

- Retrieving information from Geant4
- Command-based scoring
 - Mesh scorer
 - Scorer in real world volume
 - Probe scorer

- Retrieving information from Geant4
- Command-based scoring
 - Mesh scorer
 - Scorer in real world volume
 - Probe scorer

Extract useful information

- Given geometry, physics and primary track generation, Geant4 does proper physics simulation "silently".
 - You have to do something to extract information useful to you.
- There are three ways:
 - Built-in scoring commands
 - Most commonly-used physics quantities are available.
 - Use scorers in the tracking volume
 - Create scores for each event
 - Create own Run class to accumulate scores
 - Assign G4VSensitiveDetector to a volume to generate "hit".
 - Use user hooks (G4UserEventAction, G4UserRunAction) to get event / run summary
- You may also use user hooks (G4UserTrackingAction, G4UserSteppingAction, etc.)
 - You have full access to almost all information
 - Straight-forward, but do-it-yourself

Command-based scoring

- Command-based scoring functionality offers the various built-in scorers for commonly-used physics quantities such as dose, flux, etc.
 - Due to small performance overhead, it does not come by default.
- To use this functionality, access to the G4ScoringManager pointer after the instantiation of G4(MT)RunManager in your *main*().

```
#include "G4ScoringManager.hh"
int main()
{
   G4RunManager* runManager = new G4MTRunManager;
   G4ScoringManager* scoringManager =
   G4ScoringManager::GetScoringManager();
```

- All of the UI commands of this functionality are in /score/ directory.
- /examples/extended/runAndEvent/RE03 and /examples/advanced/gorad are good examples

Three types of command-based scorers

1) Scoring mesh

- Define 3-D mesh (box or cylinder)
- The mesh may overlap with real-world volumes
- Assign arbitrary number of primitive scorers to mesh cell

2) Assigning scorers to a real-world logical volume

- Declare a real-world logical volume as a detector
- Assign arbitrary number of primitive scorers to the detector
- If the volume is placed more than once, assigned scorers individually score for each physical volume

3) Scoring probe

- A probe is a small virtual cube that is located at arbitrary position. It may overlap with real-world volumes.
- Assign arbitrary number of primitive scorers to the probe
- If probe is placed more than once, assigned scorers individually score for each probe.

- Retrieving information from Geant4
- Command-based scoring
 - Mesh scorer
 - Scorer in real world volume
 - Probe scorer

Define a scoring mesh

- To define a scoring mesh, the user has to specify the followings.
 - 1. Shape and name of the 3D scoring mesh.
 - Currently, box and cylinder are available.
 - 2. Size of the scoring mesh.
 - Mesh size must be specified as "half width" similar to the arguments of G4Box / G4Tubs.
 - 3. Number of bins for each axes.
 - Note that too many bins causes immense memory consumption.
 - 4. Specify position and rotation of the mesh.
 - If not specified, the mesh is positioned at the center of the world volume without rotation.

```
# define scoring mesh
/score/create/boxMesh boxMesh_1
/score/mesh/boxSize 100. 100. 100. cm
/score/mesh/nBin 30 30 30
/score/mesh/translate/xyz 0. 0. 100. cm
```

- The mesh geometry can be completely independent to the real material geometry. It may overlap with any volumes in the real-world volumes.
 - Must be fully contained inside the world volume.

Scoring quantities

- A mesh may have arbitrary number of scorers. Each scorer scores one physics quantity.
 - energyDeposit * Energy deposit scorer.
 - cellCharge * Cell charge scorer.
 - volumeFlux * General-purpose flux scorer.
 - cellFlux * Cell flux scorer.
 - passageCellFlux * Passage cell flux scorer
 - doseDeposit * Dose deposit scorer.
 - nOfStep * Number of step scorer.
 - nOfSecondary * Number of secondary scorer.
 - trackLength * Track length scorer.
 - passageCellCurrent * Passage cell current scorer.
 - passageTrackLength * Passage track length scorer.
 - flatSurfaceCurrent * Flat surface current Scorer.
 - flatSurfaceFlux * Flat surface flux scorer.
 - nOfCollision * Number of collision scorer.
 - population * Population scorer.
 - nOfTrack * Number of track scorer.
 - nOfTerminatedTrack * Number of terminated tracks scorer.

Filter

- Each scorer may take a filter.
 - charged * Charged particle filter.
 - neutral * Neutral particle filter.
 - kineticEnergy * Kinetic energy filter./score/filter/kineticEnergy <fname> <eLow> <eHigh> <unit>
 - particle * Particle filter.

/score/filter/particle <fname> <p1> ... <pn>

- particleWithKineticEnergy * Particle with kinetic energy filter.

```
/score/filter/ParticleWithKineticEnergy 
<fname> <eLow> <eHigh> <unit> <p1> ... <pn>
```

/score/quantity/energyDeposit eDep MeV /score/quantity/nOfStep nOfStepGamma /score/filter/particle gammaFilter gamma /score/quantity/nOfStep nOfStepEMinus /score/filter/particle eMinusFilter e-/score/quantity/nOfStep nOfStepEPlus /score/filter/particle ePlusFilter e+

Same primitive scorers with different filters may be defined.

/score/close

Close the mesh when defining scorers is done.

Drawing a score

Projection

```
/score/drawProjection <mesh_name> <scorer_name> <color_map>
```

Slice

```
/score/drawColumn <mesh_name> <scorer_name> <plane> <column> <color_map>
```

- Available only for box or cylindrical mesh.
- Color map
 - By default, linear and log-scale color maps are available.
 - Minimum and maximum values can be defined by /score/colorMap/setMinMax command. Otherwise, min and max values are taken from the current score.

