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Density Ratios

Often we require the ratio of two different distributions
=Density Ratio.

Examples include efficiency calculations, weighting...

In 1D (2D) we may just use 2 histograms and create a 3rd which
is their ratio.

This becomes complicated with more dimensions, or low
statistics. ..

Alternatively we can learn density ratios in N dimensions using
binary classification.
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Motivation: Fast Simulation

Simulations are key to any High Energy and Nuclear
Physics experiment.

Simulations can be computationally expensive.
Increased luminosities and detector complexity leads
to increased computational overhead.

Instead we want to create ML-based fast MC that
can accurately reproduce simulated data.

Two step process:
* Simulate Efficiency with density ratio estimation
¢ Simulate Resolution
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Motivation: Training with sWeights
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different event sources to the experimental data.

sVWeights are a generalization of side-band subtraction
weights to situations where there is no clear region of
isolated background which can be used to subtract from
the total event sample.

7000

6000

Aim to train ML
algorithm on signal.

30007
20001

1000

5000

4000

Signal & Background
sWeighted Signal

{ Signal
] M. Pivk, ER.Le Diberder.
P \.’ .:"ﬁ."‘*x w@;
ip‘ o - . .
- -y e, nfold data distribution
Nud. Instrum, Meth. A, 555
(2005).
P e
) 5 ’ b |
T 5 * -
i ] ;" \
J‘I .u.v.- l'k /—7 ‘.
-3 -2 A1 '¢[£Jad]‘ 17373 ferson Lab CIQS"


https://www.sciencedirect.com/science/article/pii/S0168900205018024?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0168900205018024?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0168900205018024?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0168900205018024?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0168900205018024?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0168900205018024?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0168900205018024?via%3Dihub

Motivation: Training with sWeights

Fit expected pdf to discriminating variables to obtain
sWeights that allow to reconstruct distribution of
control variables.

Negative weights are necessary to preserves the
statistical properties of the dataset eg correct
uncertainties and normalisation. Creates issues for ML

training:
L(F () = —Zi w; (g log f () + (1 = y) log(1 = f(x)))
If we recast the weights to positive definite probabilities

we can use sWeights to train ML algorithms on
experimental data.

This can be done using density ratio estimation.
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Binary Classification for Density Ratios

Fast Simulation

The efficiency of a detector can be estimated from the ratio
of the probability densities for all generated and accepted
events:

Dq(x)

Dgyi (x)

e(x) =

Create a training sample with all accepted events as class |
and all events as class 0. Output for class I:

Da(x)
f o) = S Do
_ I (x;)
=se(x) = =G

sWeights

sWeights for a given species are equivalent to the ratio of
their probability density over the sum of probability densities
of all species in the data:

ne)
Ds(x) + Dbg(x) B

D¢(x)

Who =
PR Dall(x)

Create a training sample with all events weighted by signal
sWeights as class | and all events weighted by | as class 0:

f(xi)
1 —f(x;)

Wpr =

Loss function is now:
L(f(®) = —%; (wyy; log f(x) + (1 — y) log(1 — f(x)))
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Binary Classification for Density Ratios

Fast Simulation

The efficiency of a detect
of the probability dens;j
events:

Create a trainin
and all events as

Two key takeaways are:

Creating the training sample with all events
as class 0 and signal events as class | allows
to learn density ratio of class | over class 0.

Creating the training sample in such a way
allows to use the binary cross-entropy loss
function even in the presence of negative
weights (and so long as the sum of weights is

less negative than the number of events).

sWeights

ts for a given species are equivalent to the ratio of

bility density over the sum of probability densities
(n the data:

_ Ds(x) _ D,(x)
. Ds(x) + Dbg(x) - Doy (%)

mple with all events weighted by signal
and all events weighted by | as class O:

_ f(xi)
1= f(xy)

WDR

S NOw:!

= _Zi (Wiyi lOg f(xl) + (1 - yl) lOg(l _ f(xl)))

Similar approach as: B. Nachman, J. Thaler, Phys.
Rev. D, 102,076004 (2020).




sWeight Dataset

Create toy event generator to produce three dimensional

events:

* mass such as an invariant mass as discriminatory
variable

* azimuthal (¢) angular distribution

* z=cos 6.

Signal events were generated with a Gaussian distribution
in mass and a cos 2¢ modulation of amplitude 0.8. Can
change eg the frequency

Background events were generated with a linear
polynomial distribution in mass and a cos 2¢ modulation of
amplitude -0.2.

The aim is to measure the signal amplitude in ¢ by
unfolding the signal distribution in the control variables ¢
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See github repo
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https://github.com/rtysonCLAS12/DR4sWeights_toy

sWeight Performance

Repeat test 50 times, obtain mean amplitude and uncertainty and standard deviation of

the amplitude. The expectations are:

e Mean should be consistent with the nominal value of 0.8

e Mean uncertainty and standard deviation should be numerically similar i.e. the
fluctuation of results is consistent with the calculated uncertainty

sWeighted uncertainty is calculated by taking the sum of the squared sWeights.
= This doesn’t work with converted weights. Either propagate sWeight uncertainty or
convert it with density ratios

Fast training & prediction rates (order of 100s of kHz).

Method =
(signal:bg) uncertainty

sVWeights
(1:2) 0.802 £ 0.0089 0.0082 0.92
(1:9) 0.804 + 0.0274 0.0244 0.89
drWeights
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(1:9) 0.793 £ 0.0285 0.0260 0.91
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Learning algorithms introduce some
bias. Typically seen as smoothing
over of sharp features.

