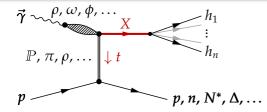
Amplitude-Based Analyses at GlueX

*Thomas Jefferson National Accelerator Facility

Workshop on AI for Hadron Spectroscopy at JLab June 4, 2025 Jefferson Lab, Newport News, VA

Meson spectroscopy and photoproduction



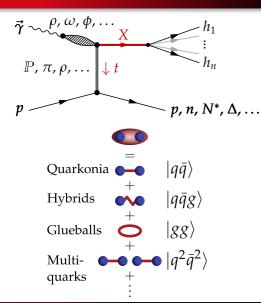
Rich process

- Light mesons with all *J^{PC}* quantum numbers accessible in various decay modes
- Produced by various exchange processes
- Linear beam polarization helps to disentangle production mechanisms
- Provides mostly complementary information to existing data

Goal: precision measurement of light-meson spectrum

- Confirm higher excited conventional states
- Complete SU(3)_{flavor} multiplets
- Search for exotic states beyond $q\bar{q}$

Meson spectroscopy and photoproduction



Rich process

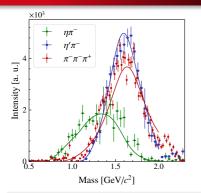
- Light mesons with all *J^{PC}* quantum numbers accessible in various decay modes
- Produced by various exchange processes
- Linear beam polarization helps to disentangle production mechanisms
- Provides mostly complementary information to existing data

Goal: precision measurement of light-meson spectrum

- Confirm higher excited conventional states
- Complete SU(3)_{flavor} multiplets
- Search for exotic states beyond $q\bar{q}$

Best exotic light-meson candidate: $\pi_1(1600)$

Spin-exotic $J^{PC} = 1^{-+}$ quantum numbers



• Best evidence in COMPASS $\eta \pi$, $\eta' \pi$, and $\rho(770)\pi$ data from pion diffraction

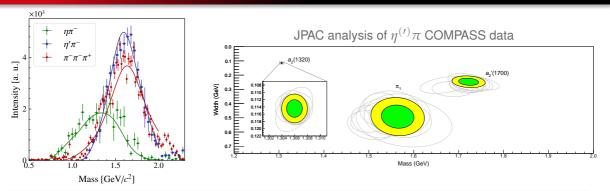
COMPASS, PLB 740 (2015) 303; PRD 105 (2022) 1012005; PRD 98 (2018) 092003; PRL 104 (2010) 241803

- JPAC coupled-channel analysis: $\eta \pi$ and $\eta' \pi$ data can be described by single resonance pole consistent with $\pi_1(1600)$ Rodas *et al.* [JPAC], PRL **122** (2019) 042
- Recent find by BESIII: isoscalar partner $\eta_1(1855)$

BESIII PRI **129** (2022) 192002

Best exotic light-meson candidate: $\pi_1(1600)$

Spin-exotic $I^{PC} = 1^{-+}$ quantum numbers



• Best evidence in COMPASS $\eta \pi$, $\eta' \pi$, and $\rho(770)\pi$ data from pion diffraction

COMPASS, PLB 740 (2015) 303; PRD 105 (2022) 1012005; PRD 98 (2018) 092003; PRL 104 (2010) 241803

- JPAC coupled-channel analysis: $\eta \pi$ and $\eta' \pi$ data can be described by single resonance pole consistent with $\pi_1(1600)$ Rodas *et al.* [JPAC], PRL **122** (2019) 042002
- Recent find by BESIII: isoscalar partner $\eta_1(1855)$

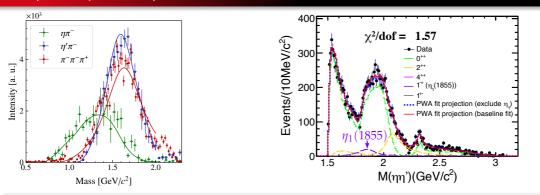
BESIII, PRL 129 (2022) 192002

Jefferson Lab

son National Accelerator Facility

Best exotic light-meson candidate: $\pi_1(1600)$

Spin-exotic $I^{PC} = 1^{-+}$ quantum numbers



• Best evidence in COMPASS $\eta \pi$, $\eta' \pi$, and $\rho(770)\pi$ data from pion diffraction

COMPASS, PLB 740 (2015) 303; PRD 105 (2022) 1012005; PRD 98 (2018) 092003; PRL 104 (2010) 241803

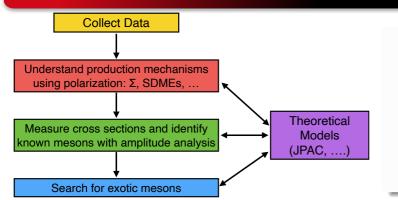
- JPAC coupled-channel analysis: $\eta \pi$ and $\eta' \pi$ data can be described by single resonance pole consistent with $\pi_1(1600)$ Rodas *et al.* [JPAC], PRL **122** (2019) 042002
- Recent find by BESIII: isoscalar partner $\eta_1(1855)$

BESIII. PRL **129** (2022) 192002

Jefferson Lab

rson National Accelerator Facility

Searching for exotic mesons at GlueX



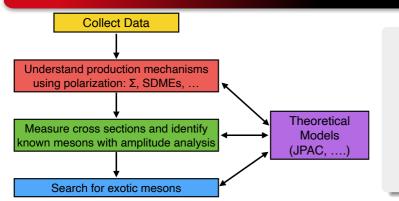
Jefferson Lab Thomas Jefferson National Accelerator Facility

- Amplitude analysis essential to extract meson spectrum
- Strategy: understand photoproduction of well-known states first and then use them as reference when searching for exotic states
 "Golden channels" for π₁ search: ηπ and η'π

This talk: focus on common challenges encountered in amplitude analyses

- Improving stability of fit results by imposing continuity constraints on amplitudes
- How to take into account non-resonant contributions?
- Moment analysis as an additional avenue

Searching for exotic mesons at GlueX



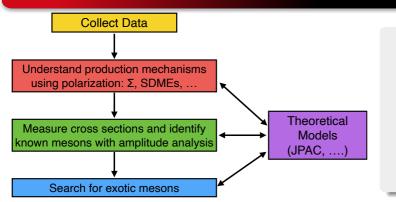
Jefferson Lab Thomas Jefferson National Accelerator Facility

- Amplitude analysis essential to extract meson spectrum
- Strategy: understand photoproduction of well-known states first and then use them as reference when searching for exotic states
 "Golden channels" for π₁ search: ηπ and η'π

This talk: focus on common challenges encountered in amplitude analyses

- Improving stability of fit results by imposing continuity constraints on amplitudes
- How to take into account non-resonant contributions?
- Moment analysis as an additional avenue

Searching for exotic mesons at GlueX



- Amplitude analysis essential to extract meson spectrum
- Strategy: understand photoproduction of well-known states first and then use them as reference when searching for exotic states
 "Golden channels" for π₁ search: ηπ and η'π

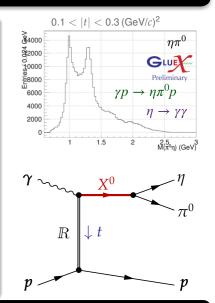
This talk: focus on common challenges encountered in amplitude analyses

- Improving stability of fit results by imposing continuity constraints on amplitudes
- How to take into account non-resonant contributions?
- Moment analysis as an additional avenue

Amplitude analysis of $\eta^{(\prime)}\pi$ at GlueX

Jefferson Lab

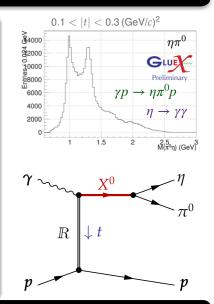
- Experimentally clean channels
- Two-body final states are easiest to model
- All waves with odd orbital angular momentum are spinexotic, e.g. *P*-wave has J^{PC} = 1⁻⁺
- Use well known $a_2(1320)$ as reference
- Multiple $\eta^{(\prime)}$ decay modes accessible, e.g. $\eta \to \gamma \gamma$ and $\pi^+\pi^-\pi^0$
 - Assess systematics from acceptance and backgrounds
- Test our understanding of production mechanisms:
 - Linear polarization of beam photons ⇒ separation of natural- and unnatural-parity exchange
 - Multiple production channels accessible, e.g.
 - $\gamma \ p
 ightarrow \eta \pi^0 \ p$: mostly ho and ω exchange
 - $\gamma \ p \to \eta \pi^- \Delta^{++}$: mostly π exchange



