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Introduction

4+ Electromagnetic (EM) physics overview
4+ Gamma processes
4+ Charged particles processes

4+ Production Threshold
4+ EM Physics Constructors

4+ User Interfaces to EM physics
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EM Overview
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EM Libraries Located in $§G4SOURCE /processes/electromagnetic

4+ Low-energy

+ Standard + Livermore library y, e- from 10 eV up to 1 GeV

* y,eupto 100 TeV + Livermore library based polarized processes

* hadrons up to 100 TeV + PENELOPE 2008 code rewrite v, e- , e+ from

<« jons up to 100 TeV 250 eV up to 6 GeV

<+ hadrons and ions up to 1 GeV

. . it N
+ Muons atomic de-excitation (fluorescence + Auger)

+ upto1PeV

+ energy loss propagator 4+ DNA

+ Geant4 DNA modes and processes

+ X-rays <+ Micro-dosimetry models for radiobiology

<« Cherenkov, transition, synchrotron * from 0.025 eV to 10 MeV

<+ many of them material specific (water)

4+ High-energy

+ processes at high energy (E>10GeV), for 4+ Adjoint

example y to p+y- pairs, e-e+ to - and T+ + sub-library for reverse Monte Carlo simulation

+ physics for exotic particles from the detector of

<+ interest back to source of radiation

4 Polarisation

<+ models/processes for polarized beam + Utils

<+ general EM interfaces and helper classes
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Software Design of the EM packages

4+ Uniform, coherent design approach over the different EM sub-parts

<+  Standard and low-energy EM models/processes can be combined
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Software Design of the EM packages

4+ Uniform, coherent design approach over the different EM sub-parts

<+  Standard and low-energy EM models/processes can be combined

4+ A physical interaction or process is described by a process class
+  For example: G4ComptonScattering

<+  Assigned to particle types in the Physics List (G4ComptonScattering is assigned to photon)
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Software Design of the EM packages

4+ Uniform, coherent design approach over the different EM sub-parts

<+  Standard and low-energy EM models/processes can be combined

4+ A physical interaction or process is described by a process class
+  For example: G4ComptonScattering

<+  Assigned to particle types in the Physics List (G4ComptonScattering is assigned to photon)

4+ Three EM process interfaces to describe 3 set of interactions with different characteristics. All classes derived from these 3.
+  G4VEmProcess for discrete EM processes (e.g. Compton scattering)
+  G4VEnergyLossProcess for the continuous-discrete ionization and bremsstrahlung photon emission

+  G4VMultipleScattering for the Condensed History description of the multiple Coulomb scattering (along a given step)
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Software Design of the EM packages

4+ Uniform, coherent design approach over the different EM sub-parts

<+  Standard and low-energy EM models/processes can be combined

4+ A physical interaction or process is described by a process class
+  For example: G4ComptonScattering

<+  Assigned to particle types in the Physics List (G4ComptonScattering is assigned to photon)

4+ Three EM process interfaces to describe 3 set of interactions with different characteristics. All classes derived from these 3.
+  G4VEmProcess for discrete EM processes (e.g. Compton scattering)
+  G4VEnergyLossProcess for the continuous-discrete ionization and bremsstrahlung photon emission

+  G4VMultipleScattering for the Condensed History description of the multiple Coulomb scattering (along a given step)

4+ A EM process can be simulated according to several models
<+  Each model is described by a class that inherits from G4VEmModel base class

<  Naming convention: G4ModelNameProcessNameModel (e.g. G4KleinNishinaComptonModel describes Compton scattering of photons described by
the Klein-Nishina differential cross section)

+  Models can be assigned to certain energy ranges and G4Regions
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Software Design of the EM packages

4+ Uniform, coherent design approach over the different EM sub-parts

<+  Standard and low-energy EM models/processes can be combined

4+ A physical interaction or process is described by a process class
+  For example: G4ComptonScattering

<+  Assigned to particle types in the Physics List (G4ComptonScattering is assigned to photon)

