

Geant4 Tutorial Course

Jefferson Lab, Newport News, VA, USA August 18-22 2025

User Documentation and Examples

Maurizio Ungaro
Jefferson Lab

Introduction

♦ Geant4 Installation

♦ Examples

- Build, shoot particles and look at some code of basic example B1
- ◆ Basic, Extended and Advanced examples. See also README in each top and subdir

Documentation

- ◆ Geant4 Guides
- ◆ LXR / Doxygen Documentation

User Support

Installation: from source code

I recommend to download and install Geant4 from source if you want to create your own simulation.

- Direct link to download and release notes on the Geant4 Homepage
- Refer to the guide for the installation dependencies, and then Building and Installing from Source
- 1. Download tarball and CMake Configuration

-DGEANT4_USE_QT_QT6=ON If you have QT6 installed

Installation: from source code

Many additional notes in the Tutorial Page

2. Compilation

```
$ make -j N
$ make install
```

Recommended: use all your cores as N. Try this to find out how many cores you have:

```
$ cat /proc/cpuinfo | grep processor | wc -l
$ getconf _NPROCESSORS_ONLN
```

After Geant4 has been compiled and installed the content of the <tutorial>/install directory should contain the directories:

```
bin data include lib[64]
```

3. Post-installation environment

The <tutorial>/install/bin directory has the .csh and the .sh environment script. Source the one you need to setup the environment. This will basically just add bin to your PATH so geant4-config can be found.

Installation: package managers

- NOTE: Developed by Geant4 users but not maintained by Geant4 developers
 - Spack
 - ◆ Conda
 - Various Linux Distributions Repos
 - ◆ Guix
 - CVMS releases for CentOS/Alma/Ubuntu Linux and macOS

Docker

- jeffersonlab/geant4:g4v11.3.2-fedora36
- jeffersonlab/geant4:g4v11.3.2-fedora40
- jeffersonlab/geant4:g4v11.3.2-ubuntu24
- jeffersonlab/geant4:g4v11.3.2-almalinux94

Recommended use with a ~/mywork directory for permanent storage

```
$ mkdir ~/mywork
 docker run --platform linux/amd64 -it --rm -v ~/mywork:/usr/local/mywork jeffersonlab/
geant4:g4v11.3.2-fedora40 bash
```

Interactively:

```
$ docker run --platform linux/amd64 -it --rm -p 8080:8080
-v ~/mywork:/usr/local/mywork
jeffersonlab/geant4:g4v11.3.2-fedora40
```


Here **G4INSTALL** points to the Geant4 installation.

1. Environment:

source \$G4INSTALL/bin/geant4.sh

2. Create install dir and cd to it:

mkdir B1; cd B1

3. Configure and make (this will also copy the relevant macros)

cmake \$G4INSTALL/data/Geant4/examples/basic/B1 make -j6

4. Run

./exampleB1

NOTE: In the HandsOn, we are copying the source in a separate dir and running cmake. because we are playing with / modifying the code. In general, we want to separate the build dir from the install dir

Example B1: Shoot Particles 1/2

PrimaryGeneratorAction.cc

```
void PrimaryGeneratorAction::GeneratePrimaries(G4Event* event) {
  [...]
 G4double envSizeXY = 0;
 G4double envSizeZ = 0;
 G4double size = 0.8;
 G4double x0 = size * envSizeXY * (G4UniformRand() - 0.5);
 G4double y0 = size * envSizeXY * (G4UniformRand() - 0.5);
 G4double z0 = -0.5 * envSizeZ;
 fParticleGun->SetParticlePosition(G4ThreeVector(x0, y0, z0));
 fParticleGun->GeneratePrimaryVertex(event);
```

/run/beamOn 100


```
100 6 MeV gammas distributed on a plane
```

```
PrimaryGeneratorAction::PrimaryGeneratorAction()
 [...]
 G4ParticleDefinition* particle = particleTable->FindParticle(particleName = "gamma");
  fParticleGun->SetParticleDefinition(particle);
  fParticleGun->SetParticleMomentumDirection(G4ThreeVector(0., 0., 1.));
  fParticleGun->SetParticleEnergy(6. * MeV);
```

Example B1: Shoot Particles 2/2

```
void PrimaryGeneratorAction::GeneratePrimaries(G4Event* event) {
    [...]
    // fParticleGun->SetParticlePosition(G4ThreeVector(x0, y0, z0));
}
```

/gun/particle proton /gun/energy 1.0 GeV /gun/position 0 0 -10 /run/beamOn 10

/gun/particle mu-/gun/energy 1.0 GeV /gun/position 0 0 -10 /run/beamOn 10

Example B1: main()

```
Every Geant4 application
has a run manager
                                             int main(int argc, char** argv)
                                               [...]
                                              auto runManager =
                                                G4RunManagerFactory::CreateRunManager(G4RunManagerType::Default);
There are different run manager types
(single-threaded vs. multi-threaded)
                                               // Set mandatory initialization classes
                                               // Detector construction
                                               runManager->SetUserInitialization(new DetectorConstruction());
Both the detector geometry and
                                               // Physics list
the physics list are passed to the
                                               auto physicsList = new QBBC;
                                              physicsList->SetVerboseLevel(1);
run manager
                                               runManager->SetUserInitialization(physicsList);
                                               // User action initialization
                                              runManager->SetUserInitialization(new ActionInitialization());
and user actions too...
                                               [...]
```