Amplitude analysis of $\eta^{(\prime)}\pi$ at GlueX

Jefferson Lab

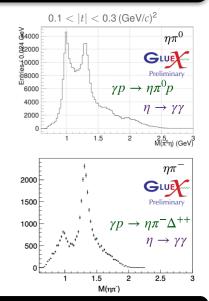
- Experimentally clean channels
- Two-body final states are easiest to model
- All waves with odd orbital angular momentum are spinexotic, e.g. *P*-wave has $J^{PC} = 1^{-+}$
- Use well known $a_2(1320)$ as reference
- Multiple $\eta^{(\prime)}$ decay modes accessible, e.g. $\eta \to \gamma \gamma$ and $\pi^+\pi^-\pi^0$
 - Assess systematics from acceptance and backgrounds
- Test our understanding of production mechanisms:
 - Linear polarization of beam photons ⇒ separation of natural- and unnatural-parity exchange
 - Multiple production channels accessible, e.g.
 - $\gamma \ p
 ightarrow \eta \pi^0 \ p$: mostly ho and ω exchange
 - $\gamma \ p \to \eta \pi^- \Delta^{++}$: mostly π exchange



Amplitude analysis of $\eta^{(\prime)}\pi$ at GlueX

Jefferson Lab Thomas Jefferson National Accelerator Facility

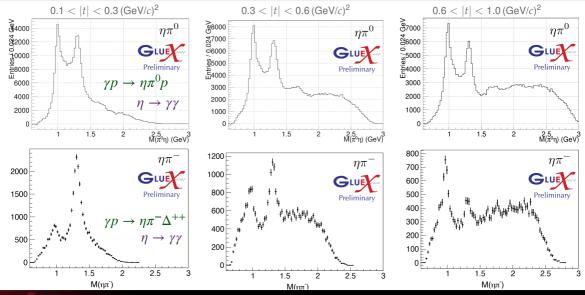
- Experimentally clean channels
- Two-body final states are easiest to model
- All waves with odd orbital angular momentum are spinexotic, e.g. *P*-wave has $J^{PC} = 1^{-+}$
- Use well known $a_2(1320)$ as reference
- Multiple $\eta^{(\prime)}$ decay modes accessible, e.g. $\eta \to \gamma \gamma$ and $\pi^+\pi^-\pi^0$
 - Assess systematics from acceptance and backgrounds
- Test our understanding of production mechanisms:
 - Linear polarization of beam photons ⇒ separation of natural- and unnatural-parity exchange
 - Multiple production channels accessible, e.g.
 - $\gamma \ p \rightarrow \eta \pi^0 \ p$: mostly ho and ω exchange
 - $\gamma \ p \to \eta \pi^- \Delta^{++}$: mostly π exchange



$$\gamma \ p \to \eta \pi^0 \ p$$
 and $\gamma \ p \to \eta \pi^- \ \Delta^{++}; \eta \to \gamma \gamma$

Non-trivial dependence on 4-momentum transfer

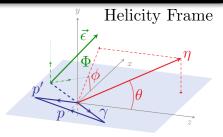
Jefferson Lab



CENERGY CA Boris Grube — Amplitude-Based Analyses at GlueX

Mathieu et al. [JPAC], PRD 100 (2019) 054017

- 3 Angles:
 - $\Omega = (\theta, \phi)$ angles of η in $\eta \pi$ rest frame
 - \varPhi is angle between γ polarization vector and production plane
- Linear beam polarization P_{γ} distinguishes between naturality (\pm) of exchange (= reflectivity)



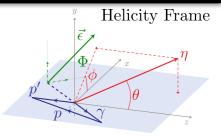
• Intensity model with angular amplitude $Z_{\ell}^m(\Omega, \Phi) \equiv Y_{\ell}^m(\Omega) e^{-i\Phi}$

$$\mathcal{I}(\Omega, \Phi) \propto (1 - P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m}^{(-)} \operatorname{Re} \left[Z_{\ell}^{m}(\Omega, \Phi) \right] \right|^{2} + (1 - P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m}^{(+)} \operatorname{Im} \left[Z_{\ell}^{m}(\Omega, \Phi) \right] \right|^{2} \\
+ (1 + P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m}^{(+)} \operatorname{Re} \left[Z_{\ell}^{m}(\Omega, \Phi) \right] \right|^{2} + (1 + P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m}^{(-)} \operatorname{Im} \left[Z_{\ell}^{m}(\Omega, \Phi) \right] \right|^{2}$$

Wave set grows quickly with $\ell \colon S_0^\pm,\,P_-^\pm$

Mathieu et al. [JPAC], PRD 100 (2019) 054017

- 3 Angles:
 - $\Omega = (\theta, \phi)$ angles of η in $\eta \pi$ rest frame
 - \varPhi is angle between γ polarization vector and production plane
- Linear beam polarization P_γ distinguishes between naturality (±) of exchange (= reflectivity)



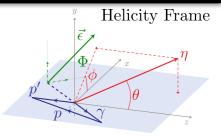
• Intensity model with angular amplitude $Z^m_\ell(\Omega, \Phi) \equiv Y^m_\ell(\Omega) e^{-i\Phi}$

$$\mathcal{I}(\Omega, \Phi) \propto (1 - P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m}^{(-)} \operatorname{Re} [Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} + (1 - P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m}^{(+)} \operatorname{Im} [Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} + (1 + P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m}^{(+)} \operatorname{Re} [Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} + (1 + P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m}^{(-)} \operatorname{Im} [Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2}$$

• Wave set grows quickly with $\ell\colon S_0^\pm$, P_1

Mathieu et al. [JPAC], PRD 100 (2019) 054017

- 3 Angles:
 - $\Omega = (\theta, \phi)$ angles of η in $\eta \pi$ rest frame
 - \varPhi is angle between γ polarization vector and production plane
- Linear beam polarization P_γ distinguishes between naturality (±) of exchange (= reflectivity)



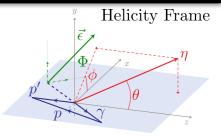
• Intensity model with angular amplitude $Z_{\ell}^{m}(\Omega, \Phi) \equiv Y_{\ell}^{m}(\Omega) e^{-i\Phi}$

 $\begin{aligned} \mathcal{I}(\Omega,\Phi) &\propto (1-P_{\gamma}) \left| \sum_{\ell,m} [\ell]_m^{(-)} \operatorname{Re} \left[Z_{\ell}^m(\Omega,\Phi) \right] \right|^2 + (1-P_{\gamma}) \left| \sum_{\ell,m} [\ell]_m^{(+)} \operatorname{Im} \left[Z_{\ell}^m(\Omega,\Phi) \right] \right|^2 \\ &+ (1+P_{\gamma}) \left| \sum_{\ell,m} [\ell]_m^{(+)} \operatorname{Re} \left[Z_{\ell}^m(\Omega,\Phi) \right] \right|^2 + (1+P_{\gamma}) \left| \sum_{\ell,m} [\ell]_m^{(-)} \operatorname{Im} \left[Z_{\ell}^m(\Omega,\Phi) \right] \right|^2 \end{aligned}$

• Wave set grows quickly with ℓ : S_0^{\pm} , $P_{-1,0,+1}^{\pm}$, $D_{-2,-1,0,+1,+2}^{\pm}$, ...

Mathieu et al. [JPAC], PRD 100 (2019) 054017

- 3 Angles:
 - $\Omega = (\theta, \phi)$ angles of η in $\eta \pi$ rest frame
 - \varPhi is angle between γ polarization vector and production plane
- Linear beam polarization P_γ distinguishes between naturality (±) of exchange (= reflectivity)



• Intensity model with angular amplitude $Z_{\ell}^{m}(\Omega, \Phi) \equiv Y_{\ell}^{m}(\Omega) e^{-i\Phi}$

 $\begin{aligned} \mathcal{I}(\Omega, \Phi) &\propto (1 - P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m}^{(-)} \operatorname{Re} \left[Z_{\ell}^{m}(\Omega, \Phi) \right] \right|^{2} + (1 - P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m}^{(+)} \operatorname{Im} \left[Z_{\ell}^{m}(\Omega, \Phi) \right] \right|^{2} \\ &+ (1 + P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m}^{(+)} \operatorname{Re} \left[Z_{\ell}^{m}(\Omega, \Phi) \right] \right|^{2} + (1 + P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m}^{(-)} \operatorname{Im} \left[Z_{\ell}^{m}(\Omega, \Phi) \right] \right|^{2} \end{aligned}$

• Wave set grows quickly with ℓ : S_0^{\pm} , $P_{-1,0,+1}^{\pm}$, $D_{-2,-1,0,+1,+2}^{\pm}$, ...