4+ Three EM process interfaces to describe 3 set of interactions with different characteristics. All classes derived from these 3.
+  G4VEmProcess for discrete EM processes (e.g. Compton scattering)
+  G4VEnergyLossProcess for the continuous-discrete ionization and bremsstrahlung photon emission

+  G4VMultipleScattering for the Condensed History description of the multiple Coulomb scattering (along a given step)

4+ A EM process can be simulated according to several models
<+  Each model is described by a class that inherits from G4VEmModel base class

<  Naming convention: G4ModelNameProcessNameModel (e.g. G4KleinNishinaComptonModel describes Compton scattering of photons described by
the Klein-Nishina differential cross section)

+  Models can be assigned to certain energy ranges and G4Regions

4+ Model classes provide the computation of:
<+  Computation of interaction cross section (and stopping power if any)

<+  Computation/generation of the interaction final state (post-interaction kinematics, secondary production, etc.)
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Registering electronss in Standard EM

msc: for e- f SubType= 10
S models for the G4Region DefaultRegionForTheWorld ======
UrbanMsc : Emin= O eV Emax= 100 TeV Nbins=240 100 eV - 100 TeV
StepLim=DistanceToBoundary Rfact=0.04 Gfact=2.5 Sfact=0.6 DispFlag:1 Skin=1 Llim=1 mm

eloni: for e- |XStype:3 SubType=2
srvigre=gind range tables from 10 eV to 100 TeV in 260 bins
Lambda tables from threshold to 100 TeV, 20 bins/decade, spline: 1
StepFunction=(0.2, 0.1 mm), integ: 3, fluct: 1, linLossLim= 0.01
===== EM models for the G4Region DefaultRegionForTheWorld ======
MollerBhabha : Emin= @ eV Emax= 100 TeV deltaVIl

eBrem: for e- §XStype:4 SubType=3
svigre=gind range tables from 10 eV to 100 TeV in 260 bins
Lambda tables from threshold to 100 TeV, 20 bins/decade, spline: 1
LPM flag: 1 for E > 1 GeV, VertexHighEnergyTh(GeV)= 100000
===== EM models for the G4Region DefaultRegionForTheWorld ======
eBremSB : Emin= @ eV Emax= 1 GeV AngularGenZBS
eBremLPM : Emin= 1 GeV Emax= 100 TeV AngularGenZBS

ePairProd: for e- [XStype:1 SubType=4
srevgregmem=pgrfge tables from 10 eV to 100 TeV in 260 bins
Lambda tables from threshold to 100 TeV, 20 bins/decade, spline: 0
Sampling table 25x1001; from 0.1 GeV to 100 TeV
===== EM models for the G4Region DefaultRegionForTheWorld ======
ePairProd : Emin= @ eV Emax= 100 TeV ModifiedMephi
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Registering electronss in Standard EM

msc: for e- SubType= 10
===== EM models for the G4Region DefaultRegionForTheWorld ======
UrbanMsc : Emin= O eV Emax= 100 TeV Nbins=240 100 eV - 100 TeV
StepLim=DistanceToBoundary Rfact=0.04 Gfact=2.5 Sfact=0.6 DispFlag:1 Skin=1 Llim=1 mm

eloni: for e- XStype:3 SubType=2
dE/dx and range tables from 10 eV to 100 TeV in 260 bins
Lambda tables from threshold to 100 TeV, 20 bins/decade, spline: 1
StepFunction=(0.2, 0.1 mm), integ: 3, fluct: 1, linLossLim= 0.01
===== EM models for the G4Region DefaultRegionForTheWorld ======
MollerBhabha : Emin= @ eV Emax= 100 TeV deltaVIl

