Amplitude extraction with generative Al

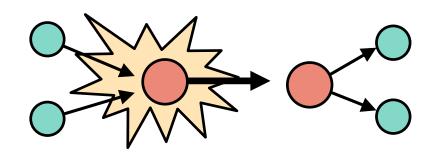
Glòria Montaña

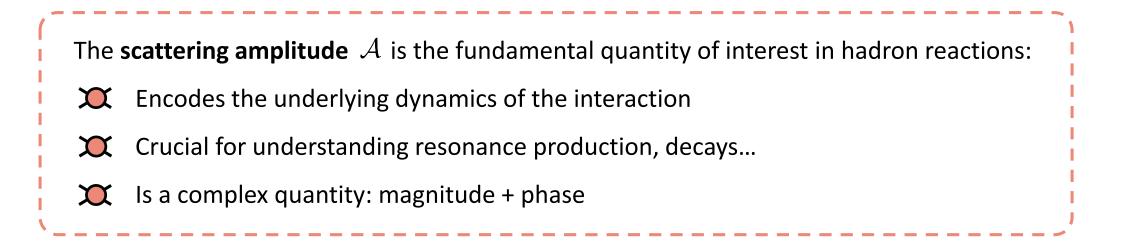
Jefferson Lab

In collaboration with M. Battaglieri, A. Pilloni, Y. Li and others

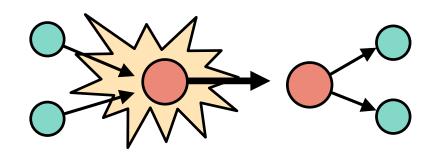
"AI for Hadron Spectroscopy at JLab" workshop Jefferson Lab, 4-5 June 2025

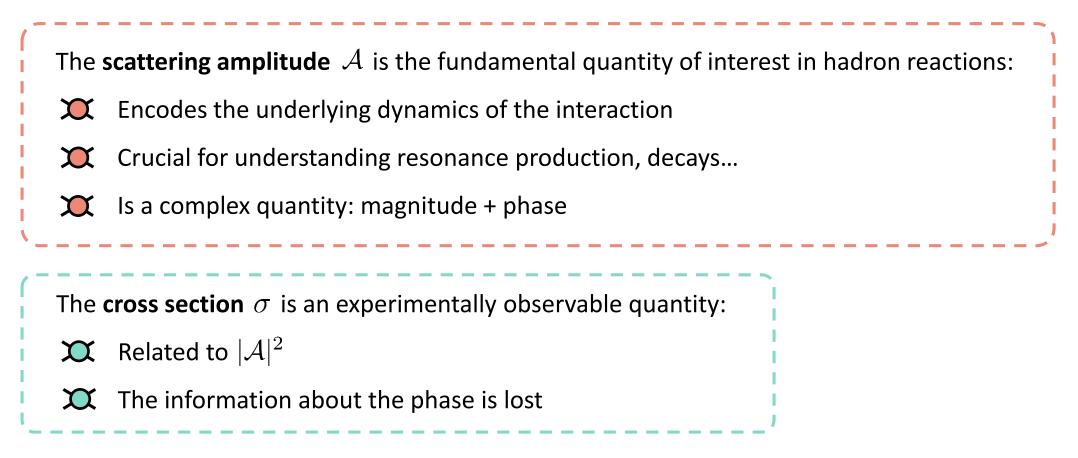
PHYSICS MOTIVATION



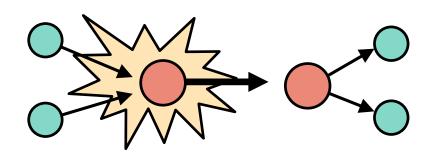


PHYSICS MOTIVATION

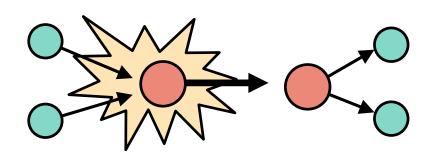




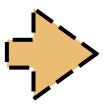
PHYSICS MOTIVATION



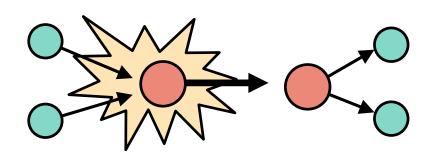
The reconstruction of the amplitude from the differential cross section is hard, even for the simplest elastic $2 \rightarrow 2$ scattering.