Mass-independent PWA of $\gamma \ p \rightarrow \eta \pi^0 \ p; \eta \rightarrow \gamma \gamma$ Jefferson Lab Low $|t|: 0.1 < |t| < 0.3 (GeV/c)^2$

 Waveset based on tensor-meson dominance (TMD) model: {S[±]₀, D⁻₋₁, D[±]₀, D[±]₊₁, D⁺₊₂}

Mathieu et al. [JPAC], PRD 102 (2020) 014003

- Mostly natural exchange
- Sizable S_0^+ -wave contribution
 - $a_0(980)$ and $a_0(1450)$ signals?
 - Leakage from $a_2(1320)$?
 - Non-resonant contributions?
- Clear a₂(1320) signal with m = +2 in natural exchange (= positive reflectivity)
- Challenges:
 - Model selection: what is the optimal wave set?
 - Large bin-to-bin fluctuations of partial-wave amplitudes of some waves

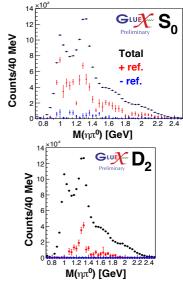
Model selection: what is the optimal wave set? Large bin-to-bin fluctuations of partial-wave amplitudes of some waves ENERGY CA Boris Grube – Amplitude-Based Analyses at GlueX

Mass-independent PWA of $\gamma p \rightarrow \eta \pi^0 p$; $\eta \rightarrow \gamma \gamma$ Jefferson Lab Low $|t|: 0.1 < |t| < 0.3 (GeV/c)^2$

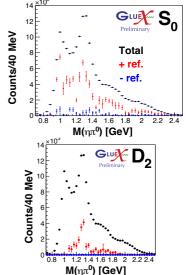
 Waveset based on tensor-meson dominance (TMD) model: {S[±]₀, D⁻₋₁, D[±]₀, D[±]₊₁, D⁺₊₂}

Mathieu et al. [JPAC], PRD 102 (2020) 014003

- Mostly natural exchange
- Sizable S_0^+ -wave contribution
 - $a_0(980)$ and $a_0(1450)$ signals?
 - Leakage from $a_2(1320)$?
 - Non-resonant contributions?
- Clear a₂(1320) signal with m = +2 in natural exchange (= positive reflectivity)
- Challenges:



• Model selection: what is the optimal wave set? • Large bin-to-bin fluctuations of partial-wave amplitudes of some waves



son National Accelerator Facility

 Waveset based on tensor-meson dominance (TMD) model: $\{S_0^{\pm}, D_{-1}^{\pm}, D_0^{\pm}, D_{+1}^{\pm}, D_{+2}^{\pm}\}$

Mathieu et al. [JPAC], PRD 102 (2020) 014003

Mass-independent PWA of $\gamma p \rightarrow \eta \pi^0 p; \eta \rightarrow \gamma \gamma$ Jefferson Lab

- Mostly natural exchange
- Sizable S_0^+ -wave contribution

Low |t|: 0.1 < |t| < 0.3 (GeV/c)²

- $a_0(980)$ and $a_0(1450)$ signals?
- Leakage from $a_2(1320)$?
- Non-resonant contributions?
- Clear $a_2(1320)$ signal with m = +2 in natural exchange (= positive reflectivity)
- Challenges:

Ambiguities

• Spinless beam particle: mathematical ambiguities in form of Barrelet zeros

Chung, PRD 56 (1997) 7299

• Photoproduction:

No Barrelet zeros

Smith et al. [JPAC], PRD 108 (2023) 076001

- Work in progress: find continuous mathematical ambiguities for special wave sets
 - Probably not relevant for most analyses

Local minima of negative log-likelihood function

- Input-output studies
 - Generate events from intensity distribution with known amplitudes and assuming 35 % beam polarization
 - Assume ideal case: fit generated events, i.e. no detector effects, with true wave set
 - Perform 100 PWA fit attempts with random initial values of amplitudes using MINUIT MIGRAD

Ambiguities

• Spinless beam particle: mathematical ambiguities in form of Barrelet zeros

Chung, PRD 56 (1997) 7299

• Photoproduction:

No Barrelet zeros

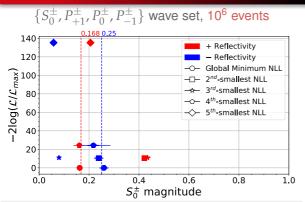
Smith et al. [JPAC], PRD 108 (2023) 076001

- Work in progress: find continuous mathematical ambiguities for special wave sets
 - Probably not relevant for most analyses

Local minima of negative log-likelihood function

- Input-output studies
 - Generate events from intensity distribution with known amplitudes and assuming 35% beam polarization
 - Assume ideal case: fit generated events, i.e. no detector effects, with true wave set
 - Perform 100 PWA fit attempts with random initial values of amplitudes using MINUIT MIGRAD

Local minima of negative log-likelihood function (NLL)

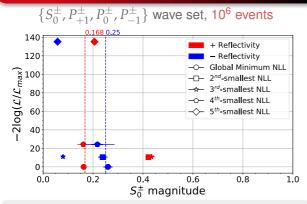


Same wave set, 10⁵ events

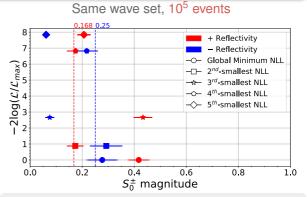
- Global minimum: estimated amplitudes consistent with input values
- Additional local minima close in likelihood
 - Amplitudes deviate significantly from input values

- Global minimum not consistent with input
 - values
- First local minimum:
 - Only 0.5 units of log-likelihood worse
 - Consistent with input values

Local minima of negative log-likelihood function (NLL)

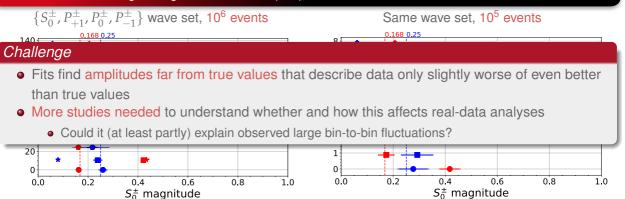


- Global minimum: estimated amplitudes consistent with input values
- Additional local minima close in likelihood
 - Amplitudes deviate significantly from input values



- Global minimum not consistent with input values
- First local minimum:
 - Only 0.5 units of log-likelihood worse
 - Consistent with input values

Local minima of negative log-likelihood function (NLL)

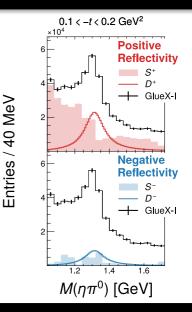


- Global minimum: estimated amplitudes consistent with input values
- Additional local minima close in likelihood
 - Amplitudes deviate significantly from input values

- Global minimum not consistent with input values
- First local minimum:
 - Only 0.5 units of log-likelihood worse
 - Consistent with input values

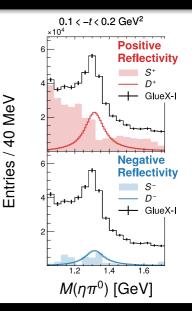
PWA of $\gamma p \rightarrow \eta \pi^0 p; \eta \rightarrow \gamma \gamma$ Hybrid PWA approach to stabilize PWA fit arXiv:2501.03091 Jefferson Lab

- Constrain mass dependence of selected amplitudes:
 - Model *D*-waves using sum of *a*₂(1320) and *a*₂(1700) Breit-Wigner amplitudes
- Keep mass-independent parametrization for *S*-waves
- TMD wave set {S[±]₀, D⁻₋₁, D[±]₀, D[±]₊₁, D⁺₊₂}: notable deviations from data at large -t
- Include all allowed S- and D-waves in fit,
 i.e. {S₀[±], D_{+2,+1,0,-1,-2}}
- For given naturality: constrain production phases of all *m* states of a given *a*₂ resonance to be identical



PWA of $\gamma \ p \rightarrow \eta \pi^0 \ p; \eta \rightarrow \gamma \gamma$ Hybrid PWA approach to stabilize PWA fit arXiv:2501.03091 Jefferson Lab

- Constrain mass dependence of selected amplitudes:
 - Model *D*-waves using sum of *a*₂(1320) and *a*₂(1700) Breit-Wigner amplitudes
- Keep mass-independent parametrization for *S*-waves
- TMD wave set {S[±]₀, D⁻₋₁, D[±]₀, D[±]₊₁, D⁺₊₂}: notable deviations from data at large -t
- Include all allowed S- and D-waves in fit,
 i.e. {S[±]₀, D[±]_{+2,+1,0,-1,-2}}
- For given naturality: constrain production phases of all *m* states of a given *a*₂ resonance to be identical

