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Density Ratios

Often we require the ratio of two different distributions 

⇒Density Ratio.

Examples include efficiency calculations, weighting…

In 1D (2D) we may just use 2 histograms and create a 3rd which 

is their ratio.

This becomes complicated with more dimensions, or low 

statistics…

Alternatively we can learn density ratios in N dimensions using 

binary classification. 

Fast Simulations - arXiv:2207.11254 

Training with sWeights - arXiv:2409.08183  

https://arxiv.org/abs/2207.11254
https://arxiv.org/abs/2409.08183
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Motivation: Fast Simulation

Simulations are key to any High Energy and Nuclear 

Physics experiment.

Simulations can be computationally expensive. 

Increased luminosities and detector complexity leads 

to increased computational overhead.

Instead we want to create ML-based fast MC that 

can accurately reproduce simulated data. 

Two step process:

• Simulate Efficiency with density ratio estimation

• Simulate Resolution
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Motivation: Training with sWeights

Often rely on simulated data to train ML algorithms, this 

relies on perfect agreement between simulation and 

experimental data.

To train ML algorithm with experimental data we need 

to separate contributions from different event sources. 

The sPlot formalism aims to unfold the contributions of 

different event sources to the experimental data.

sWeights are a generalization of side-band subtraction 

weights to situations where there is no clear region of 

isolated background which can be used to subtract from 

the total event sample.

Discriminating 

Variable

Aim to train ML 

algorithm on signal.

M. Pivk, F. R. Le Diberder. 

SPlot: A Statistical tool to 

unfold data distributions. 

Nucl. Instrum. Meth. A, 555 

(2005).

https://www.sciencedirect.com/science/article/pii/S0168900205018024?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0168900205018024?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0168900205018024?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0168900205018024?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0168900205018024?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0168900205018024?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0168900205018024?via%3Dihub
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Motivation: Training with sWeights

Fit expected pdf to discriminating variables to obtain 

sWeights that allow to reconstruct distribution of 

control variables. 

Negative weights are necessary to preserves the 

statistical properties of the dataset eg correct 

uncertainties and normalisation.  Creates issues for ML 

training:

𝐿 𝑓 𝐱 = −Σ𝑖 𝑤𝑖 (𝑦𝑖 log 𝑓 𝑥𝑖 + 1 − 𝑦𝑖  log(1 − 𝑓 𝑥𝑖 ))

If we recast the weights to positive definite probabilities 

we can use sWeights to train ML algorithms on 

experimental data.

This can be done using density ratio estimation.

Discriminating 

Variable

Aim to train ML 

algorithm on signal.

M. Pivk, F. R. Le Diberder. 

SPlot: A Statistical tool to 

unfold data distributions. 

Nucl. Instrum. Meth. A, 555 

(2005).

https://www.sciencedirect.com/science/article/pii/S0168900205018024?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0168900205018024?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0168900205018024?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0168900205018024?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0168900205018024?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0168900205018024?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0168900205018024?via%3Dihub
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Binary Classification for Density Ratios

The efficiency of a detector can be estimated from the ratio 

of the probability densities for all generated and accepted 

events:

ε 𝑥 =
𝐷𝑎(𝒙)

𝐷𝑎𝑙𝑙(𝒙)

Create a training sample with all accepted events as class 1 

and all events as class 0. Output for class 1:

𝑓 𝑥𝑖 =
𝐷𝑎 𝐱

𝐷𝑎 𝐱 + 𝐷𝑎𝑙𝑙 𝐱

⇒ε 𝑥 =
𝑓 𝑥𝑖

1 − 𝑓 𝑥𝑖

Fast Simulation

sWeights for a given species are equivalent to the ratio of 

their probability density over the sum of probability densities 

of all species in the data:

W𝐷𝑅 =
𝐷𝑠 𝐱

𝐷𝑠 𝐱 +  𝐷𝑏𝑔 𝐱
=

𝐷𝑠 𝐱

𝐷𝑎𝑙𝑙 𝐱
 

Create a training sample with all events weighted by signal 

sWeights as class 1 and all events weighted by 1 as class 0:

W𝐷𝑅 =
𝑓 𝑥𝑖

1 − 𝑓 𝑥𝑖

Loss function is now:

𝐿 𝑓 𝐱 = −Σ𝑖 (𝑤𝑖𝑦𝑖 log 𝑓 𝑥𝑖 + 1 − 𝑦𝑖  log(1 − 𝑓 𝑥𝑖 ))

sWeights
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Binary Classification for Density Ratios

The efficiency of a detector can be estimated from the ratio 

of the probability densities for all generated and accepted 

events:

ε 𝑥 =
𝐷𝑎(𝒙)

𝐷𝑎𝑙𝑙(𝒙)

Create a training sample with all accepted events as class 1 

and all events as class 0. Output for class 1:

𝑓 𝑥𝑖 =
𝐷𝑎 𝐱

𝐷𝑎 𝐱 + 𝐷𝑎𝑙𝑙 𝐱

⇒ε 𝑥 =
𝑓 𝑥𝑖

1 − 𝑓 𝑥𝑖

Fast Simulation

sWeights for a given species are equivalent to the ratio of 

their probability density over the sum of probability densities 

of all species in the data:

W𝐷𝑅 =
𝐷𝑠 𝐱

𝐷𝑠 𝐱 +  𝐷𝑏𝑔 𝐱
=

𝐷𝑠 𝐱

𝐷𝑎𝑙𝑙 𝐱
 

Create a training sample with all events weighted by signal 

sWeights as class 1 and all events weighted by 1 as class 0:

W𝐷𝑅 =
𝑓 𝑥𝑖

1 − 𝑓 𝑥𝑖

Loss function is now:

𝐿 𝑓 𝐱 = −Σ𝑖 (𝑤𝑖𝑦𝑖 log 𝑓 𝑥𝑖 + 1 − 𝑦𝑖  log(1 − 𝑓 𝑥𝑖 ))

sWeights

Two key takeaways are:

Creating the training sample with all events 

as class 0 and signal events as class 1 allows 

to learn density ratio of class 1 over class 0.

Creating the training sample in such a way 

allows to use the binary cross-entropy loss 

function even in the presence of negative 

weights (and so long as the sum of weights is 

less negative than the number of events). 

Similar approach as: B. Nachman, J. Thaler, Phys. 

Rev. D, 102, 076004 (2020).
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sWeight Dataset

Create toy event generator to produce three dimensional 

events: 

• mass such as an invariant mass as discriminatory 

variable 

• azimuthal (ϕ) angular distribution 

• z = cos θ. 

Signal events were generated with a Gaussian distribution 

in mass and a cos 2ϕ modulation of amplitude 0.8. Can 

change eg the frequency

Background events were generated with a linear 

polynomial distribution in mass and a cos 2ϕ modulation of 

amplitude -0.2. 

The aim is to measure the signal amplitude in ϕ by 

unfolding the signal distribution in the control variables ϕ
and z

See github repo

https://github.com/rtysonCLAS12/DR4sWeights_toy
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sWeight Performance

Pull =
(𝑁𝑠𝑊 − 𝑁𝑑𝑟𝑊)

𝜎𝑑𝑟
2 + 𝜎𝑠𝑊

2

Method

(signal:bg)

Mean σ σ 

𝐮𝐧𝐜𝐞𝐫𝐭𝐚𝐢𝐧𝐭𝐲

sWeights

(1:2)

(1:9)

0.802 ± 0.0089

0.804 ± 0.0274

0.0082

0.0244

0.92

0.89

drWeights

(1:2)

(1:9)

0.807 ± 0.0092

0.793 ± 0.0285

0.0093

0.0260

1.01

0.91

Repeat test 50 times, obtain mean amplitude and uncertainty and standard deviation of 

the amplitude. The expectations are:

• Mean should be consistent with the nominal value of 0.8 

• Mean uncertainty and standard deviation should be numerically similar i.e. the 

fluctuation of results is consistent with the calculated uncertainty

sWeighted uncertainty is calculated by taking the sum of the squared sWeights.

⇒ This doesn’t work with converted weights. Either propagate sWeight uncertainty or 

convert it with density ratios

Fast training & prediction rates (order of 100s of kHz).
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Bias

Learning algorithms introduce some 

bias. Typically seen as smoothing 

over of sharp features.

⇒ Increase the frequency of the 

modulation with a (1:9) signal to 

background ratio to get sharper 

features
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Correcting the Bias

We can apply the method as many times as we 

want, ie we correct the learned density ratios. If 

weights are similar, correcting weights should be 1 

(or close to).

Class 0 has all events with weights produced by 

previous density ratio estimation, predicted weights 

are product of the weights obtained by all models.

Better performance but training is less stable.
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Fast MC Dataset: CLAS12

github repo

Aim to reproduce simulation from dedicated Geant4 
framework GEMC.

Forward Tagger has polar angle coverage of 2.5 to 4 degrees.

The Forward Detector has polar angle coverage of 5 to 35 
degrees. Has six sectors in azimuthal angle

The Central Detector has polar angle coverage of 35 to 125 
degrees.

