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Diffusion Models for Unfolding Detector Effects
• Detector introduce resolution effects, acceptance gaps and inefficiencies that distort the true 

particle distributions from an experiment. The observed (reconstructed) data distribution det(y)  

is a “smeared” version of the true physics distribution true(x):

where P(y∣x) is the detector response.

• We seek the inverse of this process – i.e. to infer the posterior probability P(x∣y) or true(x) 

given the measured y ("unfolding"). By Bayes’ theorem,

• Sample x~P(x∣y) to reconstruct the true distribution. However, P(x∣y) depends on the unknown 

prior true(x). Any prior mismatch can bias the unfolding result. Unfolding is thus an ill-posed 

inverse problem that we can tackle by introducing additional information or inductive bias.
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Limitations of Traditional Unfolding

• Standard techniques typically require binning data and assume a linear response matrix.

• This limits resolution and prevents simultaneous unfolding of many correlated observables.

• Many algorithms assume a specific underlying distribution, so the unfolded result can be 

significantly biased.

• Traditional methods also struggle to propagate complex uncertainties.

Need for AI: these challenges motivate AI-based unfolding, which can handle high-dimensional 

input (e.g. full event kinematics or images) and learn complex detector effects without manual 

binning.
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AI-Based Unfolding Approaches

• Generative models: adversarial and likelihood-based models have been applied: e.g. GANs, 

(conditional) normalizing flows, can learn to map detector to ground truth distributions (see 

Tareq's talk).

• Diffusion models: recent work uses diffusion models to represent the unfolding map as a 

learned generative process. These can, in principle, model complex posteriors and provide 

uncertainty quantification. 

Each AI method has trade-offs; diffusion models are attractive for their strong theoretical 

foundations and flexibility
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Alert: here and in the following the roles of x and 
y are interchanged, because at this stage of the 
project we have in mind a proof of principle and 
not the unfolding of the real data



Denoising Diffusion Probabilistic Models (DMs)

• A DM is a generative model consisting of a forward diffusion (noise addition) process and a 

learned reverse (denoising) process. In the forward pass, one gradually corrupts a clean data 

sample x0 by injecting Gaussian noise over T timesteps, producing xT≈N(0,I). In the reverse 

pass, a neural network learns to iteratively denoise xT back to x0.

• Reversible generative process: Formally, the forward (noising) Markov chain is defined as 

where αt is a variance schedule. The learned reverse (denoising) chain is parameterized by θ:

• By training the model to predict the added noise, one learns the mean of the Gaussian 

transition, μθ(xt ,t), that maps any noisy xt towards the original data. The result is a powerful 

generative process: sampling xT∼N(0,I) and applying the learned reverse steps yields new 

samples x0 from the data. 7
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Diffusion for Unfolding: conditioning

• To apply diffusion to unfolding, we use a conditional diffusion model. Here the reverse 

process is conditioned on the vertex level y. Concretely:

• The forward noising process remains unchanged (just adding noise to x), but the denoiser 

network now takes y as an input or context

• In practice, we train the DM so that after T steps of reverse diffusion, the output x0 is a 

sample from P(x∣y). Equivalently, the model learns to predict the detector level x given the 

ground truth y. Conditioning directly on y makes the generative process data-dependent and 

enables it to approximate the Bayesian inverse P(x∣y) without explicitly computing the prior. 

Because the learned conditional distribution implicitly encodes the prior, sampling only 

requires the vertex data.
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Training the Conditional DM

• We generate a large simulated dataset of vertex–detector data {x0(i),y(i)}, where y is the 

vertex level, and x0 is its detector-level version (smeared by gsim). Each x0(i) is then noised 

to xt by adding Gaussian noise according to the variance schedule. The pair (xt,y) is used to 

train the model.

• At each timestep t, the model ϵθ(xt,y,t) predicts the noise that was added. The training loss is 

the mean-squared error between the true noise ϵ and the prediction:

• Minimizing L encourages the network to accurately reverse the noising process. In effect, the 

model learns to recover the detector data x0 from the noisy xt given the vertex data y.
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Pseudocode

• Start with a batch of detector-vertex pairs (x0,y). 