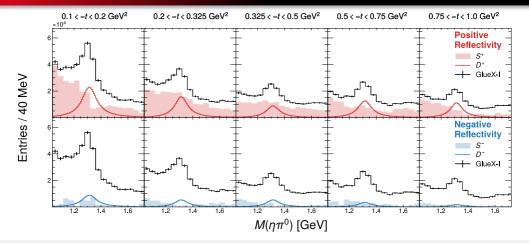


PWA of
$$\gamma \ p
ightarrow \eta \pi^0 \ p; \eta
ightarrow \gamma \gamma$$

arXiv:2501.03091

Jefferson Lab

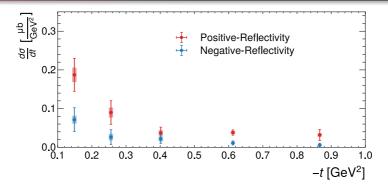
Hybrid PWA approach



- Eliminates leakage between S- and D-waves
- Dominant contributions consistent with mass-independent PWA

$a_2(1320)$ differential cross section

arXiv:2501.03091 Jefferson Lab



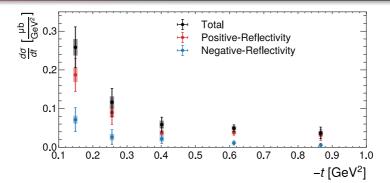
• First separation of contributions from natural and unnatural exchanges

- Requires beam polarization; unique to GlueX
- Total cross section predicted by TMD model agrees well with data

Mathieu et al. [JPAC], PRD 102 (2020) 014003

$a_2(1320)$ differential cross section

arXiv:2501.03091



• First separation of contributions from natural and unnatural exchanges

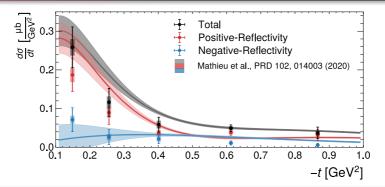
- Requires beam polarization; unique to GlueX
- Total cross section predicted by TMD model agrees well with data

Mathieu et al. [JPAC], PRD 102 (2020) 014003

Jefferson Lab

$a_2(1320)$ differential cross section

arXiv:2501.03091



• First separation of contributions from natural and unnatural exchanges

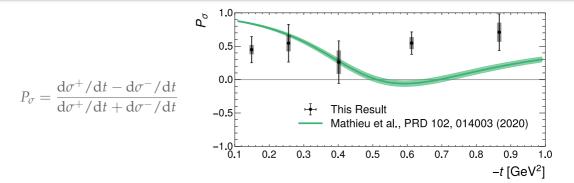
- Requires beam polarization; unique to GlueX
- Total cross section predicted by TMD model agrees well with data

Mathieu et al. [JPAC], PRD 102 (2020) 014003

Jefferson Lab

$a_2(1320)$ parity asymmetry

arXiv:2501.03091



• We measure $P_{\sigma} \approx +0.5$, independent of t

• Significant deviation of TMD model from data for $-t \gtrsim 0.5 \, (\text{GeV}/c)^2$

Mathieu et al. [JPAC], PRD 102 (2020) 014003

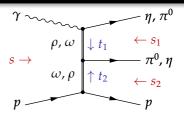
Jefferson Lab

erson National Accelerator Facility

Challenge: double-Regge contributions Example: $\gamma \ p \rightarrow \eta \pi^0 \ p$

• Dominant at large $\eta \pi^0$ mass and low $|t_2|$

- Extend down to low-mass region and create background for resonances
- Important to understand and model
 - Can enhance spin-exotic odd- ℓ waves
 - Will interfere with resonances
 - Broad resonances such as $\pi_1(1600)$ may be masked, if not taken into account
- Theory support indispensible

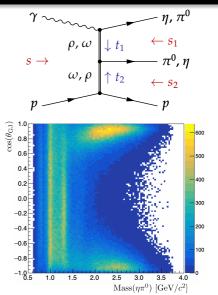


Challenge: double-Regge contributions Example: $\gamma \ p \rightarrow \eta \pi^0 \ p$

• Dominant at large $\eta \pi^0$ mass and low $|t_2|$

- Extend down to low-mass region and create background for resonances
- Important to understand and model
 - Can enhance spin-exotic odd- ℓ waves
 - Will interfere with resonances
 - Broad resonances such as $\pi_1(1600)$ may be masked, if not taken into account

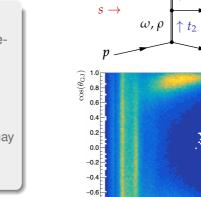
• Theory support indispensible



Challenge: double-Regge contributions Example: $\gamma \ p \rightarrow \eta \pi^0 \ p$

 $\gamma \qquad \qquad \eta, \pi^0$ $\rho, \omega \downarrow t_1 \leftarrow s_1$

- Dominant at large $\eta \pi^0$ mass and low $|t_2|$
- Extend down to low-mass region and create background for resonances
- Important to understand and model
 - Can enhance spin-exotic odd- ℓ waves
 - Will interfere with resonances
 - Broad resonances such as $\pi_1(1600)$ may be masked, if not taken into account
- Theory support indispensible



-0.8 -1.0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

 π^0, η

500

400

300

200

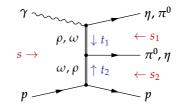
100

 $Mass(\eta \pi^0)$ [GeV/ c^2]

S2

Modeling double-Regge processes Example: $\gamma \ p \rightarrow \eta \pi^0 \ p$

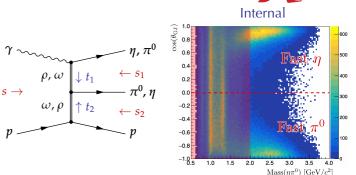
- Close collaboration with JPAC
 - Model describes distribution in all phase-space variables
 - Based on Bibrzycki *et al.* [JPAC], EPJC 81 (2021) 647
 - Improved description of vertex factors
 - Fit regions with fast η and fast π^0 separately
 - Reasonable agreement with data for $m_{\eta\pi} > 2 \, {\rm GeV}$
- Can we extrapolate model down to resonance region?



Modeling double-Regge processes Example: $\gamma \ p \rightarrow \eta \pi^0 \ p$

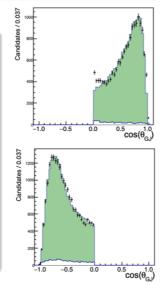
GLUE

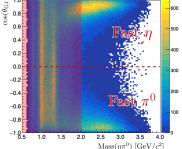
- Close collaboration with JPAC
 - Model describes distribution in all phase-space variables
 - Based on Bibrzycki *et al.* [JPAC], EPJC 81 (2021) 647
 - Improved description of vertex factors
 - Fit regions with fast η and fast π^0 separately
 - Reasonable agreement with data for $m_{\eta\pi} > 2 \, {\rm GeV}$
- Can we extrapolate model down to resonance region?



Modeling double-Regge processes Example: $\gamma \ p \rightarrow \eta \pi^0 \ p$

- Close collaboration with JPAC
 - Model describes distribution in all phase-space variables
 - Based on Bibrzycki *et al.* [JPAC], EPJC 81 (2021) 647
 - Improved description of vertex factors
 - Fit regions with fast η and fast π^0 separately
 - Reasonable agreement with data for $m_{\eta\pi} > 2 \, {\rm GeV}$
- Can we extrapolate model down to resonance region?



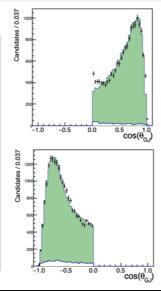


Modeling double-Regge processes Example: $\gamma \ p \rightarrow \eta \pi^0 \ p$

 $os(\theta_{GI})$

-1.0

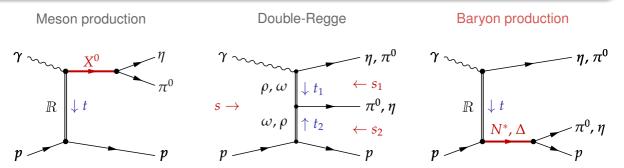
- Close collaboration with JPAC
 - Model describes distribution in all phase-space variables
 - Based on Bibrzycki *et al.* [JPAC], EPJC 81 (2021) 647
 - Improved description of vertex factors
 - Fit regions with fast η and fast π^0 separately
 - Reasonable agreement with data for $m_{\eta\pi} > 2 \, {\rm GeV}$
- Can we extrapolate model down to resonance region?