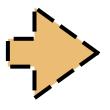
The reconstruction of the amplitude from the differential cross section is a hard inverse problem, even for the simplest elastic $2 \rightarrow 2$ scattering.



Can we use modern machine-learning techniques to recover the scattering amplitude from experimental data of cross sections?



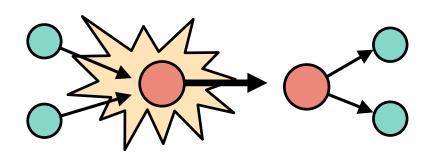
The reconstruction of the amplitude from the differential cross section is a hard inverse problem, even for the simplest elastic $2 \rightarrow 2$ scattering.



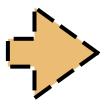
Can we use modern machine-learning techniques to recover the scattering amplitude from experimental data of cross sections?

Why physics-constrained **GANs**?

- X Learn distributions and patterns of the (pseudo) data
- Incorporate physics constraints



The reconstruction of the amplitude from the differential cross section is a hard inverse problem, even for the simplest elastic $2 \rightarrow 2$ scattering.



Can we use modern machine-learning techniques to recover the scattering amplitude from experimental data of cross sections?

Why physics-constrained **GANs**?

- X Learn distributions and patterns of the (pseudo) data
 - Incorporate physics constraints

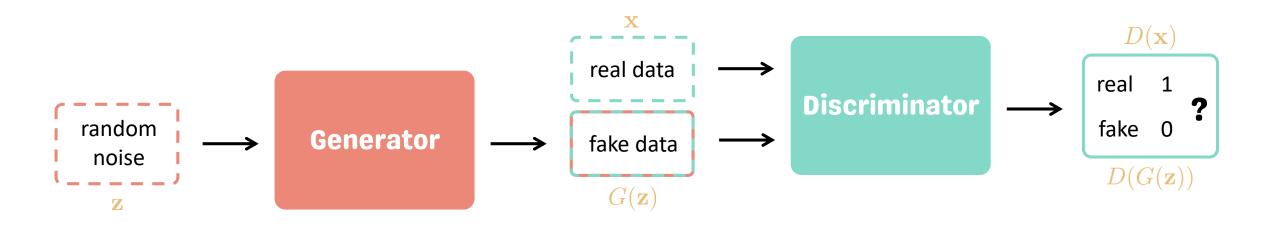
The modulus and phase of the scattering amplitude are related by the **unitarity relation**.

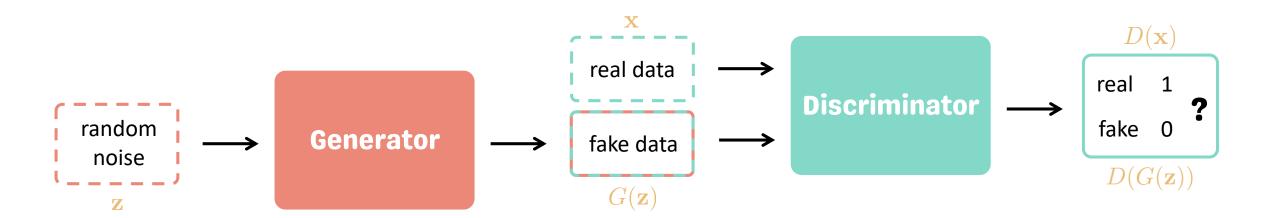
Two neural networks:

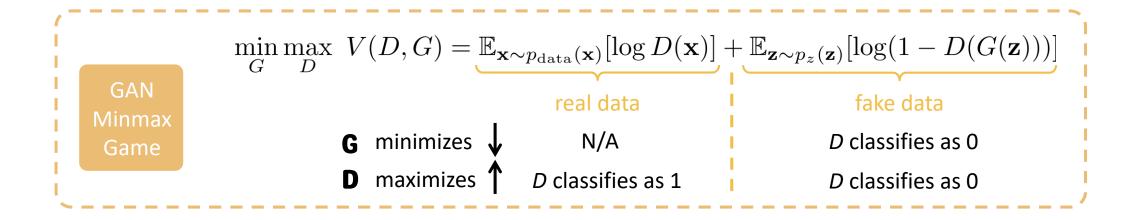
X The **generator** needs to capture the data distribution