for e- XStype:4 SubType=3
dE/dx and range tables from 10 eV to 100 TeV in 260 bins
Lambda tables from threshold to 100 TeV, 20 bins/decade, spline: 1
LPM flag: 1 for E > 1 GeV, VertexHighEnerg = 100000
EM models for the G4Region DefaultRegionForTheWorld
eBremSB : Emin= @ eV Emax= 1 GeV AngularGenZBS
eBremLPM : Emin= 1 GeV Emax= 100 TeV AngularGenZBS

ePairProd: for e- XStype:1 SubType=4
dE/dx and range tables from 10 eV to 100 TeV in 260 bins
Lambda tables from threshold to 100 TeV, 20 bins/decade, spline: 0
Sampling table 25x1001; from 0.1 GeV to 100 TeV
===== EM models for the G4Region DefaultRegionForTheWorld ======
ePairProd : Emin= O eV Emax= 100 TeV ModifiedMephi
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Gamma Processes T T T T
(a) Carbon (Z = 6)
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4+ Main processes (low to high energy) §
<+ Photoelectric effect b
<+ Rayleigh scattering should not be neglected if an accurate —
dosimetry simulation is needed -
Omb —
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Photo-electric absorption and atomic de-excitation

Low-energy X-ray

Ejected
4+ Photo-electric absorption leaves Auger € emission photoelectron
the atom in an excited state N

4+ Vacancy in the ionized shell

4+ Decay through a cascade of Incident phot
radiated and non radiated Saab bl 9
transitions

4+ Emission of X-rays and other
electrons
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Atomic de-excitation

4+ Atomic de-excitation is initiated by other EM physics interactions
“ Photoelectric effect, ionization (by e- or ions), Compton scattering, ...

“» These interactions leave the target atom in an excited state
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Atomic de-excitation

4+ Atomic de-excitation is initiated by other EM physics interactions
“ Photoelectric effect, ionization (by e- or ions), Compton scattering, ...
“» These interactions leave the target atom in an excited state
4+ The EADL (Evaluated Atomic Data Library) contains transition probabilities: Decay through a cascade of radiated and non
radiated transitions
“ Radiative transition characteristic X-ray emission (fluoressence photon emission)
“ Auger e- emission: initial and final vacancies are in different shells

“ Coster-Kronig e- emission: initial and final vacancies are in the same shells

Jefferson Lab, Newport News, 8/19/25 Geant4 Course | Maurizio Ungaro



Atomic de-excitation

4+ Atomic de-excitation is initiated by other EM physics interactions
“ Photoelectric effect, ionization (by e- or ions), Compton scattering, ...

“» These interactions leave the target atom in an excited state

4+ The EADL (Evaluated Atomic Data Library) contains transition probabilities: Decay through a cascade of radiated and non
radiated transitions
“ Radiative transition characteristic X-ray emission (fluoressence photon emission)

“ Auger e- emission: initial and final vacancies are in different shells

“ Coster-Kronig e- emission: initial and final vacancies are in the same shells

4+ De-excitation has common interface so is compatible with both the standard and the low-energy EM physics
categories

“ It can be enabled and controlled by Ul command (before initialization)

/process/em/fluo true
/process/em/auger true
/process/em/pixe true
/run/initialize

“ The fluorescence transition is active by default in some EM physics constructor while others (Auger, PIXE) not
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Charged particles processes

4+ Charged particles processes (low to

high energy)

&

Positron annihilation
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Coulomb scattering

Production of e+e- pair
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Difference between electrons and positrons is significant for low energy but practically negligible above critical energy
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Charged particles: simulation of g4step

4+ Values of mean dE/dx, range, cross section of &-electron production, and bremsstrahlung
are pre-computed at initialization stage of Geant4 and are stored in a G4PhysicsTable

4+ At run time, for each simulation g4step
1. a spline interpolation of tables is used to get the mean energy loss
2. a call to the the general interface to a fluctuation model is G4VEmFluctuationModel
3. a sampling of the energy loss fluctuation is performed

4+ the cross sections of d-electron production and bremsstrahlung are used to sample
production above the threshold Tcur at PostStep