Additional challenge: baryon production Example: $\gamma p \rightarrow \eta \pi^0 p$

Jefferson Lab



• Baryon production is dominant at high $\eta\pi$ mass

- Can by suppressed by removing low $\pi^0 p$ masses for fast η and low ηp masses for fast π^0
 - Cut strongly distorts angular acceptance
 - Irreducible backgrounds from higher baryon excitations remain

Unpolarized case

Moment decomposition of angular distribution in $\Omega = (\theta, \phi)$

$$\mathcal{I}(\Omega) = \sum_{LM}^{\infty} \sqrt{\frac{2L+1}{4\pi}} H(L,M) Y_L^M(\Omega)$$

with

$$H(L,M) = \sqrt{\frac{4\pi}{2L+1}} \int_{4\pi} \mathrm{d}\Omega \,\mathcal{I}(\Omega) \,Y_L^{M*}(\Omega)$$

Advantages

- Moment decomposition is unique
- Does not assume a model \Longrightarrow good way to pass experimental data to theorists

Disadvantages

- No direct access to partial-wave amplitudes
 - Would need to solve (overdetermined) second-order polynomial equation system

Unpolarized case

Moment decomposition of angular distribution in $\Omega = (\theta, \phi)$

$$\mathcal{I}(\Omega) = \sum_{LM}^{\infty} \sqrt{\frac{2L+1}{4\pi}} H(L,M) Y_L^M(\Omega)$$

with

$$H(L,M) = \sqrt{\frac{4\pi}{2L+1}} \int_{4\pi} \mathrm{d}\Omega \, \mathcal{I}(\Omega) \, Y_L^{M*}(\Omega)$$

Advantages

- Moment decomposition is unique
- Does not assume a model \Longrightarrow good way to pass experimental data to theorists

Disadvantages

- No direct access to partial-wave amplitudes
 - Would need to solve (overdetermined) second-order polynomial equation system

Unpolarized case

Moment decomposition of angular distribution in $\Omega = (\theta, \phi)$

$$\mathcal{I}(\Omega) = \sum_{LM}^{\infty} \sqrt{\frac{2L+1}{4\pi}} H(L,M) Y_L^M(\Omega)$$

with

$$H(L,M) = \sqrt{\frac{4\pi}{2L+1}} \int_{4\pi} \mathrm{d}\Omega \,\mathcal{I}(\Omega) \,Y_L^{M*}(\Omega)$$

Advantages

- Moment decomposition is unique
- Does not assume a model \Longrightarrow good way to pass experimental data to theorists

Disadvantages

- No direct access to partial-wave amplitudes
 - Would need to solve (overdetermined) second-order polynomial equation system

Correcting for acceptance effects

• Measured intensity given by detector acceptance $\eta(\Omega)$: $\mathcal{I}_{\text{meas}}(\Omega) = \eta(\Omega) \mathcal{I}(\Omega)$

 \bullet Moment decomposition of $\mathcal{I}_{meas} \Longrightarrow$ measured moments

$$H_{\rm meas}(L,M) = \sqrt{\frac{4\pi}{2L+1}} \int_{4\pi} d\Omega \,\eta(\Omega) \,\mathcal{I}(\Omega) \,Y_L^{M*}(\Omega)$$

$$\mathcal{I}(\Omega) = \sum_{L'M'}^{\infty} \sqrt{\frac{2L'+1}{4\pi}} H(L',M') \Upsilon_{L'}^{M'}(\Omega)$$

- Acceptance mixes physical moments: $H_{\text{meas}}(L, M)$ are linear combinations of H(L', M')
- Matrix formulation: $\mathbf{H}_{meas} = \mathbf{I}_{acc} \mathbf{H} \implies physical moments: \mathbf{H} = (\mathbf{I}_{acc})^{-1} \mathbf{H}_{meas}$
- Acceptance integral matrix Iacc estimated using accepted phase-space events
- Estimate \mathbf{H}_{meas} from data by replacing integral by sum over N_{meas} measured events with weights $\{w_i\}$

$$H_{\text{meas}}(L, M) = \sqrt{\frac{4\pi}{2L+1}} \sum_{k=1}^{N_{\text{meas}}} w_k Y_L^{M*}(\Omega_k)$$

with $\sum_{k=1}^{N_{\text{meas}}} w_k$ = number of events after background subtraction

Correcting for acceptance effects

- Measured intensity given by detector acceptance $\eta(\Omega)$: $\mathcal{I}_{\text{meas}}(\Omega) = \eta(\Omega) \mathcal{I}(\Omega)$
- $\bullet\,$ Moment decomposition of $\mathcal{I}_{meas} \Longrightarrow$ measured moments

$$H_{\text{meas}}(L,M) = \sqrt{\frac{4\pi}{2L+1}} \int_{4\pi} d\Omega \,\eta(\Omega) \,\mathcal{I}(\Omega) \,Y_L^{M*}(\Omega)$$

$$\mathcal{I}(\Omega) = \sum_{L'M'}^{\infty} \sqrt{\frac{2L'+1}{4\pi}} H(L',M') \, \mathbf{Y}_{L'}^{M'}(\Omega)$$

- Acceptance mixes physical moments: $H_{\text{meas}}(L, M)$ are linear combinations of H(L', M')
- Matrix formulation: $\mathbf{H}_{meas} = \mathbf{I}_{acc} \mathbf{H} \implies physical moments: \mathbf{H} = (\mathbf{I}_{acc})^{-1} \mathbf{H}_{meas}$
- Acceptance integral matrix Iacc estimated using accepted phase-space events
- Estimate \mathbf{H}_{meas} from data by replacing integral by sum over N_{meas} measured events with weights $\{w_i\}$

$$H_{\text{meas}}(L, M) = \sqrt{\frac{4\pi}{2L+1}} \sum_{k=1}^{N_{\text{meas}}} w_k Y_L^{M*}(\Omega_k)$$

with $\sum_{k=1}^{N_{\text{meas}}} w_k = \text{number of events after background subtraction}$

Correcting for acceptance effects

- Measured intensity given by detector acceptance $\eta(\Omega)$: $\mathcal{I}_{\text{meas}}(\Omega) = \eta(\Omega) \mathcal{I}(\Omega)$
- $\bullet\,$ Moment decomposition of $\mathcal{I}_{meas} \Longrightarrow$ measured moments

$$H_{\text{meas}}(L,M) = \sqrt{\frac{4\pi}{2L+1}} \int_{4\pi} d\Omega \,\eta(\Omega) \,\mathcal{I}(\Omega) \,Y_L^{M*}(\Omega)$$

$$\mathcal{I}(\Omega) = \sum_{L'M'}^{\infty} \sqrt{\frac{2L'+1}{4\pi}} H(L',M') Y_{L'}^{M'}(\Omega)$$

- Acceptance mixes physical moments: $H_{\text{meas}}(L, M)$ are linear combinations of H(L', M')
- Matrix formulation: $\mathbf{H}_{meas} = \mathbf{I}_{acc} \mathbf{H} \implies physical moments: \mathbf{H} = (\mathbf{I}_{acc})^{-1} \mathbf{H}_{meas}$
- Acceptance integral matrix Iacc estimated using accepted phase-space events
- Estimate \mathbf{H}_{meas} from data by replacing integral by sum over N_{meas} measured events with weights $\{w_i\}$

$$H_{\text{meas}}(L, M) = \sqrt{\frac{4\pi}{2L+1}} \sum_{k=1}^{N_{\text{meas}}} w_k Y_L^{M*}(\Omega_k)$$

with $\sum_{k=1}^{N_{\text{meas}}} w_k = \text{number of events after background subtraction}$

Correcting for acceptance effects

- Measured intensity given by detector acceptance $\eta(\Omega)$: $\mathcal{I}_{\text{meas}}(\Omega) = \eta(\Omega) \mathcal{I}(\Omega)$
- $\bullet\,$ Moment decomposition of $\mathcal{I}_{meas} \Longrightarrow$ measured moments

$$H_{\text{meas}}(L,M) = \sqrt{\frac{4\pi}{2L+1}} \int_{4\pi} d\Omega \,\eta(\Omega) \,\mathcal{I}(\Omega) \,Y_L^{M*}(\Omega)$$

$$\mathcal{I}(\Omega) = \sum_{L'M'}^{\infty} \sqrt{\frac{2L'+1}{4\pi}} H(L',M') Y_{L'}^{M'}(\Omega)$$

- Acceptance mixes physical moments: $H_{\text{meas}}(L, M)$ are linear combinations of H(L', M')
- Matrix formulation: $\mathbf{H}_{\text{meas}} = \mathbf{I}_{\text{acc}} \mathbf{H} \implies \text{physical moments:} \mathbf{H} = (\mathbf{I}_{\text{acc}})^{-1} \mathbf{H}_{\text{meas}}$
- Acceptance integral matrix I_{acc} estimated using accepted phase-space events
- Estimate \mathbf{H}_{meas} from data by replacing integral by sum over N_{meas} measured events with weights $\{w_i\}$

$$H_{\text{meas}}(L, M) = \sqrt{\frac{4\pi}{2L+1}} \sum_{k=1}^{N_{\text{meas}}} w_k Y_L^{M*}(\Omega_k)$$

with $\sum_{k=1}^{N_{\text{meas}}} w_k$ = number of events after background subtraction