Two neural networks:

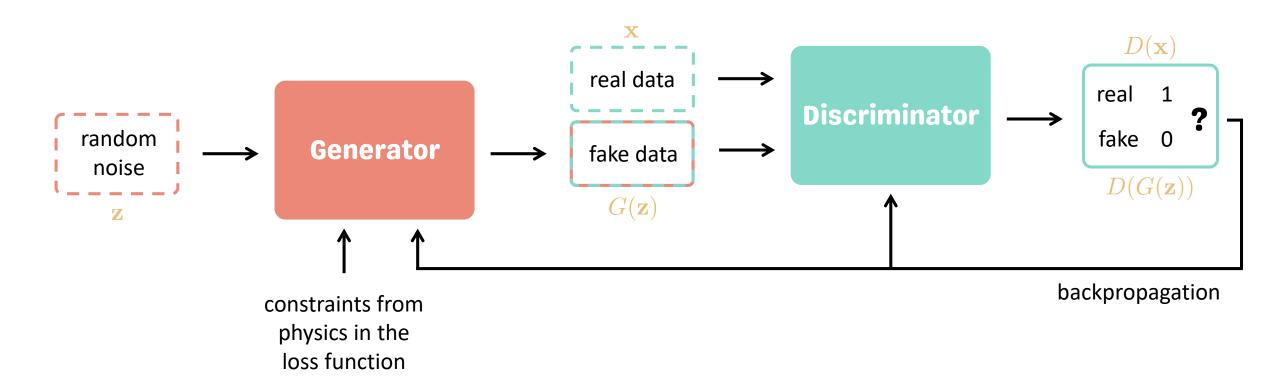
- X The **generator** needs to capture the data distribution
- X The **discriminator** estimates the probability that a sample comes from the training data rather than from the generator