• Sample a random t and noise ϵ∼N(0,I).

• Compute 

• The network predicts ϵθ(xt,y,t). 

• Compute L and backpropagate to update θ. 

• Iterate until convergence.
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Our aim: a proof of principle for CLAS detector 

• Condition (input): vertex information, i.e., the simulated events (we do know the ground truth in this 

case) in the acceptance of the detector.

• Target: corresponding detector measurements for those same particles (gsim CLAS proxy).

In doing this we learn how the vertex information gets “smeared” by the detector, i.e., build a function 

capable of generating realistic detector data from the initial particle properties.

Training Procedure:

• For each event, take the detector measurement.

• Gradually add noise to that detector data to create increasingly “distorted” versions.

• Train the network to remove that noise, step by step, using the vertex information as context.

• Actually, the network learns to invert the distortion process: given a noisy version of the detector 

data, it must recover the clean measurement, knowing the original vertex values.

• Result of Training: by the end, the model knows how to reconstruct the detector data distribution 

that corresponds to any given vertex input.
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Our aim: a proof of principle for CLAS detector 

• Start from a completely random set of values (pure noise), without any physical information.

• At each step, the network applies its denoising function, guided by the vertex data (which 

remains the fixed condition).

• After several iterations, the noise is progressively removed to produce a final sample: a set of 

measurements that mimics exactly what the detector would record for those vertex 

properties.

Operational Direction

The flow goes from pure noise, through many “cleaning” steps, to produce synthetic detector 

data. In this way, the network has learned to emulate the detector’s response.

Validating Results:

• Compare the characteristics (e.g., histogram shapes up to now) of the generated data with 

those of detector data.

• If the distributions match, it means the model has correctly learned how the detector 

transforms the vertex information.
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• Let's start from the most populated topolgy (p π+)

• Then we will exploit DMs flexibility for moving from one topology to the other

p π+ π-
p π+

p π-

π+ π-

Phase space region 
covered by CLAS

Our strategy
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Our strategy
Using MC generated 4-vectors sampled from different models and correspondent gsim reconstructed 

and train the DM on them:

• Just phase space

• More refined model with resonances included at the level of cross sections

• Regge-inspired model (by JPAC collaboration) with resonances included at the level of the 

amplitude 1 5
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Moment extraction 
from real data by 
CLAS collaboration
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Current state of the project:

• We are training the diffusion model on simulations based on phase space only: generated in 

the acceptance + reconstructed (gsim detector proxy)

px pzpy

(proton 3-momentum)
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Next steps
• Uncertainty quantification: While diffusion models are inherently stochastic, rigorous 

uncertainty estimates for unfolded results are needed. Approaches include Bayesian 

treatments of the model or ensembles. Studies note that incorporating uncertainty estimation

(e.g. sampling variance, systematic errors) is crucial for practical use.

• Domain adaptation: Real data may not perfectly match the simulation used for training. 

Domain-adaptation techniques (e.g. adversarial learning, transfer learning) could adapt the 

cDM to detector-data differences without labels.

• Handling edge cases: Special attention must be given to particles outside detector acceptance 

or rare phase-space regions. The model should ideally be able to flag or properly treat such 

outliers.

• Systematics and physics constraints: Integrating known systematic uncertainties and 

enforcing physical constraints (like energy–momentum conservation) during sampling remain 

open challenges.
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Future directions

• Enlarge as much as possible the measured phase space adding all topologies through 

this diffusion model procedure 

• Application of our DM & Collaboration with GlueX people to enlarge it way more including the 

phase space measured by them: note that - independently on the techniques that they will use 

to unfold GlueX detector effect - we will be able to compare momenta distribution extracted 

at the vertex level by us and them in the region overlapped by the two detectors -> this is 

another sanity check that our DM-unfolding procedure works

• This - as far as we know – never tried approach can reduce a lot the model dependence that 

we introduce extrapolating the cross section in the unmeasured phase space region
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