Correcting for acceptance effects

- Measured intensity given by detector acceptance $\eta(\Omega)$: $\mathcal{I}_{\text{meas}}(\Omega) = \eta(\Omega) \mathcal{I}(\Omega)$
- $\bullet\,$ Moment decomposition of $\mathcal{I}_{meas} \Longrightarrow$ measured moments

$$H_{\text{meas}}(L,M) = \sqrt{\frac{4\pi}{2L+1}} \int_{4\pi} d\Omega \,\eta(\Omega) \,\mathcal{I}(\Omega) \,Y_L^{M*}(\Omega)$$

$$\mathcal{I}(\Omega) = \sum_{L'M'}^{\infty} \sqrt{\frac{2L'+1}{4\pi}} H(L',M') Y_{L'}^{M'}(\Omega)$$

- Acceptance mixes physical moments: $H_{\text{meas}}(L, M)$ are linear combinations of H(L', M')
- Matrix formulation: $\mathbf{H}_{\text{meas}} = \mathbf{I}_{\text{acc}} \mathbf{H} \implies \text{physical moments:} \mathbf{H} = (\mathbf{I}_{\text{acc}})^{-1} \mathbf{H}_{\text{meas}}$
- $\bullet\,$ Acceptance integral matrix I_{acc} estimated using accepted phase-space events
- Estimate \mathbf{H}_{meas} from data by replacing integral by sum over N_{meas} measured events with weights $\{w_i\}$

$$H_{\text{meas}}(L, M) = \sqrt{\frac{4\pi}{2L+1}} \sum_{k=1}^{N_{\text{meas}}} w_k Y_L^{M*}(\Omega_k)$$

with $\sum_{k=1}^{N_{\text{meas}}} w_k$ = number of events after background subtraction

Correcting for acceptance effects

- Measured intensity given by detector acceptance $\eta(\Omega)$: $\mathcal{I}_{\text{meas}}(\Omega) = \eta(\Omega) \mathcal{I}(\Omega)$
- $\bullet\,$ Moment decomposition of $\mathcal{I}_{meas} \Longrightarrow$ measured moments

$$H_{\text{meas}}(L,M) = \sqrt{\frac{4\pi}{2L+1}} \int_{4\pi} d\Omega \,\eta(\Omega) \,\mathcal{I}(\Omega) \,Y_L^{M*}(\Omega)$$

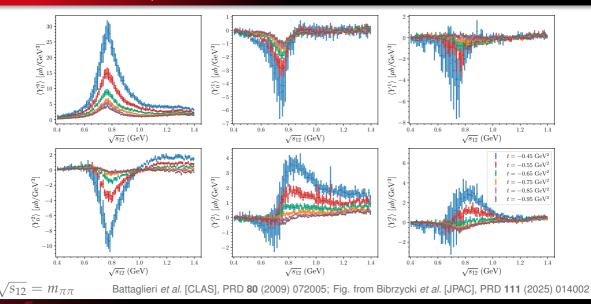
$$\mathcal{I}(\Omega) = \sum_{L'M'}^{\infty} \sqrt{\frac{2L'+1}{4\pi}} H(L',M') Y_{L'}^{M'}(\Omega)$$

- Acceptance mixes physical moments: $H_{\text{meas}}(L, M)$ are linear combinations of H(L', M')
- Matrix formulation: $\mathbf{H}_{\text{meas}} = \mathbf{I}_{\text{acc}} \mathbf{H} \implies \text{physical moments:} \mathbf{H} = (\mathbf{I}_{\text{acc}})^{-1} \mathbf{H}_{\text{meas}}$
- Acceptance integral matrix I_{acc} estimated using accepted phase-space events
- Estimate \mathbf{H}_{meas} from data by replacing integral by sum over N_{meas} measured events with weights $\{w_i\}$

$$H_{\text{meas}}(L, M) = \sqrt{\frac{4\pi}{2L+1}} \sum_{k=1}^{N_{\text{meas}}} w_k Y_L^{M*}(\Omega_k)$$

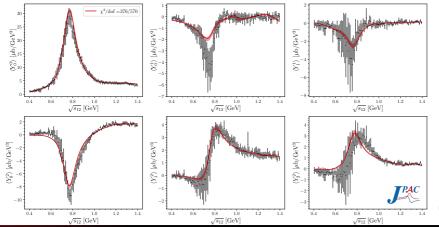
with $\sum_{k=1}^{N_{\text{meas}}} w_k$ = number of events after background subtraction

Moment analysis of unpolarized $\gamma p \rightarrow \pi^+ \pi^- p$ CLAS Results for 3.6 < E_{γ} < 3.8 GeV



Bibrzycki et al. [JPAC], PRD 111 (2025) 014002 CLAS, PRD 80 (2009) 072005

- JPAC: fit of lowest 6 moments in highest energy bin 3.6 $< E_{\gamma} <$ 3.8 GeV from CLAS analysis
- Model: resonances $f_0(500)$, $\rho(770)$, $f_0(980)$, $f_2(1270)$, $f_0(1370)$ + Deck process + non-resonant polynomial in $s_{12} = m_{\pi\pi}^2$
- Resonance production modeled using Regge trajectories: ρ and ω for $J^P = 0^+$ and 2^+ ; P, a_2 , and f_2 for $J^P = 1^-$



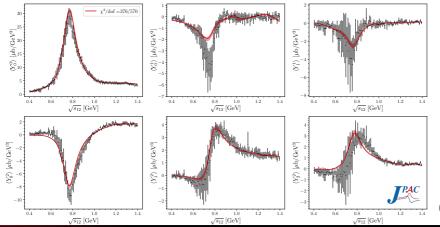
 Resonances described using Breit-Wigner amplitudes

Jefferson Lab Thomas Jefferson National Accelerator Facility

- Resonance parameters fixed
- 30 free parameters: relative strengths and phases of production mechanisms for each model component
- Each *t* bin fitted independently

Bibrzycki et al. [JPAC], PRD 111 (2025) 014002 CLAS, PRD 80 (2009) 072005

- JPAC: fit of lowest 6 moments in highest energy bin 3.6 $< E_{\gamma} <$ 3.8 GeV from CLAS analysis
- Model: resonances $f_0(500)$, $\rho(770)$, $f_0(980)$, $f_2(1270)$, $f_0(1370)$ + Deck process + non-resonant polynomial in $s_{12} = m_{\pi\pi}^2$
- Resonance production modeled using Regge trajectories: ρ and ω for $J^P = 0^+$ and 2^+ ; \mathbb{P} , a_2 , and f_2 for $J^P = 1^-$



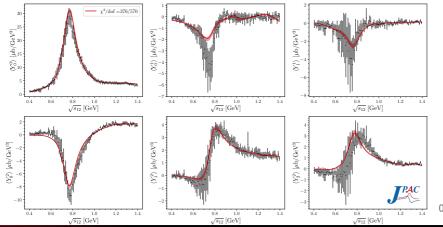
 Resonances described using Breit-Wigner amplitudes

Jefferson Lab

- Resonance parameters fixed
- 30 free parameters: relative strengths and phases of production mechanisms for each model component
- Each *t* bin fitted independently

Bibrzycki et al. [JPAC], PRD 111 (2025) 014002 CLAS, PRD 80 (2009) 072005

- JPAC: fit of lowest 6 moments in highest energy bin 3.6 $< E_{\gamma} <$ 3.8 GeV from CLAS analysis
- Model: resonances $f_0(500)$, $\rho(770)$, $f_0(980)$, $f_2(1270)$, $f_0(1370)$ + Deck process + non-resonant polynomial in $s_{12} = m_{\pi\pi}^2$
- Resonance production modeled using Regge trajectories: ρ and ω for $J^P = 0^+$ and 2^+ ; \mathbb{P} , a_2 , and f_2 for $J^P = 1^-$



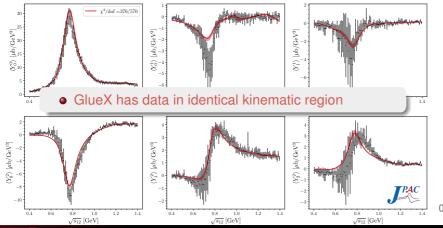
 Resonances described using Breit-Wigner amplitudes