4+ If atomic de-excitation is active, then fluorescence and Auger electron production is
sampled AlongStep and PostStep
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1: Hadrons and ion ionization: get mean energy loss

— = 4N r* 2|

YR R R T R S e

(
dE . 22 i zmeCZ/BZVZ ﬁZ

dx 0 / 2

C: shell correction

G: Mott correction

O density correction

F: finite size correction
L+: Barkas correction
L2: Block correction
Nuclear stopping

lon effective range

Scaling for heavy
particles / ions
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2, 3: Fluctuations models

Energy deposition in ADC for 3 GeV/c p in 7.5 mm gap, G4

1800
4+ Urban model based on a simple model of 1600/ } P p——
particle-atom interaction 1400 | \ PAI 3. 7Smm ben
12(» ' \ PALPhOON 3.75mm lim
+ Atoms are assumed to have only two energy ; , .
L ! ) -
levels: E4 and E2 ' \
: : : 8004
+ Particle-atom interaction can be: X .
600} \
+ an excitation of the atom with energy aoo| %
-_— b 8 ('l-.
loss E = E1 - E2 200/ + “,.
o ’ e
* an ionization with energy loss % 200 400 600 800 1000 1200 1400 1600 1800 2000
distribution g(E) = 1/E2 ADC

Energy deposition in ADC for 1 GeV/c p in 7.5 mm gap, G4
4+ PAI model uses photo absorption cross
section data 10%|

— Opt0 3. 75%mm lim

PAI 3. 75mm bm

+ Relativistic model

PAI PHOTON 3.75mm lim
Data

+ Energy transfers are sampled with
production of secondary e- ory

+ Very slow model 10|

+ Takes into account each ionization collision
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Electron/positron Multiple Scattering Models

e 0.521 MeV in Al, Geant4 10.3p01

4+ Coulomb scattering: elastic scattering of

charged particles on the atomic potential - °F |
NE 4_5;_ ................ ..................... ...................... ...................... ................... m Data = |
4+ Event-by-event modeling of elastic scattering is | i, N — —opt0 |
feasible only if the mean number of interactions >as 4 B N . GS-msc |
per track is below few hundred = £/ N |TWess ]

o \ — Opt3

* th|S ||m|tS the appllcablllty Of the detalled luU 25 F ..................... ...................... .................... ................... 5_ S:ng|e Sécat e
Simulation model Only for' eIeCtronS With relatively 2 ...................................................................................................
IOW kinetic energies (up to Ekln ~1 OO keV) Or thin 1_5 ................ ..................... ...................... ...................... ..................... 3\ ...................... ......................
targets A ..................... ...................... ...................... ...................... ,,,,,,,,,,,,,,,,,,,,,,
T — — T — T T T — —

4+ MSC model: give the final position and direction NS PN EEETY SRS PR SR SEETE P =S

of the particle while try to minimize the possible 0 01 02 03 04 05 06 0'7de;3t'?1 (n‘/’ﬁo)

errors due to geometrical constraints

1

Post-step point (ry): Post-step point (ry):

with many Coulomb Sc with many Coulomb Sc

é—» 0o
T d St

—0
St

Post-step point (r1):
w/o single Coulomb Sc

Post-step point (r1):

Pre-step point (ro) w/o single Coulomb Sc

Pre-step point (ro)
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Electron/positron Multiple Scattering Models

4+ MSC model: give the final position and direction
of the particle while try to minimize the possible
errors due to geometrical constraints

4+ Can be controlled with Ul command (in increasing
accuracy and simulation time)

e 0.521 MeV in Al, Geant4 10.3p01

E,., (MeV/g/icm’)

N
2]

4

5
5
4
3.5
3

(] —
o O a4 O N

;_ _____________________________________________________________ B e = Data |

= de.  |—opo0 |

- N GS-msc

R e e e R

- | | | | ¢ o Opt3 .............
............. — Single Scat

IlllIllllllllllllllllllllllllllllllllllll

01 02 03 04 05 06 07 08 0.9
depth (R/RO)