= Increase the frequency of the
modulation with a (1:9) signal to
background ratio to get sharper
features
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Correcting the Bias

We can apply the method as many times as we
want, ie we correct the learned density ratios. If
weights are similar, correcting weights should be |
(or close to).

Class 0 has all events with weights produced by
previous density ratio estimation, predicted weights

are product of the weights obtained by all models.

Better performance but training is less stable.
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Fast MC Dataset: CLASI|2

CLAS12
Aim to reproduce simulation from dedicated Geant4 Forward Detecto

framework GEMC.

Forward Tagger has polar angle coverage of 2.5 to 4 degrees. CLAS12

The Forward Detector has polar angle coverage of 5 to 35
degrees. Has six sectors in azimuthal angle

The Central Detector has polar angle coverage of 35 to 125
degrees.

Here I'm showing examples based on DVCS ep — e'yp and
ep —» e'nK*K~nt at CLASI2,also tested with a toy detector
(see github repo for all examples).

.ggtggon Lab Clqé‘ﬁ


https://github.com/dglazier/macparticles

Fast MC Efficiency

=N

Y ¢[Radians]
w

Efficiency Density Ratio estimation using first a neural network then
correct with a gradient boosted decision tree.

In DVCS (ep — e'yp) electron is detected in the forward detector, 0.30 Acceptance vs Q°
photon in the forward tagger and forward detector, proton in the ] ¢ GEMC
central detector. 0.251 b FastMC

Training to reproduce GEMC (~| Hz), achieve ~10 kHz prediction rate.
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What about Resolution?

If the detector measures p, = Pirye + 0P ,aim to learn the §p distribution (and on angles or other quantities).

Overfit decision trees, accurately produces dp but they produce one value of §p for any one point in the training feature space.
From toy
Add random input variables, complexifies input feature space. Now predict different values of dp. detector
Train N decision trees with different random inputs, ie N different predictions. Pick DT at random during prediction time.
Momentum Resolution for Fixed P/6/¢ Momentum Resolution for Fixed P/6/¢ Momentum Resolution for Fixed P/6/¢
100000 20000 . —#— Fit to Toy Resolution
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No Random Input, | DT 5 Random Input, | DT 5 Random Input, 50 DTs 5 Random Input, 50 DTs
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Fast MC Efficiency and Resolution

Accurate multidimensional acceptance and
resolution.

Able to predict any resolution distribution (eg
non gaussian, tails etc).

~10% increase in prediction rate.

Simple algorithms: works out of the box, no
further tuning required
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Learning Efficiencies from Experimental Data

Can use both sVVeight and
Efficiency Density Ratio learning
together.

Aim to learn neutron detection
efficiency from ratio of ep —
e'ttn to ep » e'wt(n) without
relying on simulation.

Produce sWeights from template

fit to neutron peak in missing mass

of ep » e'mt(X).
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Conclusion

Density ratios can be used to model many common
problems in hadron spectroscopy.

Density ratios can be accurately learned using binary
classification algorithms.

Presented two use cases:

 Efficiency mapping for fast simulation

* Learning sWeights to produce training samples from
experimental data

These two use cases can be combined to map detector
efficiencies from exclusive reactions in experimental

data.

Other applications will exist: eg converting weights to
positive probabilities for likelihood fitting.

Any suggestions?
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Density Ratios

700

— | 00x fewer events

600 A 25
500: B 2 J
Often we require the ratio of two different a0, s AIB Jr
distributions =Density Ratio. soor Ul 1 m’ |
200 Hﬁm L I_]H'
1 00: bhﬁL’L 05 .JL"VWR_.M“ RN A 6
Examples include efficiency calculations, | Ty 12 A
0 0 00 2 4 6 8 101214 16 18 20 00 2 4 6 8 1012 14 16 18 20 [ 5
weighting... . 0 B AlB
| 4
a
c 3 25 A’B ' 3
In 1D (2D) we may just use 2 histograms 6

. . \ 2 NeuralNetwork | | )
and create a 3rd which is their ratio. . ) ki s
15 Classification ﬁwf zﬂu ; | 4 1 lj ’L
. i !
ThIS becomes Complicated Wlth more ! A % 2 4 6 8 101214 16 18 20 2]|J 6 [L 12 11 15‘13J\Eo
. o 0 ~0 OSM}J 3

dimensions, or low statistics...

. 'AB
AI . I I d . . . 00 2 4 6 8 10 12 14 16 18 20 ‘2 NeuralNetNO
ternatlve)’ we can learn enS|t)’ ratios in Classrnc tl'Dn

N dimensions using binary classification.

1 14 16 18 20




Multiparticle effects

20

Naive expectation is that:
A(p1, 02, p3) = A(p1) - A(p2) - A(p3)

In reality we have multi particle effects:

A(p1,02,v3) = A(P1lp2,03) - A(P2lD1, P3 ) - A(pslp1, p2)

Two solutions, first train acceptance particle per particle or
event by event and a correction for multi particle effects:

A(p1,p2,03) = A'(py) - A'(p2) - A'(p3) - C(p1, P2, 03)

Or train with all final state particles to learn A(pq, p,, P3)
directly.

First method exemplified here with ep —» e'nK*K n
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