Jefferson Lab

- Resonance parameters fixed
- 30 free parameters: relative strengths and phases of production mechanisms for each model component
- Each *t* bin fitted independently

Bibrzycki et al. [JPAC], PRD 111 (2025) 014002 CLAS, PRD 80 (2009) 072005

- JPAC: fit of lowest 6 moments in highest energy bin 3.6 $< E_{\gamma} <$ 3.8 GeV from CLAS analysis
- Model: resonances $f_0(500)$, $\rho(770)$, $f_0(980)$, $f_2(1270)$, $f_0(1370)$ + Deck process + non-resonant polynomial in $s_{12} = m_{\pi\pi}^2$
- Resonance production modeled using Regge trajectories: ρ and ω for $J^P = 0^+$ and 2^+ ; \mathbb{P} , a_2 , and f_2 for $J^P = 1^-$



 Resonances described using Breit-Wigner amplitudes

Jefferson Lab

- Resonance parameters fixed
- 30 free parameters: relative strengths and phases of production mechanisms for each model component
- Each *t* bin fitted independently

Moment analysis of unpolarized $\gamma \ p \rightarrow \pi^+\pi^- \ p$ Jefferson Lab

Normalization

•
$$H(0,0) = \sqrt{4\pi} \int_{4\pi} d\Omega \mathcal{I}(\Omega) \underbrace{Y_0^{0*}(\Omega)}_{=1/\sqrt{4\pi}} = \int_{4\pi} d\Omega \mathcal{I}(\Omega) = \text{number of acceptance-corrected events}$$

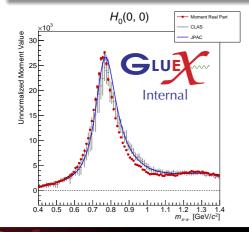
All CLAS and JPAC moments scaled by same

- Error bars of CLAS points dominanted by sys-
- Only statistical uncertainties for GlueX
- Good qualitative agreement of GlueX results

Moment analysis of unpolarized $\gamma \ p \rightarrow \pi^+\pi^- \ p$ Jefferson Lab Jefferson National Accelerator Facility

Normalization

•
$$H(0,0) = \sqrt{4\pi} \int_{4\pi} d\Omega \mathcal{I}(\Omega) \underbrace{Y_0^{0*}(\Omega)}_{=1/\sqrt{4\pi}} = \int_{4\pi} d\Omega \mathcal{I}(\Omega) = \text{number of acceptance-corrected events}$$



 All CLAS and JPAC moments scaled by same factor such that

 $\int \mathrm{d}m_{\pi\pi} H_{\mathsf{CLAS}}(0,0) = \int \mathrm{d}m_{\pi\pi} H_{\mathsf{GlueX}}(0,0)$

- Error bars of CLAS points dominanted by systematic uncertainties
- Only statistical uncertainties for GlueX
- Good qualitative agreement of GlueX results with CLAS/JPAC

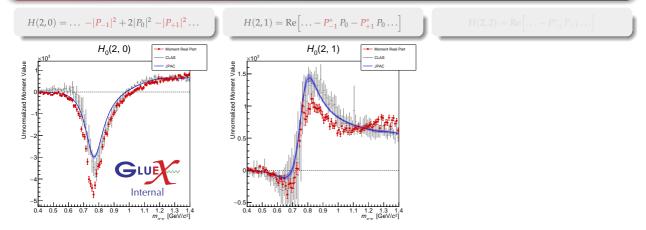
Moment analysis of unpolarized $\gamma \ p \rightarrow \pi^+\pi^- \ p$ Jefferson Lab

Example Results

- P_0 wave smaller than P_{+1} waves; P_0 and P_{+1} amplitudes not phase locked
- GlueX results agree gualitatively with CLAS/JPAC; deviations in details

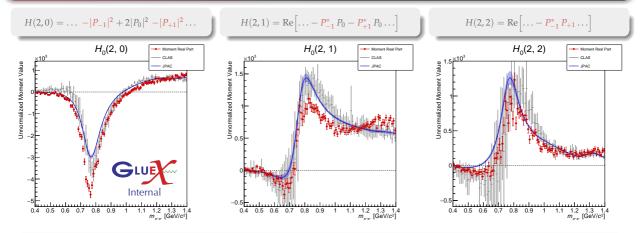
Moment analysis of unpolarized $\gamma \ p \rightarrow \pi^+\pi^- \ p$ Jefferson Lab

Example Results



- P_0 wave smaller than P_{+1} waves; P_0 and P_{+1} amplitudes not phase locked
- GlueX results agree qualitatively with CLAS/JPAC; deviations in details

Moment analysis of unpolarized $\gamma~p o \pi^+\pi^-~p$ Jefferson Lab



• P_0 wave smaller than P_{+1} waves; P_0 and P_{+1} amplitudes not phase locked

GlueX results agree gualitatively with CLAS/JPAC; deviations in details

Moment analysis of $\gamma \ p \rightarrow \pi^+\pi^- \ p$

Work in progress

- Use GlueX data to extend $\pi^+\pi^-$ moment analysis to
 - Linearly polarized photon beams
 - Higher beam energies
 - Lower momentum transfers
 - Higher $\pi^+\pi^-$ masses
 - Higher precision

Opportunity: moment analyses are good testing grounds for

- Surrogate models of detector acceptance
- Parameter estimation methods
 - Moment decomposition of intensity is unique
 - But moment values may lead to unphysical, i.e. negative intensities

Moment analysis of $\gamma \ p \rightarrow \pi^+\pi^- \ p$

Work in progress

- Use GlueX data to extend $\pi^+\pi^-$ moment analysis to
 - Linearly polarized photon beams
 - Higher beam energies
 - Lower momentum transfers
 - Higher $\pi^+\pi^-$ masses
 - Higher precision

Opportunity: moment analyses are good testing grounds for

- Surrogate models of detector acceptance
- Parameter estimation methods
 - Moment decomposition of intensity is unique
 - But moment values may lead to unphysical, i.e. negative intensities

Conclusions

Challenges in amplitude analyses provide opportunities for AI applications

- Accelerating computations by replacing expensive functions with surrogate models, e.g. for detector acceptance, would
 - allow exploration of larger model spaces
 - make advanced methods such as Markov chain Monte Carlo more feasible
 - allow more detailed input-output studies
 - ...
- Model selection
 - Determination of optimal wave sets
 - Determination of minimal resonance content
- Imposing continuity and smoothness constraints on amplitudes
- Alternative approaches for parameter estimation

• . . .

Conclusions

Challenges in amplitude analyses provide opportunities for AI applications

- Accelerating computations by replacing expensive functions with surrogate models, e.g. for detector acceptance, would
 - allow exploration of larger model spaces
 - make advanced methods such as Markov chain Monte Carlo more feasible
 - allow more detailed input-output studies
 - ...
- Model selection
 - Determination of optimal wave sets
 - Determination of minimal resonance content
- Imposing continuity and smoothness constraints on amplitudes
- Alternative approaches for parameter estimation

Conclusions

Challenges in amplitude analyses provide opportunities for AI applications

- Accelerating computations by replacing expensive functions with surrogate models, e.g. for detector acceptance, would
 - allow exploration of larger model spaces
 - make advanced methods such as Markov chain Monte Carlo more feasible
 - allow more detailed input-output studies
 - ...

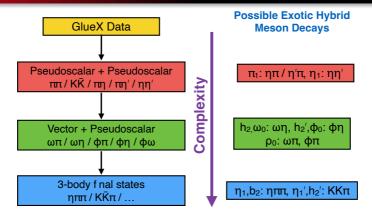
Ο . . .

