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Process & Kinematics

Let’s define the it helicity rest frame for
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Diffusion Models for Unfolding Detector Effects

« Detector introduce resolution effects, acceptance gaps and inefficiencies that distort the true
particle distributions from an experiment. The observed (reconstructed) data distribution det(y)
is a "smeared” version of the true physics distribution true(x):

det(y) = /P(y\aj) true(x)

X

where P(y|x) is the detector response.

We seek the inverse of this process - i.e. to infer the posterior probability P(xly) or true(x)
given the measured y ("unfolding"). By Bayes' theorem,

Plaly) =~ s

- Sample x~P(xly) to reconstruct the true distribution. However, P(x|y) depends on the unknown

prior true(x). Any prior mismatch can bias the unfolding result. Unfolding is thus an ill-posed

3
inverse problem that we can tackle by introducing additional information or inductive bias.



Limitations of Traditional Unfolding

- Standard techniques typically require binning data and assume a linear response matrix.
 This limits resolution and prevents simultaneous unfolding of many correlated observables.

- Many algorithms assume a specific underlying distribution, so the unfolded result can be

significantly biased.

- Traditional methods also struggle to propagate complex uncertainties.

Need for Al: these challenges motivate Al-based unfolding, which can handle high-dimensional
input (e.g. full event kinematics or images) and learn complex detector effects without manual

binning.



Al-Based Unfolding Approaches

- Generative models: adversarial and likelihood-based models have been applied: e.g. GANs,

(conditional) normalizing flows, can learn to map detector to ground truth distributions (see
Tareq's talk).

« Diffusion models: recent work uses diffusion models to represent the unfolding map as a

learned generative process. These can, in principle, model complex posteriors and provide
uncertainty quantification.

Each Al method has trade-offs; diffusion models are attractive for their strong theoretical
foundations and flexibility



Alert: here and in the following the roles of x and
y are interchanged, because at this stage of the

project we have in mind a proof of principle and
not the unfolding of the real data




Denoising Diffusion Probabilistic Models (DMs)

- A DM is a generative model consisting of a forward diffusion (noise addition) process and a
learned reverse (denoising) process. In the forward pass, one gradually corrupts a clean data
sample x0 by injecting Gaussian noise over T timesteps, producing xT=N(0,1). In the reverse
pass, a neural network learns to iteratively denoise xT back to x0.

- Reversible generative process: Formally, the forward (noising) Markov chain is defined as

C](Xt|Xt—1) = N(Xt§ VO X1, (1 — C‘ft) [)
where at is a variance schedule. The learned reverse (denoising) chain is parameterized by 6:
Po(Xi—1]x¢) = N(Xt—l; fo(x¢, 1), Uf[)

-« By training the model to predict the added noise, one learns the mean of the Gaussian
transition, uB(xt ,t), that maps any noisy xt towards the original data. The result is a powerful
generative process: sampling xT~N(0,1) and applying the learned reverse steps yields new
samples x0 from the data.
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where at is a variance schedule. The learned reverse (denoising) chain is parameterized by 6:
Po(Xi—1]x¢) = N(Xt—1; fo(x¢, 1), Uf[)

-« By training the model to predict the added noise, one learns the mean of the Gaussian

transition, uB(xt ,t), that maps any noisy xt towards the original data. The result is a powerful
generative process: sampling xT~N(0,1) and applying the learned reverse steps yields new
samples x0 from the data. 8



Diffusion for Unfolding: conditioning

« To apply diffusion to unfolding, we use a conditional diffusion model. Here the reverse
process is conditioned on the vertex level y. Concretely:

pe(ﬁt—1|$t,y) — N(flft—h M@(xtpyat) UtQI)

« The forward noising process remains unchanged (just adding noise to x), but the denoiser
network now takes y as an input or context

 |n practice, we train the DM so that after T steps of reverse diffusion, the output x0 is a
sample from P(x|y). Equivalently, the model learns to predict the detector level x given the
ground truth y. Conditioning directly on y makes the generative process data-dependent and
enables it to approximate the Bayesian inverse P(x|y) without explicitly computing the prior.
Because the learned conditional distribution implicitly encodes the prior, sampling only
requires the vertex data.



Training the Conditional DM

- We generate a large simulated dataset of vertex—detector data {x0(i),y(i)}, where y is the
vertex level, and x0 is its detector-level version (smeared by gsim). Each x0(i) is then noised

to xt by adding Gaussian noise according to the variance schedule. The pair (xt,y) is used to
train the model.

. At each timestep t, the model eB(xt,y,t) predicts the noise that was added. The training loss is
the mean-squared error between the true noise € and the prediction:

L(0) = Exg e |lle = 02,9, )|

« Minimizing L encourages the network to accurately reverse the noising process. In effect, the

model learns to recover the detector data x0 from the noisy xt given the vertex data y.
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Pseudocode

- Start with a batch of detector-vertex pairs (x0.y).
- Sample a random t and noise e~N(0,1).
- Compute
X; = JouXo + V1 —aye
« The network predicts eB(xt,y.t).
« Compute L and backpropagate to update 8.

- lterate until convergence.
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Our aim: a proof of principle for CLAS detector

- Condition (input): vertex information, i.e., the simulated events (we do know the ground truth in this
case) in the acceptance of the detector.