/process/msc/StepLimit UseSafety
/process/msc/StepLimit UseDistanceToBoundary
/process/msc/StepLimit UseSafetyPlus

these are for e-/e+ but different Ul command available for muons and hadrons

. ‘GEANT4
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- ®
Production Threshold S NE
For Bremsstrahlung e hf=E ,-E ,
4+ Low energy photons (k) are emitted with high rate:

DCS ~ 1/k

4+ The generation and tracking of all these low
energy photons would not be feasible (CPU time)

4+ Low energy photons has a very small absorption ‘
length ‘®

4+ If the detector spacial resolution is worse than EZX
this length then the following scenario are exactly

the same in terms of final result of a simulation:
DCS for bremsstrahlung photon emission of E = 1 [GeV] e in Si

A. Generating and tracking these low energy 104 T : : x ,
photons till all their energy will be deposited 10° | 3
10
B. Depositing their corresponding energy at the _ 10° 10% B
creation point (at a trajectory point) g 10! 03 : ]
g 10 102 : ‘ .
S 100 | 1 dE/dx e
ho] 10 l ‘ ‘
B is equivalent to A but much faster. 102 | 0 002 004 006 008 0.1 |
We can control these situations with a 03 | , T
production threshold cut. o | 4 S | |
0 200 400 600 800 1000

Emitted photon energy k [MeV]
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Energy vs Length

<+ |t may seem more intuitive at first for users to provide a threshold in ENERGY

<+ But the same energy will translate to different lengths (absorption length, range) in different
materials: a 10 keV gamma has very different absorption length in Pb or in Ar gas

<+ Moreover, the same energy will translate to different lengths depending on the particle type
(gamma => absorption length; e-/e+ => range) even in the same material: range of a 10
keV e- in Si is few micron while the absorption length of a 10 keV gamma in Si is few cm

<+ |f we wanted to use energy threshold, we would need values per material and per particle!

A cut in length is more intuitive (after you think about it a bit) and directly related to
detector dimensions
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Production Threshold Length

For Bremsstrahlung

Here the photon length is how much it travels in that material ~ its energy
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Production Threshold Length

For Bremsstrahlung
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Production Threshold Length

For Bremsstrahlung

do
o(E, ES™, 7)/ (F, Z)dk
. .J'ulH (ll\

Discrete event: y production

The emission rate is determined by the
corresponding restricted cross section(o) Q

Edep in place: continuous energy loss

(ll cut BT (l
(E,E". Z2) =N k—I(FE, Z)dk
dx Jo dk
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Production Threshold

4+ The corresponding Edep energy (that would have been taken away from the primary) is accounted as
CONTINUOUS energy loss of the primary particle along its trajectory

4+ Same applies to ionization with the difference:
» secondary gamma — secondary e- production threshold

» absorption length — range

4+ Range and absorption production length is internally translated to energies at initialization, taking
care of material and particle dependency

4+ Production threshold defined for gamma, e-, e+ and proton secondary particle:
+ gamma production threshold is used in bremsstrahlung while the e- in ionization
+ e+ production threshold might be used in case of e-/e+ pair production

+ proton production threshold is used as a kinetic energy threshold for nuclear recolil in case of elastic
scattering of all hadrons and ions

4+ Production threshold are not mandatory, but many physics simulation would not be feasible w/o them
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Production Threshold What you need to do

4+ User needs to provide them in length (with a default value of 0.7 mm for
the reference physics lists

4 Ul commands to define cuts:

/run/setCut 0.1 mm
/run/setCutForAGivenParticle e- 0.01 mm
/run/setCutForRegion GasDetector 0.001 mm
/cuts/setLowEdge 500 eV

@\ : GEANT4 Jefferson Lab, Newport News, 8/19/25 Geant4 Course | Maurizio Ungaro




Production Threshold

What you need to do

4+ User needs to provide them in length (with a default value of 0.7 mm for
the reference physics lists