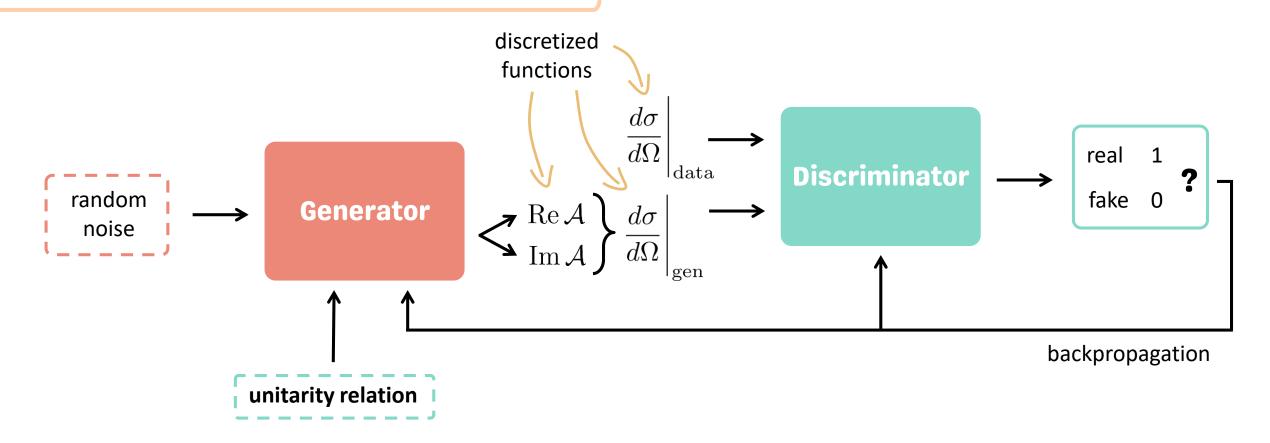


INTRODUCING PHYSICS CONSTRAINTS



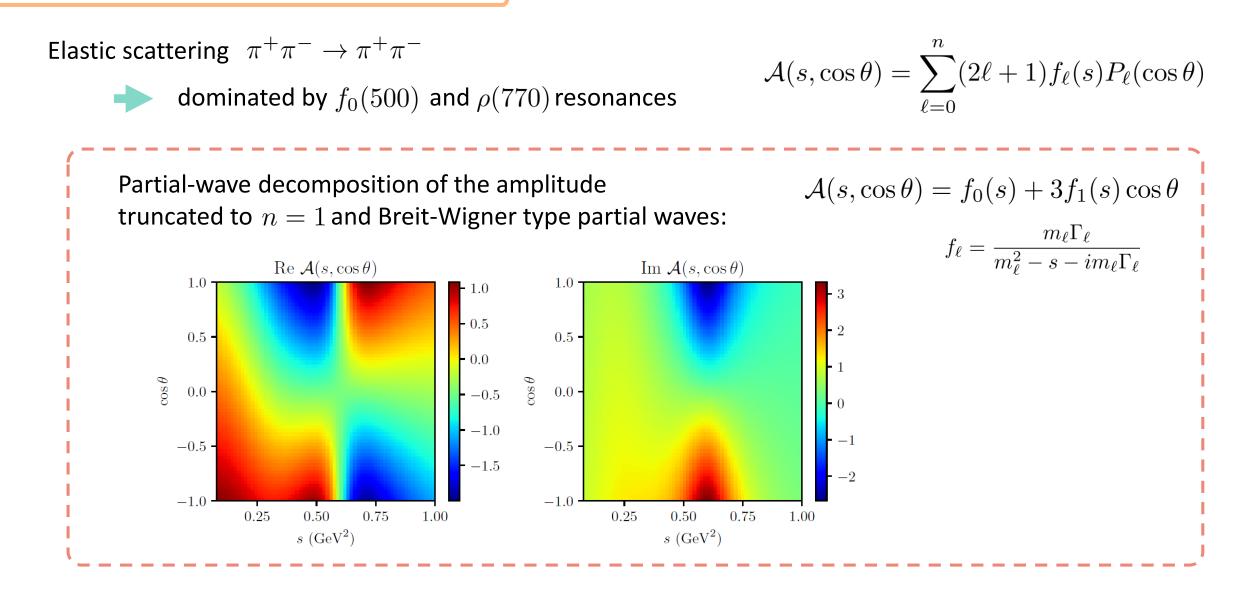
4.3

INTRODUCING PHYSICS CONSTRAINTS



5.1

PION-PION ELASTIC SCATTERING

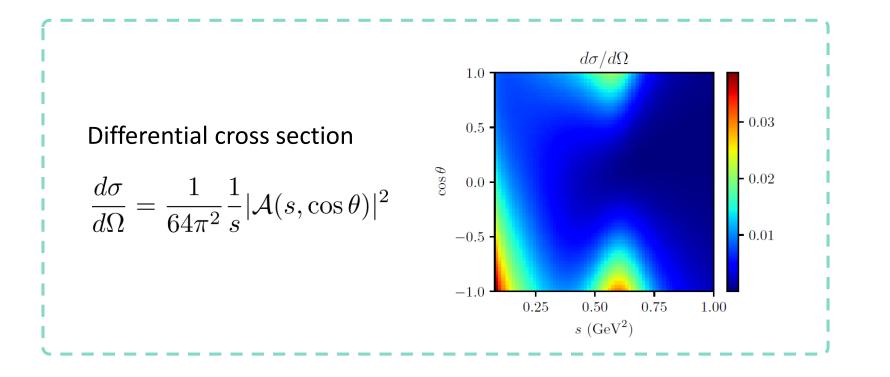


PION-PION ELASTIC SCATTERING

Elastic scattering $\pi^+\pi^- \rightarrow \pi^+\pi^-$

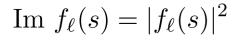
dominated by $f_0(500)$ and ho(770) resonances