Example B1: DetectorConstruction()

Users are responsible for creating the simulated geometry

Geant4 provides virtual classes to be inherited by user code that overrides the virtual methods

```
include/DetectorConstruction.hh
```

```
class DetectorConstruction : public G4VUserDetectorConstruction
{
    [...]

public:
    DetectorConstruction() = default;
    ~DetectorConstruction() override = default;

G4VPhysicalVolume* Construct() override;

[...]
};
```

src/DetectorConstruction.cc

Solids, logical volumes and physical volumes are created in the ::Construct() method, which must return the pointer to the world G4VPhysicalVolume

```
G4VPhysicalVolume* DetectorConstruction::Construct()
{

    auto solidWorld = ...
    auto logicWorld = ...
    auto physWorld = ...

// always return the physical World
    return physWorld;
}
```

Example B1 (previous slides): simple volumes, scoring dose with stepping action

- ★ Example B1 (previous slides): simple volumes, scoring dose with stepping action
- Example B2: global constant magnetic field, scoring with sensitive detectors and hits, step limiter

- Example B1 (previous slides): simple volumes, scoring dose with stepping action
- ★ Example B2: global constant magnetic field, scoring with sensitive detectors and hits, step limiter
- ★ Example B3 (Positron Emitted Tomography): placement with rotations, modular physics, radioactive source

- Example B1 (previous slides): simple volumes, scoring dose with stepping action
- ★ Example B2: global constant magnetic field, scoring with sensitive detectors and hits, step limiter
- Example B3 (Positron Emitted Tomography): placement with rotations, modular physics, radioactive source
- ★ Example B4: geometry with replicas, saving histograms and ntuples with g4analysis

- ★ Example B1 (previous slides): simple volumes, scoring dose with stepping action
- ★ Example B2: global constant magnetic field, scoring with sensitive detectors and hits, step limiter
- ★ Example B3 (Positron Emitted Tomography): placement with rotations, modular physics, radioactive source
- Example B4: geometry with replicas, saving histograms and ntuples with g4analysis
- ★ Example B5: double-arm spectrometer with wire chambers, hodoscopes and calorimeters, replicas and parameterisation, G4GenericMessenger, drawing with TSG

- Example B1 (previous slides): simple volumes, scoring dose with stepping action
- Example B2: global constant magnetic field, scoring with sensitive detectors and hits, step limiter
- ★ Example B3 (Positron Emitted Tomography): placement with rotations, modular physics, radioactive source
- ★ Example B4: geometry with replicas, saving histograms and ntuples with g4analysis
- ★ Example B5: double-arm spectrometer with wire chambers, hodoscopes and calorimeters, replicas and parameterisation, G4GenericMessenger, drawing with TSG

Extended Examples

21 Extended Examples organized in macro areas:

Advanced Examples

35 Extended Examples

air_shower gammaknife

ChargeExchangeMC hadrontherapy ICRP145 HumanPhantoms

doiPET ICRP110 HumanPhantoms microbeam

fastAerosol medical_linac xray fluorescence

gorad purging_magnet CaTS

human_phantom underground_physics dna

IAr_calorimeter xray_TESdetector exp microdosimetry

nanobeam brachytherapy iort therapy

stim_pixe_tomography composite_calorimeter microelectronics

xray_telescope eRosita STCyclotron

amsEcal gammaray_telescope xray SiliconPoreOptics

eFLASH_radiotherapy HGCal testbeam

All the Geant4 Examples can be compiled exactly like B1

Book for Application Developers

Introduces the first-time user to Geant4, provides a description of the available tools and supply the practical information required to develop and run simulation applications.

A must read reference for new and advanced users.

Detector Definition and Response

- Geometry
- Introduction
- Solids
- Logical Volumes
- Physical Volumes
- Touchables: Uniquely Identifying a Volume
- Creating an Assembly of Volumes
- Reflecting Hierarchies of Volumes
- The Geometry Modeller and Optimisation
- The Geometry Navigator
- Converting Geometries from Geant3.21
- Detecting Overlapping Volumes
- Dynamic Geometry Setups
- Importing XML Models Using GDML
- Importing ASCII Text Models
- Saving geometry tree objects in binary format
- Material
- General considerations
- Introduction to the Classes
- Recipes for Building Elements and Materials
- The Tables
- · Electromagnetic Field
 - An Overview of Propagation in a Field
 - Creating a Field for a Detector
 - Practical Aspects
 - Spin Tracking
 - Alternative Integration Methods
 - Quantum State Simulation
 - Bulirsch-Stoer
 - Symplectic Integration
- Hits
 - Hit
 - Sensitive detector
 - G4SDManager
 - G4MultiFunctionalDetector and G4VPrimitiveScorer
 - Concrete classes of G4VPrimitiveScorer
 - G4VSDFilter and its derived classes
 - Multiple sensitive detectors associated to a single logical-volume
 - Utilities
- Digitization
- Digi
- Digitizer module
- Birks Quenching
- Object PersistencyPersistency in Geant4
 - 11: 5 : 1/0 (
- Using Root-I/O for persistency of GEANT4 objects
- Parallel Geometries
- A parallel world
- Defining a parallel world
- Layered mass geometry
- Command-based scoring