4 Ul commands to define cuts:

e Eo =45 [MeV]

O GEAnT4

/run/setCut 0.1 mm

/run/setCutForAGivenParticle e- 0.01 mm
/run/setCutForRegion GasDetector 0.001 mm
/cuts/setLowEdge 500 eV

e Es

Jefferson Lab, Newport News, 8/19/25

v

Mean energy deposit [keV |

1.95
1.9
1.85
1.8
1.75
1.7
1.65
1.6
1.55
1.5

E.; =45 [MeV], Target: Si, Thickness: 5 [um]

MM

WRONG:

secondaries that could leave
the target are not generate
but assumed to deposit their
energy in the target 4!

PR | i " PR | M M PR |

10 100 1000
Production cut in range [Uum]
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Production Threshold per detector region

4+ Different parts of a complex detector might require modeling with different level of details and
have different spacial resolution

+ Different detector G4Regions can be defined and a set of G4LogicalVolumes can be associated
to such regions

4+ Different secondary production threshold values (as well as G4UserLimits) can be assigned to
different detector region

4 In the DetectorConstruction: :Construct () method (e.g. examples/ extended/
electromagnetic/TestEm9)

// Production threshold for “Our-Region”

auto* cuts = new G4ProductionCuts;

cuts->SetProductionCut(®.5*mm); // same cuts for gamma, proton, e- and e+
cuts->SetProductionCut(0.2*mm,G4ProductionCuts: :GetIndex("e-"));

// Create region and assign cuts
auto* region = new G4Region(“Our-Region”),;
region->SetProductionCuts(cuts);

// Assign volume to region: all volumes will have these cuts
region->AddRootLogicalVolume (my specific _logical volume);
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Production Threshold per detector region

4+ Different parts of a complex detector might require modeling with different level of details and
have different spacial resolution

4+ Different detector G4Regions can be defined and a set of G4LogicalVolumes can be associated
to such regions

4+ Different secondary production threshold values (as well as G4UserLimits) can be assigned to
different detector region

4 In the DetectorConstruction: :Construct () method (e.g. examples/ extended/
electromagnetic/TestEm9)

Ind.x : O used in the geometry : Yes
4daterial : Galactic
Range cuts : gamma 700 um e- 700 um e+ 700 proton 700 um
Energy thresholds : gamma 990 eV e- 990 eV e+ 990 proton 70 keV
Region(s) which use this couple :

DefaultRegionForTheWorld

Index : 1 used in the geometry : Yes

Material : G4_Pb

Range cuts : gamma 700 um e- 700 um e+ 700 proton 700 um

Energy thresholds : gamma 94.5861 keV e- 1.00386 MeV 951.321 keV proton 70 ke

Region(s) which use this couple :
DefaultRegionForTheWorld

Irdex : 2 used in the geometry : Yes
Material : G4_lAr
Range cuts : gamma 100 um e- 100 um e+ 100 proton 100 um
Energy thresholds : gamma 2.00482 keV e- 82.9692 keV 81.8616 keV proton 10 keV
Region(s) which use this couple :
OQur-Region

Jefferson Lab, Newport News, 8/19/25 Geant4 Course | Maurizio Ungaro



Standard EM Physics Constructors

List of particles for which EM physics processes are defined

4+ Photon, leptons, meson and baryons:

Y, e, u, mE, K | p, 2%, ==, Q-, anti(2%, ==, Q")
4+ Heavy leptons & heavy mesons, charmed baryons:

1, B#, D%, Ds#, Act, 2%, 2, =c**, anti(Ac*, Zc*, 2ct, =c¢*)
4+ Light nuclei:

d, t, 3He, 4He, generic-ion, anti(d, t, SHe, 4He)

4+ 12 light hyper- and anti-hyper- nuclei
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Standard EM Physics Constructors

o

The modular Physics Lists (G4VModularPhysicsList) allows to build up a
complete physics list from “physics modules”