Here I’m showing examples based on DVCS 𝑒𝑝 → 𝑒′𝛾𝑝 and 

𝑒𝑝 → 𝑒′𝑛𝐾+𝐾−𝜋+ at CLAS12, also tested with a toy detector 

(see github repo for all examples).

https://github.com/dglazier/macparticles
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Fast MC Efficiency

Efficiency Density Ratio estimation using first a neural network then 

correct with a gradient boosted decision tree.

In DVCS (𝑒𝑝 → 𝑒′𝛾𝑝) electron is detected in the forward detector, 

photon in the forward tagger and forward detector, proton in the 

central detector. 

Training to reproduce GEMC (~1 Hz), achieve ~10 kHz prediction rate.

Sharp Features
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What about Resolution?

If the detector measures 𝑝𝑟 = 𝑝𝑡𝑟𝑢𝑒 + 𝛿𝑝 , aim to learn the 𝛿𝑝 distribution (and on angles or other quantities).

Overfit decision trees, accurately produces 𝛿𝑝 but they produce one value of 𝛿𝑝 for any one point in the training feature space.

Add random input variables, complexifies input feature space. Now predict different values of 𝛿𝑝.

Train N decision trees with different random inputs, ie N different predictions. Pick DT at random during prediction time.

No Random Input, 1 DT 5 Random Input, 1 DT 5 Random Input, 50 DTs

From toy 

detector

5 Random Input, 50 DTs
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Fast MC Efficiency and Resolution

Accurate multidimensional acceptance and 

resolution.

Able to predict any resolution distribution (eg 

non gaussian, tails etc).

~104 increase in prediction rate.

Simple algorithms: works out of the box, no 

further tuning required

𝑒− → 𝑒−𝛾 

tail

Decreased 

momentum 

close to 

edge of 

forward 

tagger
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Learning Efficiencies from Experimental Data

Can use both sWeight and 

Efficiency Density Ratio learning 

together.

Aim to learn neutron detection 

efficiency from ratio of 𝑒𝑝 →
𝑒′𝜋+𝑛 to 𝑒𝑝 → 𝑒′𝜋+ 𝑛  without 

relying on simulation.

Produce sWeights from template 

fit to neutron peak in missing mass 

of 𝑒𝑝 → 𝑒′𝜋+(𝑋).
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Conclusion

Density ratios can be used to model many common 

problems in hadron spectroscopy.

Density ratios can be accurately learned using binary 

classification algorithms.

Presented two use cases:

• Efficiency mapping for fast simulation

• Learning sWeights to produce training samples from 

experimental data

These two use cases can be combined to map detector 

efficiencies from exclusive reactions in experimental 

data.

Other applications will exist: eg converting weights to 

positive probabilities for likelihood fitting.

Any suggestions?

Macparticles fast 

MC github repo

DR4sWeights 

github repo

https://github.com/dglazier/macparticles
https://github.com/dglazier/macparticles
https://github.com/rtysonCLAS12/DR4sWeights_toy
https://github.com/rtysonCLAS12/DR4sWeights_toy
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Density Ratios

100x fewer events

Often we require the ratio of two different 

distributions ⇒Density Ratio.

Examples include efficiency calculations, 

weighting…

In 1D (2D) we may just use 2 histograms 

and create a 3rd which is their ratio.

This becomes complicated with more 

dimensions, or low statistics…

Alternatively we can learn density ratios in 

N dimensions using binary classification. 



20

Multiparticle effects

Naïve expectation is that:

𝐴 𝑝1, 𝑝2, 𝑝3 = 𝐴(𝑝1 ) ∙ 𝐴(𝑝2) ∙ 𝐴(𝑝3)

In reality we have multi particle effects:

𝐴 𝑝1, 𝑝2, 𝑝3 = 𝐴 𝑝1 𝑝2, 𝑝3 ∙ 𝐴 𝑝2 𝑝1, 𝑝3 ∙ 𝐴 𝑝3 𝑝1, 𝑝2 

Two solutions, first train acceptance particle per particle or 

event by event and a correction for multi particle effects:

𝐴 𝑝1, 𝑝2, 𝑝3 ≈ 𝐴′ 𝑝1 ∙ 𝐴′ 𝑝2 ∙ 𝐴′ 𝑝3 ∙ 𝐶 𝑝1, 𝑝2, 𝑝3

Or train with all final state particles to learn 𝐴 𝑝1, 𝑝2, 𝑝3  

directly.

First method exemplified here with 𝑒𝑝 → 𝑒′𝑛𝐾+𝐾−𝜋+

[GeV]

Acceptance per 

particle with 

correction

Acceptance per 

particle
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