimpleHeum (3rd order) 
• G4ImplicitEuler and G4SimpleRunge (2nd order) 
• G4ExplicitEuler (1st order) - useful only for very rough fields  
• For intermediate (somewhat smooth fields) choice between 2nd and 3rd order is made 

by trial and error

18



 Example: Setting Up Your Own Stepper/Driver

• Note: default is fnVariables = 6 (x, y, z, px, py, pz) but can be extended 
to include time, or polarization (spin) components
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       Basic and Extended Field Examples
• examples/basic 

• B2: use G4GlobalMagFieldMessenger to create global, uniform 
magnetic field  

• B5: create a custom magnetic field and assign it to a field 

•examples/extended 
• field01: exploration of integration methods  
• field02: combined E+B (electric and magnetic field)  
• field03: define a local field in a logical volume  
• field04: overlapping field elements (magnetic, electric or both)  
• field05: tracking of polarization and spin-frozen condition  
• field06: tracking ultra-cold neutrons in a gravitational field  
• BlineTracer: trace and visualize magnetic field lines
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                              Summary
• Geant4 supports general user interfaces for field implementation  

• G4MagneticField::GetFieldValue() 

• G4VDetectorConstruction::ConstructSDandField() 

• Runge-Kutta (RK) integration is used to track a charged particle in 
any magnetic, electric, combined EM, gravitational or mixed field 

• Many general steppers are available/applicable for any equation/field 

• Default in Geant4 is the general-purpose G4DormandPrince745 
which is a 5th order RK stepper with a 4th order embedded solution 

• Different types of integration methods are available and Geant4 
produces interfaces to control field parameters for accuracy and 
performance tunings and to customize user field integration

21