Book for Toolkit Developers

Provides information for those who want to understand or refer to the detailed design of the toolkit, as well as procedures for extending the functionality of the toolkit

Design and Function of GEANT4 Categories

Contents:

- Introduction
- Run
 - Design Philosophy
 - Class Design
- Event
 - Design Philosophy
 - Class Design
- Tracking
 - Design Philosophy
 - Class Design
 - Track Category
 - Tracking Category
 - Tracking Algorithm
 - Interaction with Physics Processes
 - Ordering of Methods of Physics Processes
- Physics Processes
 - Design Philosophy
 - Class Design
 - General
 - Electromagnetic
 - Hadronic
- · Hits and Digitisation
 - Design Philosophy
 - Class Design
- Geometry
 - Design Philosophy
 - Class Design
 - Additional Geometry Diagrams
- · Electromagnetic Fields
- Class Design
- Particles
 - Design Philosophy
 - Class Design
- Materials
 - Design Philosophy
 - Design
 - Classes For Material Description
 - The NIST Manager Utility
 - Optical Classes
 - Material Extension
- Global Usage

Geant4 Course | Maurizio Ungaro

- Design Philosophy
- Class Design
 - HEPNumerics

Physics Reference Manual

Presents the theoretical formulation, model, or parameterization of the physics interactions and describes the probability of the occurrence of an interaction and the sampling mechanisms required to simulate it

Physics List Guide

A brief guide to physics lists:

- ◆ Lists the Reference Physics Lists
- ◆ Lists the electromagnetic physics constructors
- → Hadronic physics options and extra features

Advanced Examples

FAQ

Geant4 Source Code: Doxygen

Classes and Members Reference Guide

Every class and file is available and fully hyper-linked.

Very useful overviews of the Geant4 classes and methods

Past versions are available as well.

Geant4 v11.3.2

Public Member Functions

virtual G4VPhysicalVolume *	Construct ()=0
virtual void	ConstructSDandField ()
virtual void	CloneSD ()
virtual void	CloneF ()
void	RegisterParallelWorld (G4VUserParallelWorld *)
G4int	ConstructParallelGeometries ()
void	ConstructParallelSD ()
G4int	GetNumberOfParallelWorld () const
G4VUserParallelWorld *	GetParallelWorld (G4int i) const

Protected Member Functions

void SetSensitiveDetector (const G4String &logVolName, G4VSensitiveDetector *aSD, G4bool multi=false)
void SetSensitiveDetector (G4LogicalVolume *logVol, G4VSensitiveDetector *aSD)

Private Attributes

std::vector< G4VUserParallelWorld *> parallelWorld

Detailed Description

Definition at line 50 of file G4VUserDetectorConstruction.hh.

Member Data Documentation

parallelWorld

std::vector<G4VUserParallelWorld*> parallelWorld

Definition at line 79 of file G4VUserDetectorConstruction.hh.

Geant4 Source Code: LXR

Linux Cross-Referencer

Web-browser tool that helps developers understand and explore codebases by providing clickable links between different parts of the code.

Geant4 LXR

24

Geant4 Cross Reference

This is an interactive viewing and searching facility for the Geant4 source code.

It offers:

Source-tree browsing and file name search to easily find source files and navigate through the source directorieis.

Full-text indexing for fast retrieval of source files containing a given word or pattern.

Identifier cross-reference for fully hyperlinked source code. The names of classes, methods, and data can be clicked on to find the source files where they are defined and used.

The full-text indexing and retrieval are implemented using <u>Glimpse</u>, so all the capabilities of Glimpse are available. Please see <u>Glimpse document</u> for details. Note that glimpse syntax is available for text and identifier searches. For file name search, please use regular expression.

Note

All source files are rendered into HTML. Do not attempt to download the Geant4 source code from this site!

Links

Yet another version of Geant4 LXR (editor's cut) Geant4 Reference Guide (Doxygen)

User Support

User Forum

Active Geant4
Community forum

Organized in categories.

Signing-up is required to post a topic

User Support

User Forum

Active Geant4
Community forum

Organized in categories.

Signing-up is required to post a topic

User Support

User Forum

Active Geant4
Community forum

Organized in categories.

Signing-up is required to post a topic

Summary

Geant4 is a modular code made of ~2 million lines of code → be patient, it takes time to master it

Few recommended steps:

- Start from the basic examples
 - Isolate their building blocks
 - Adopt the "change something and see what happens" mind
- The User Guide: For Application Developers is the essential reference
- Inspect Geant4 classes on Doxygen
- Refer to the documentation or post your questions on the **User Forum**

Essential References