- Target: corresponding detector measurements for those same particles (gsim CLAS proxy).

In doing this we learn how the vertex information gets “smeared” by the detector, i.e., build a function
capable of generating realistic detector data from the initial particle properties.

Training Procedure:

- For each event, take the detector measurement.

« Gradually add noise to that detector data to create increasingly “distorted” versions.

 Train the network to remove that noise, step by step, using the vertex information as context.

- Actually, the network learns to invert the distortion process: given a noisy version of the detector
data, it must recover the clean measurement, knowing the original vertex values.

« Result of Training: by the end, the model knows how to reconstruct the detector data distribution

that corresponds to any given vertex input. -



Our aim: a proof of principle for CLAS detector

- Start from a completely random set of values (pure noise), without any physical information.

- At each step, the network applies its denoising function, guided by the vertex data (which
remains the fixed condition).

- After several iterations, the noise is progressively removed to produce a final sample: a set of
measurements that mimics exactly what the detector would record for those vertex
properties.

Operational Direction
The flow goes from pure noise, through many “cleaning” steps, to produce synthetic detector
data. In this way, the network has learned to emulate the detector’s response.

Validating Results:

- Compare the characteristics (e.g., histogram shapes up to now) of the generated data with
those of detector data.

- If the distributions match, it means the model has correctly learned how the detector
transforms the vertex information.

13



Our strategy

Let's start from the most populated topolgy (p T+)

Phase space region
P 1= covered by CLAS
D TU+ TT-

T+ TU-

Then we will exploit DMs flexibility for moving from one topology to the other
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Our strategy

Using MC generated 4-vectors sampled from different models and correspondent gsim reconstructed
and train the DM on them:

« Just phase space
lele
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« More refined model with resonances included at the level of cross sections

- Regge-inspired model (by JPAC collaboration) with resonances included at the level of the
amplitude



Let’'s define the moments

do do
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Moment extraction
Let's define the moments from real data by
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FIG. 5. Comparison of complete model fitted to experimental measurements from Ref. [21] of two-pion angular moments (¥} fc
L=0,1,2and M =0,...L for E, = 3.7 GeV and t = —0.45 GeV”. Since all data shown here are fit simultaneously. this correspond
to 600 = 30 = 570 degrees of freedom (d.o.f.).
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Regge model used to fit the experimental

moments

Y ((1‘ /\‘r )

p(p1, A1) (@) p(p2,A2)  p(p1, A1)  (b)
FIG. 4. The scattering amplitude for two pion photoproduction
can be written as a sum of terms as shown in Eq. (12). Dominant
contributions at small momentum transfer can be separated into
two categories based on their Feynman diagram topology.
Diagram (a) shows the production of resonance R (straight
double line) via the exchange of a Reggeon, R (zig-zag double
line). Diagram (b) represents the Deck contribution. Note that
there exists another diagram with the topology of (b) where the
charged pions are exchanged. With this approximation, it is
possible to relate this 2 — 3 process to 2 — 2 processes.

TABLE 1. Resonance parameters employed in this work.
Values are taken from Ref. [23].

R J mp [GeV] 'z [GeV]
f0(500) 0 0.500 0.450
p(770) 1 0.775 0.149
f0(980) 0 0.990 0.055
f>(1270) 2 1.2755 0.1867
fo(1370) 0 1.370 0.350

P.p

Ay (I) — gprmerﬂP(’)* M = "‘l.O. | (22)

are fixed with g,p, =5.96, g,,, =2.506 and fp(t) =
exp(bt) with b = 3.6 GeV~2 are taken from Ref. [19],
while the parameters
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Current state of the project:

- We are training the diffusion model on simulations based on phase space only: generated in
the acceptance + reconstructed (gsim detector proxy)
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Normalized Yield

Current state of the project:

- We are training the diffusion model on simulations based on phase space only: generated in

the acceptance + reconstructed (gsim detector proxy)
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Next steps

« Uncertainty quantification: While diffusion models are inherently stochastic, rigorous
uncertainty estimates for unfolded results are needed. Approaches include Bayesian
treatments of the model or ensembles. Studies note that incorporating uncertainty estimation
(e.g. sampling variance, systematic errors) is crucial for practical use.

- Domain adaptation: Real data may not perfectly match the simulation used for training.
Domain-adaptation techniques (e.g. adversarial learning, transfer learning) could adapt the
cDM to detector-data differences without labels.

- Handling edge cases: Special attention must be given to particles outside detector acceptance
or rare phase-space regions. The model should ideally be able to flag or properly treat such
outliers.

- Systematics and physics constraints: Integrating known systematic uncertainties and
enforcing physical constraints (like energy-momentum conservation) during sampling remain
open challenges.
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Future directions

- Enlarge as much as possible the measured phase space adding all topologies through
this diffusion model procedure

-« Application of our DM & Collaboration with GlueX people to enlarge it way more including the
phase space measured by them: note that - independently on the techniques that they will use
to unfold GlueX detector effect - we will be able to compare momenta distribution extracted
at the vertex level by us and them in the region overlapped by the two detectors -> this is
another sanity check that our DM-unfolding procedure works

- This - as far as we know - never tried approach can reduce a lot the model dependence that
we introduce extrapolating the cross section in the unmeasured phase space region

23
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