- Model selection
 - Determination of optimal wave sets
 - Determination of minimal resonance content
- Imposing continuity and smoothness constraints on amplitudes
- Alternative approaches for parameter estimation

Part II

Backup Slides

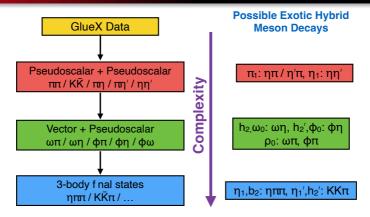
Searching for Exotics at GlueX



 Strategy: understand photoproduction of well-known states first and then use them as reference when searching for exotic states

ullet "Golden channels" for π_1 search: $\eta\pi$ and $\eta^\prime\pi$ \Longrightarrow focus of this talk

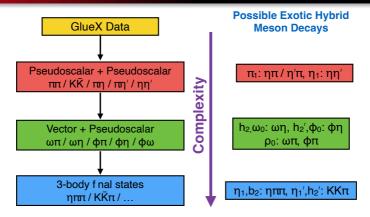
Searching for Exotics at GlueX



 Strategy: understand photoproduction of well-known states first and then use them as reference when searching for exotic states

• "Golden channels" for π_1 search: $\eta\pi$ and $\eta'\pi$ \Longrightarrow focus of this talk

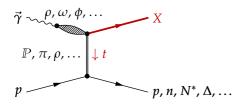
Searching for Exotics at GlueX



 Strategy: understand photoproduction of well-known states first and then use them as reference when searching for exotic states

• "Golden channels" for π_1 search: $\eta \pi$ and $\eta' \pi \Longrightarrow$ focus of this talk

Photoproduction



Exchange Spin-exotic states

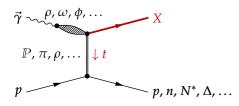
$$\begin{array}{cccccc} \mathbb{P} & 0^{++} & b, h, h' & 0^{+-}, 2^{+-} \\ \pi^{0} & 0^{-+} & b_{2}, h_{2}, h_{2}' & 2^{+-} \\ \pi^{\pm} & 0^{-+} & \pi_{1} & 1^{-+} \\ \omega & 1^{--} & \pi_{1}, \eta_{1}, \eta_{1}' & 1^{-+} \end{array}$$

- Wide variety of intermediate states *X* accessible
- Photon polarization provides constraints on production process
- *Prerequisite:* understanding of production mechanism
- Existing photoproduction data very limited

Goal of GlueX

- Confirm π_1 and η_1
- Establish full light-quark hybrid spectrum

Photoproduction



Exchange Spin-exotic states

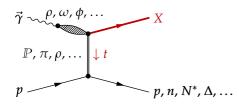
$$\begin{array}{cccccc} \mathbb{P} & 0^{++} & b, h, h' & 0^{+-}, 2^{+-} \\ \pi^{0} & 0^{-+} & b_{2}, h_{2}, h_{2}' & 2^{+-} \\ \pi^{\pm} & 0^{-+} & \pi_{1} & 1^{-+} \\ \omega & 1^{--} & \pi_{1}, \eta_{1}, \eta_{1}' & 1^{-+} \end{array}$$

- Wide variety of intermediate states *X* accessible
- Photon polarization provides constraints on production process
- *Prerequisite:* understanding of production mechanism
- Existing photoproduction data very limited

Goal of GlueX

- Confirm π_1 and η_1
- Establish full light-quark hybrid spectrum

Photoproduction



Exchange Spin-exotic states

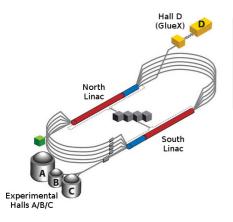
$$\begin{array}{cccccc} \mathbb{P} & 0^{++} & b, h, h' & 0^{+-}, 2^{+-} \\ \pi^{0} & 0^{-+} & b_{2}, h_{2}, h'_{2} & 2^{+-} \\ \pi^{\pm} & 0^{-+} & \pi_{1} & 1^{-+} \\ \omega & 1^{--} & \pi_{1}, \eta_{1}, \eta'_{1} & 1^{-+} \end{array}$$

- Wide variety of intermediate states *X* accessible
- Photon polarization provides constraints on production process
- *Prerequisite:* understanding of production mechanism
- Existing photoproduction data very limited

Goal of GlueX

- Confirm π_1 and η_1
- Establish full light-quark hybrid spectrum

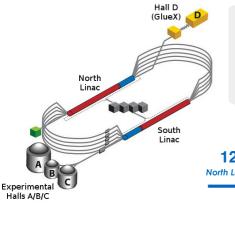
Adhikari et al., NIMA 987 (2021) 164807



• 12 GeV e⁻ beam from CEBAF

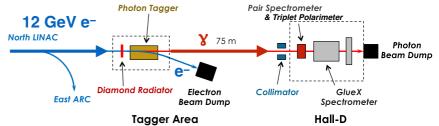
- Diamond radiator \implies linearly polarized photon beam
- Photon energy tagged by scattered e^- ; $\sigma(E_{\gamma}) = 0.2$ %
- Coherent peak: 1 to 5 × 10⁷ γ /s with \approx 40 % polarization

Adhikari et al., NIMA 987 (2021) 164807

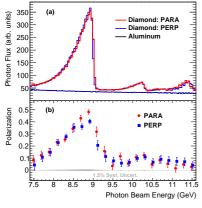


• 12 GeV e⁻ beam from CEBAF

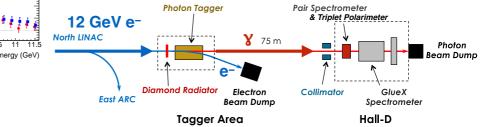
- Diamond radiator \implies linearly polarized photon beam
- Photon energy tagged by scattered e^- ; $\sigma(E_{\gamma}) = 0.2$ %
- Coherent peak: 1 to 5 × 10⁷ γ /s with \approx 40 % polarization



Adhikari et al., NIMA 987 (2021) 164807



- 12 GeV e⁻ beam from CEBAF
- Diamond radiator \implies linearly polarized photon beam
- Photon energy tagged by scattered e^- ; $\sigma(E_{\gamma}) = 0.2$ %
- Coherent peak: 1 to 5 × 10⁷ γ /s with \approx 40 % polarization



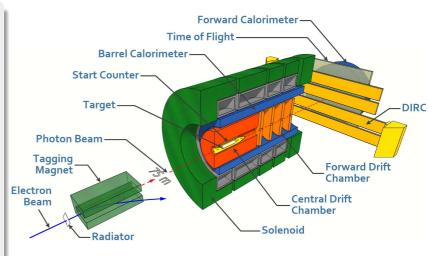
Adhikari et al., NIMA 987 (2021) 164807

- Large-acceptance spec
 - trometer
- Optimized for light-meson spectroscopy
- GlueX Phase I
 - 2017 to 2018
 - $\int \mathcal{L} = 125 \, \text{pb}^{-1}$ in coherent peak
- GlueX Phase II
 - 2020 to 2025?
 - Added DIRC for PID
 - So far $\int \mathcal{L} = 190 \text{ pb}^{-1}$ in coherent peak
 - Expect 3 to 4× Phase I

Jefferson Lab Thomas Jefferson National Accelerator Facility

Adhikari et al., NIMA 987 (2021) 164807

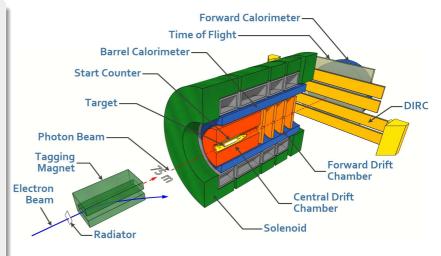
- Large-acceptance spectrometer
- Optimized for light-meson spectroscopy
- GlueX Phase I
 - 2017 to 2018
 - $\int \mathcal{L} = 125 \, \text{pb}^{-1}$ in coherent peak
- GlueX Phase II
 - 2020 to 2025?
 - Added DIRC for PID
 - So far $\int \mathcal{L} = 190 \, \text{pb}^{-1}$ in coherent peak
 - Expect 3 to 4× Phase I



Jefferson Lab

Adhikari et al., NIMA 987 (2021) 164807

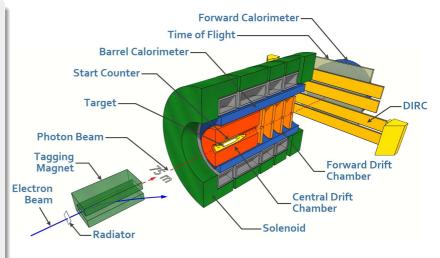
- Large-acceptance spectrometer
- Optimized for light-meson spectroscopy
- GlueX Phase I
 - 2017 to 2018
 - $\int \mathcal{L} = 125 \, \text{pb}^{-1}$ in coherent peak
- GlueX Phase II
 - 2020 to 2025?
 - Added DIRC for PID
 - So far $\int \mathcal{L} = 190 \, \text{pb}^{-1}$ in coherent peak
 - Expect 3 to 4× Phase I



Jefferson Lab

Adhikari et al., NIMA 987 (2021) 164807

- Large-acceptance spectrometer
- Optimized for light-meson spectroscopy
- GlueX Phase I
 - 2017 to 2018
 - $\int \mathcal{L} = 125 \, \text{pb}^{-1}$ in coherent peak
- GlueX Phase II
 - 2020 to 2025?
 - Added DIRC for PID
 - So far $\int \mathcal{L} = 190 \, \text{pb}^{-1}$ in coherent peak
 - Expect 3 to 4× Phase I



Jefferson Lab

homas Jefferson National Accelerator Facility