Write scores to a file

- Single score
 - /score/dumpQuantityToFile <mesh_name> <scorer_name> <file_name>
- All scores
 /score/dumpAllQuantitiesToFile <mesh name> <file name>
- By default, values are written in CSV.
- By creating a concrete class derived from G4VScoreWriter base class, the user can define his own file format.
 - Example in /examples/extended/runAndEvent/RE03
 - User's score writer class should be registered to G4ScoringManager.

More than one scoring meshes

- You may define more than one scoring mesh.
 - And, you may define arbitrary number of primitive scorers to each scoring mesh.
- Mesh volumes may overlap with other meshes and/or with mass geometry.
- A step is limited on any boundary.
- Please be cautious of too many meshes, too granular meshes and/or too many primitive scorers.
 - Memory consumption
 - Computing speed

- Retrieving information from Geant4
- Command-based scoring
 - Mesh scorer
 - Scorer in real world volume
 - Probe scorer

Define scorer to a tracking volume

- Define a logical volume as a detector.
 /score/create/realWorldLogVol <LV_name> <anc_lvl>
- One can define arbitrary scoring quantities and filters.
 - Same recipe as scoring mesh.
 - Scores are automatically merged over worker threads and written to a file.
 - Drawing is not yet supported.
- All physical volumes that share the same <LV_name> have the same primitive scorers but score separately.
 - Copy number of the physical volume is the index.
 - If the physical volume is placed only once, but its (grand-)mother volume is replicated, use the <anc_lvl> parameter to indicate the ancestor level where the copy number should be taken.

Command-based real-world scorer

- Do not use this /score/create/realWorldLogVol command to a mother logical volume.
 - For example of this exampleB4, "Layer" is fully filled with "Gap" and "Abso" daughter volumes. You won't see any energy deposition in "Layer" volume.

/score/create/realWorldLogVol Gap 1
/score/quantity/energyDeposit eDep MeV
/score/quantity/trackLength sLen mm
/score/filter/charged cFilter
/score/create/realWorldLogVol Abso 1
/score/quantity/energyDeposit eDep MeV
/score/quantity/trackLength sLen mm
/score/filter/charged cFilter
/score/close

If this is not set, given "Gap" and "Abso" are placed with copy number 0, energy deposition and track length are accumulated for all layers.

- Retrieving information from Geant4
- Command-based scoring
 - Mesh scorer
 - Scorer in real world volume
 - Probe scorer

Command-based probe scorer

- User may locate scoring "probes" at arbitrary locations. A "probe" is a virtual cube, to which any primitive scorers could be assigned.
 - Once a probe is defined, user can associate arbitrary number of primitive scorers and filters like the conventional scoring mesh.

- Probes cannot overlap to each other.
- If probes are located more than once, all probes have the same scorers but score individually.

Command-based probe scorer

- In addition, the user may optionally set a material to the probe. Once a material is set to the probe, it overwrites the material(s) defined in the mass geometry when a track enters the probe cube.
 - Because of this overwriting, physics quantities that depend on material or density, e.g. energy deposition or dose, would be measured accordingly to the specified material.
 - This material overwriting affects to the physics results. Make the probe small to avoid large artificial side-effects.

Scoring probe

/score/create/probe Probes 5. cm /score/probe/material G4_WATER /score/probe/locate 0. 0. 0. cm /score/probe/locate 25. 0. 0. cm /score/probe/locate 0. 25. 0. cm /score/probe/locate 0. 0. 25. cm /score/quantity/energyDeposit eDep MeV /score/quantity/doseDeposit dose mGy /score/quantity/volumeFlux volFlx /score/quantity/volumeFlux protonFlux /score/filter/particle protonFilter proton /score/close

Note: To visualize the probes defined in a parallel world, the following command is required.

/vis/drawVolume worlds

1-D histogram directly filled by a primitive scorer

- Through a newly introduced interface class (G4TScoreHistFiller) a primitive scorer can directly fill a 1-D histogram defined by G4Analysis.
 - Track-by-track or step-by-step filling allows command-based histogram such as energy spectrum.
- G4TScoreHistFiller template class must be instantiated in the user's code with his/her choice of analysis data format.

```
#include "G4AnalysisManager.hh"
#include "G4TScoreHistFiller.hh"
auto analysisManager = G4AnalysisManager::Instance();
analysisManager->SetDefaultFileType("root");
auto histFiller = new G4TScoreHistFiller<G4AnalysisManager>;
```

- Primitive scorer must be defined in advance to setting a histogram.
 - Direct filling works only with "volumeFlux" scorer.
- Histogram must be defined through /analysis/h1/create command in advance to setting it to a primitive scorer.
- This functionality is available only for primitive scorers defined in real-world scorer or probe scorer.
 - Not available for box or cylindrical mesh scorer due to memory consumption concern.

1-D histogram directly filled by a primitive scorer

/score/create/probe Probes 5. cm

/score/probe/locate 0. 0. 0. cm

/score/quantity/volumeFlux volFlux

/score/quantity/volumeFlux protonFlux

/score/filter/particle protonFilter proton

/score/close

/analysis/h1/create volFlux Probes_volFlux 100 0.01 2000. MeV ! log

/score/fill1D 1 Probes volFlux

/analysis/h1/create protonFlux Probes_protonFlux

100 0.01 2000. MeV! log

/score/fill1D 2 Probes protonFlux

N.B. If probe is placed more than once, *fill1D* command should be called to each *copyNo*.

/score/fill1D 1 Probes volFlux 0