A given “physics module” handles a well defined category of physics
(e.g.EM physics, decay physics, etc.) as a sub-set of a complete physics
list

G4VPhysicsConstructor is the Geant4 interface to describe such sub-
sets of physics

Several EM physics constructors, i.e. pre-defined EM sub-set of a
complete physics list, are available in Geant4

Each particle has its own G4ProcessManager that maintains the list of
assigned processes (e.g., ionization, multiple scattering, decay)
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Standard EM Physics Constructors

4+ The modular Physics Lists (G4VModularPhysicsList) allows to build up a
complete physics list from “physics modules”

4+ Agiven “physics module” handles a well defined category of physics
(e.g.EM physics, decay physics, etc.) as a sub-set of a complete physics
list

4+ G4VPhysicsConstructor is the Geant4 interface to describe such sub-
sets of physics

4+ Several EM physics constructors, i.e. pre-defined EM sub-set of a
complete physics list, are available in Geant4

4+ Each particle has its own G4ProcessManager that maintains the list of
assigned processes (e.g., ionization, multiple scattering, decay)

auto particlelIterator = GetParticlelferator();
particleIterator->reset();
while( (*particleIterator) () ){

G4ParticleDefinition* particle = particlelterator->value();

v
auto* pmanager = particle->GetProcessManager();

// Attach processes here
pmanager->AddProcess(new G4eIonisation, ordInActive, ordAlongStep, ordPostStep);
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Standard EM Physics Constructors for HEP

4+ SAME: Description of Coulomb scattering

+ ez : Urban - MSC model below 100 [MeV] and the Wentzel - WVI +
Single scattering (mixed simulation) model above 100 [MeV]

+ muon and hadrons: Wentzel - WVI + Single scattering (mixed
simulation) model

+ jons: Urban - MSC model

+ Different MSC stepping algorithms and/or parameters: speed v.s. accuracy

Constructor Components Comment

for ATLAS and other HEP

EmStandardPhysics Defaults (FTFP_BERT) , , o
simulation applications

similar to one used by CMS; good for
crystals but not good for sampling
calorimeters (i.e. with more detailed

Fast: due to simpler MSC step limitation,
G4EmStandardPhysics_option cuts used by photon processes

(FTFP_BERT_EMV)
geometry)

Experimental: similar to option1 with
G4EmStandardPhysics_option2 updated photoelectric model but no- similar to one used by LHCb
displacement in MSC (FTFP_BERT_EMX)

Jefferson Lab, Newport News, 8/19/25 Geant4 Course | Maurizio Ungaro



Standard EM Physics Constructors: more precise

4+ The primary goal is more the physics accuracy over the speed

4+ Combination of standard and low-energy EM models for more accurate physics description

4+ More accurate models for et MSC (Goudsmit-Saunderson(GS)) and/or more accurate stepping
algorithms (compared to HEP)

4+ Stronger continuous step limitation due to ionization (as others given per particle groups)

4+ Recommended for more accuracy sensitive applications: medical (hadron/ion therapy), space

Constructor

Components

Comment

G4EmStandardPhysics_option3

G4EmStandardPhysics_option4

G4EmLivermorePhysics

G4EmPenelopePhysics

Urban MSC model for all charged particles
(FTFP_BERT_EMY)

most accurate combination of
models (particle type and energy)
GS MSC (FTFP_BERT_EMZ)

Livermore gamma and e- ionisation models
GS MSC (FTFP_BERT_LIV)

Penelope gamma and ez ionisation and

bremsstrahlung models
GS MSC (FTFP_BERT_PEN)

proton/ion therapy

The most accurate EM physics

Recommended for cross-checks of
option4

Recommended for cross-checks of
option4

Extra experimental constructors are available in Geant4 examples
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USER INTERFACE TO EM PHYSICS Ul commands

EM parameters of any EM physics list may be accessed or modified at initialization of Geant4 using:

4 Ul commands

/process/eLoss/verbose 0
/process/elLoss/maxKinEnergyCSDA 100 TeV

/process/em/deexcitationIgnoreCut true
/process/eLoss/UseAngularGenerator true
/process/em/lowestElectronEnergy 50 eV
/process/em/lowestMuHadEnergy 100 keV

/process/em/printParameters
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USER INTERFACE TO EM PHYSICS Co+ Interface

EM parameters of any EM physics list may be accessed or modified at initialization of Geant4 using:

4+ C++ interface to the G4EmParameter (EM options) class

PhysListEmStandard.cc in extended/electromagnetic/TestEmO0

PhysListEmStandard: :PhysListEmStandard(const G4String& name)
G4VPhysicsConstructor(name) {

G4EmParameters* param = G4EmParameters::Instance();
param->SetDefaults();

param->SetVerbose(0);
SetPhysicsType(bElectromagnetic);

PhysycsList.cc in extended/electromagnetic/TestEmO

void PhysicsList::AddPhysicsList(const G4String& name) {

G4EmParameters: :Instance()->SetBuildCSDARange(true);
G4EmParameters::Instance()->SetGeneralProcessActive(false);
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USER INTERFACE TO EM PHYSICS Co+ Interface

EM parameters of any EM physics list may be accessed or modified at initialization of Geant4 using:

4+ C++ interface to the G4EmCalculator (access to cross sections and stopping powers) class

RunAction.cc in extended/electromagnetic/TestEmO

void RunAction::CriticalEnergy()

{
// compute e- critical energy (Rossi definition) and Moliere radius.
// Review of Particle Physics - Eur. Phys. J. C3 (1998) page 147
G4EmCalculator emCal;
const G4Material* material = fDetector->GetMaterial();
const G4double radl = material->GetRadlen();
G4double ekin = 5 * MeV;
G4double deioni;
G4double err = 1., errmax = 0.001;
G4int iter = 0, itermax = 10;
while (err > errmax && iter < itermax) {
iter++;
deioni = radl * emCal.ComputeDEDX(ekin, G4Electron::Electron(), "eIoni", material);
err = std::abs(deioni - ekin) / ekin;
ekin = deioni;
}
}
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USER INTERFACE TO EM PHYSICS Co+ Interface

EM parameters of any EM physics list may be accessed or modified at initialization of Geant4 using:

4+ G4EmCalculator: easy access to cross sections and stopping powers (TestEmO)
4+ G4EmParameters: EM options alternative to Ul commands

4+ G4EmSaturation: Birks effect (saturation of response of sensitive detectors)

4+ G4ElectronlonPair: sampling of ionization clusters in gaseous or silicon detectors
4+ G4EmConfigurator: add models per energy range and geometry region

4+ G4NIELCalculator: Helper class allowing computation of NIEL at a step, which should be added in
user stepping actions or sensitive detector (TestEm1)
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EXt ra Ct E M P HYS I CS General Ul commands

EM parameters of any EM physics list may be accessed or modified at initialization of Geant4 using:
4+ Use C++ interface to the G4EmCalculator (after physics list is initialized)

4+ Example for retrieving the total cross section of a process with name procName, for particle and
material matName

#include "G4EmCalculator.hh"

G4EmCalculator emCalculator;

G4Material* material =
G4NistManager::Instance()->FindOrBuildMaterial (matName) ;
G4double density = material->GetDensity();

G4double massSigma = emCalculator.ComputeCrossSectionPerVolume
(energy, particle, procName, material)/density;

G4cout << G4BestUnit(massSigma, "Surface/Mass") << Gdendl;
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Summary

4+ Overview of the main EM physics and classes in Geant4.
4+ There is a lot more physics in Geant4 (DNA project, etc, see also EM 2)

4+ Choosing the correct EM physics list while optimizing the simulation efficiency is
the one of the most important issue you will face.

4+ We suggest starting with the standard list and if accuracy is extremely important
to you, compare with option 4. This will give you an idea of your needs.
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