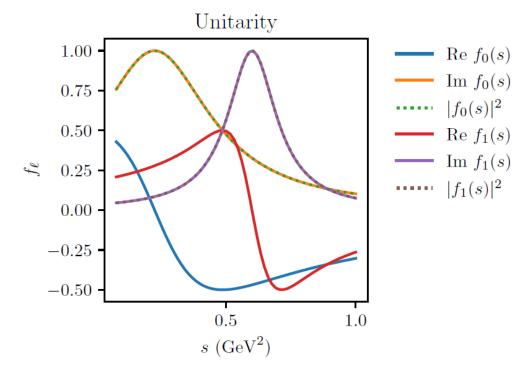
 $\mathcal{A}(s,\cos\theta) = \sum_{\ell=0}^{n} (2\ell+1) f_{\ell}(s) P_{\ell}(\cos\theta)$



CONSTRAINTS: UNITARITY

 $oldsymbol{X}$ Unitarity of the partial waves

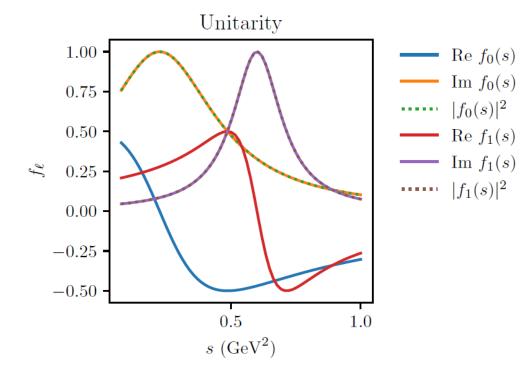




 $f_{\ell}(s) = \frac{1}{2} \int_{-1}^{+1} dz P_{\ell}(z) \mathcal{A}(s, z)$

CONSTRAINTS: UNITARITY

igvee Unitarity of the partial waves ${
m Im} \ f_\ell(s) = |f_\ell(s)|^2$



$$f_{\ell}(s) = \frac{1}{2} \int_{-1}^{+1} dz P_{\ell}(z) \mathcal{A}(s, z)$$

X Integral unitarity relation for the full amplitude

Im
$$\mathcal{A}(s,z) = \frac{1}{4\pi} \int_0^{2\pi} d\phi \int_{-1}^{+1} dz' \mathcal{A}(s,z') \mathcal{A}^*(s,z'')$$

$$z'' = zz' + \sqrt{1 - z^2} \sqrt{1 - z'^2} \cos \phi$$

or, equivalently

$$\sin \Phi(s, z) = \int_0^{2\pi} d\phi \int_{-1}^{+1} dz' \frac{|\mathcal{A}(s, z')| |\mathcal{A}(s, z'')|}{4\pi |\mathcal{A}(s, z)|} \times \cos \left[\Phi(s, z') - \Phi(s, z'') \right]$$

Phase ambiguity: $\mathcal{A}(s,z)
ightarrow -\mathcal{A}^*(s,z)$ $\Phi(s,z)
ightarrow \pi - \Phi(s,z)$

X GAN Loss Function:

MSE Loss Measure the mean squared error between the target and output.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (output_i - target_i)^2$$

GAN Loss Function:

MSE Loss Measure the mean squared error between the target and output.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (output_i - target_i)^2$$

X Physics Constraints Loss Functions:

Unitarity Enforce unitarity by comparing the modulus squared of the integral of the scattering amplitudes over angular variables to the imaginary part.

$$\mathcal{L}_{u} = \frac{1}{N \cdot N_{s} \cdot N_{z}} \sum_{i=1}^{N} \sum_{j=1}^{N_{s}} \sum_{k=1}^{N_{z}} \left(\left| \operatorname{Im} \mathcal{A}(s, z) - \operatorname{Re} \mathcal{I}(s, z) \right| + \left| \operatorname{Im} \mathcal{I}(s, z) \right| \right)$$

with $\mathcal{I}(s, z) = \frac{1}{4\pi} \int_{-1}^{1} dz' \int_{0}^{2\pi} d\phi \left(\mathcal{A}(s, z') \mathcal{A}(s, z''(z, z', \phi)) \right)$

Integral approximator: Simpson's rule

Integral sampling points: $[\cos\theta \times \phi] = 64 \times 10$

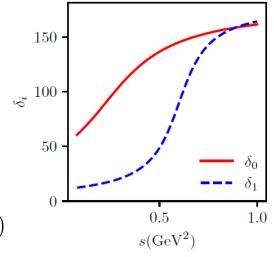
GAN Loss Function:

MSE Loss Measure the mean squared error between the target and output.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (output_i - target_i)^2$$

- **X** Physics Constraints Loss Functions:
- Unitarity Enforce unitarity by comparing the modulus squared of the integral of the scattering amplitudes over angular variables to the imaginary part.
- **d0 Loss** Ensure the positive derivative of the f_0 phase shift.
- **d1 Loss** Ensure the positive derivative of the f_1 phase shift.

$$\mathcal{L}_{D_{\ell}} = \frac{1}{N} \sum_{i=1}^{N} \log\left(\max\left(0, -\Delta\delta_{\ell}(s)\right) + 1\right)$$
$$\delta_{\ell} = \operatorname{atan}\left(\frac{\operatorname{Im} f_{\ell}(s)}{\operatorname{Re} f_{\ell}(s)}\right), \qquad f_{\ell}(s) = \frac{1}{2} \int_{-1}^{+1} dz P_{\ell}(z) \mathcal{A}(s, z)$$



Glòria Montaña – "Al for Hadron Spectroscopy at Jlab"– 5 June 2025

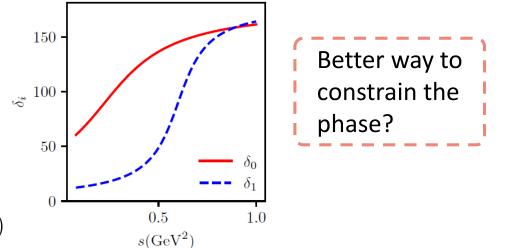
GAN Loss Function:

MSE Loss Measure the mean squared error between the target and output.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (output_i - target_i)^2$$

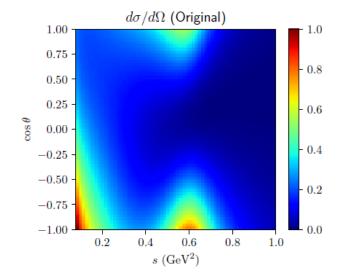
- **X** Physics Constraints Loss Functions:
- Unitarity Enforce unitarity by comparing the modulus squared of the integral of the scattering amplitudes over angular variables to the imaginary part.
- **d0 Loss** Ensure the positive derivative of the f_0 phase shift.
- **d1 Loss** Ensure the positive derivative of the f_1 phase shift.

$$\mathcal{L}_{D_{\ell}} = \frac{1}{N} \sum_{i=1}^{N} \log\left(\max\left(0, -\Delta\delta_{\ell}(s)\right) + 1\right)$$
$$\delta_{\ell} = \operatorname{atan}\left(\frac{\operatorname{Im} f_{\ell}(s)}{\operatorname{Re} f_{\ell}(s)}\right), \quad f_{\ell}(s) = \frac{1}{2} \int_{-1}^{+1} dz P_{\ell}(z) \mathcal{A}(s, z)$$



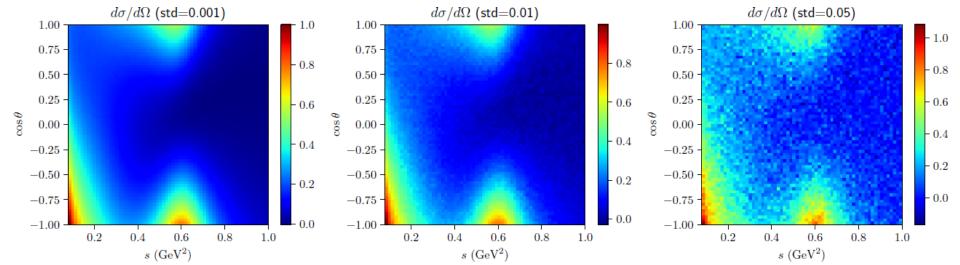
Glòria Montaña – "Al for Hadron Spectroscopy at Jlab"– 5 June 2025

TRAINING DATASET



Normalized differential cross section discretized in grid: $64 \times 64, \ s \in [(2m_{\pi})^2, 1 \text{ GeV}^2], \ \cos \theta \in [-1, 1]$

Training samples with additional gaussian noise:



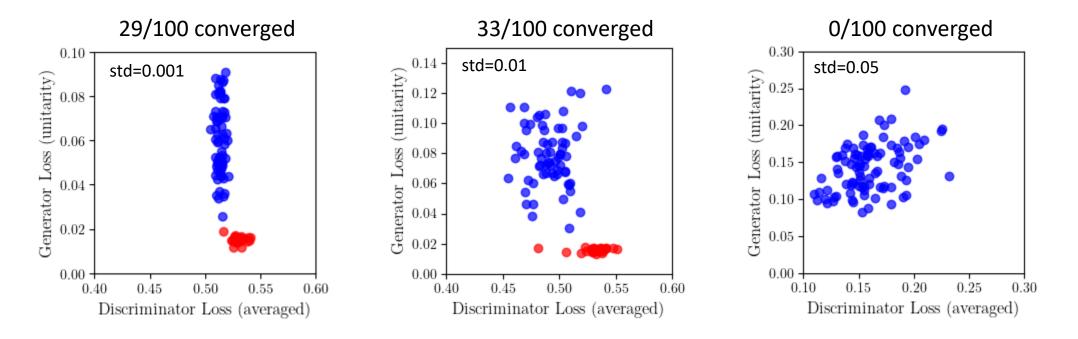
Glòria Montaña – "Al for Hadron Spectroscopy at Jlab"– 5 June 2025

Trained 100 GANs for 200 epochs:

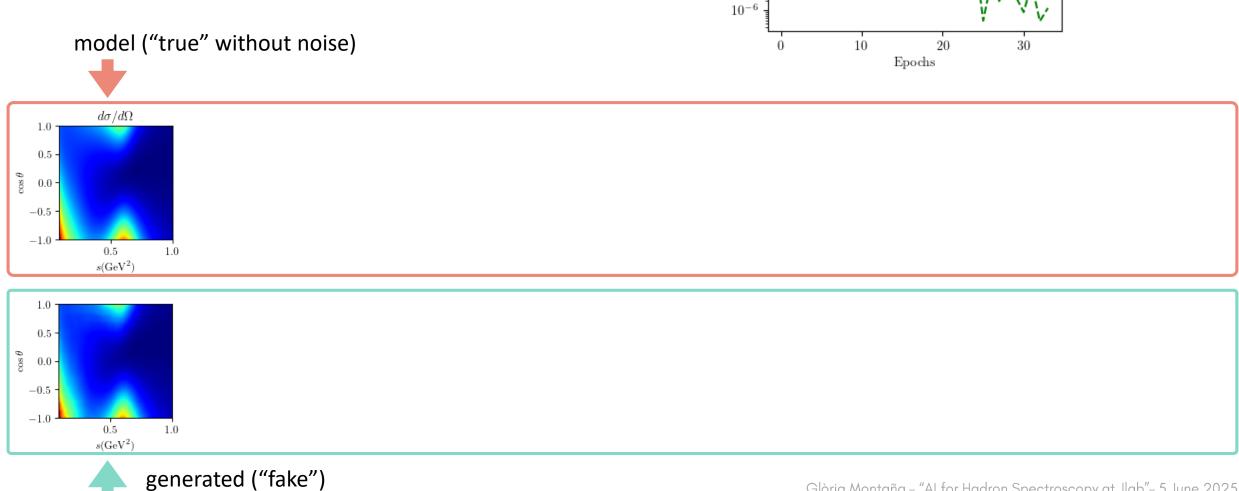
Stop training if unitarity loss is smaller than 0.02 and changes less than 0.01 and for 10 consecutive epochs:

$$\mathcal{L}_{\mathrm{u}} < 0.02$$

 $\mathcal{L}_{\mathrm{u},n} - \mathcal{L}_{\mathrm{u},n-1} < 0.01$



X Example of converged GAN with std=0.01:



 10^{0}

 10^{-1}

 10^{-2}

sg 10^{−3}

 10^{-4}

 10^{-5}

Glòria Montaña – "Al for Hadron Spectroscopy at Jlab"– 5 June 2025

10

 \mathcal{L}_{G}

 $\mathcal{L}_{D(real)}$

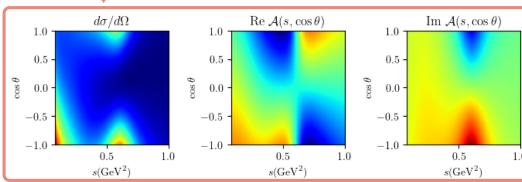
 $\mathcal{L}_{\mathrm{D(fake)}}$

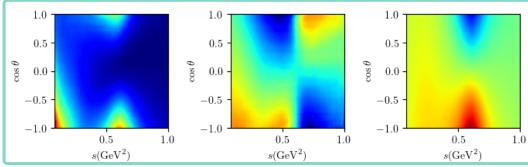
 \mathcal{L}_{G,d_0} --- \mathcal{L}_{G,d_1}

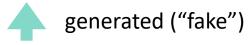
 $\mathcal{L}_{G,unitarity}$

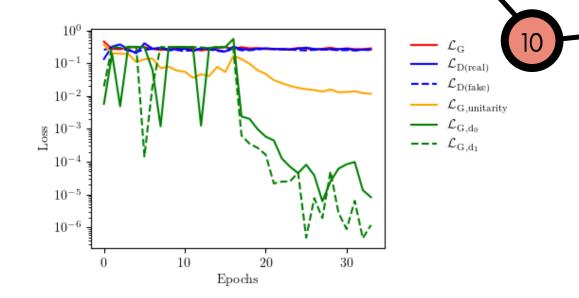
model ("true" without noise)

X Example of converged GAN with std=0.01:



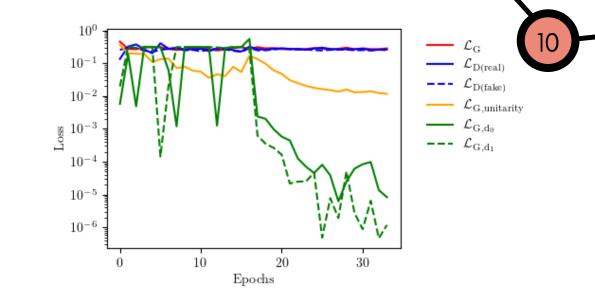




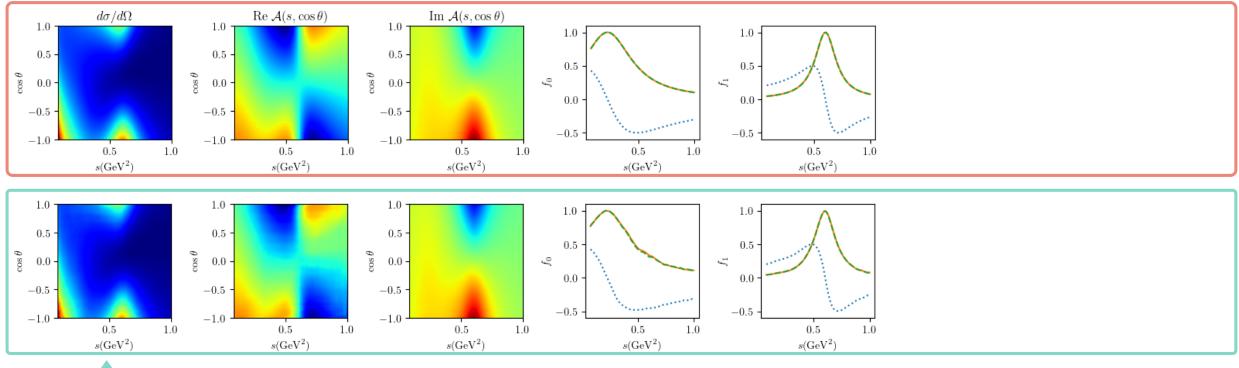


1.0	$d\sigma/d\Omega$	1.0	Re $\mathcal{A}(s, \cos \theta)$	1.0	Im $\mathcal{A}(s, \cos \theta)$
0.5 -		0.5 -		0.5 -	
θ 0.0 -		θ _{so} 0.0 -		θ ⁸ 0.0 -	
-0.5 -		-0.5 -		-0.5 -	
-1.0	0.5	-1.0	0.5	1.0	0.5
	$s(\text{GeV}^2)$		$s(\text{GeV}^2)$		$s(\text{GeV}^2)$

X Example of converged GAN with std=0.01:

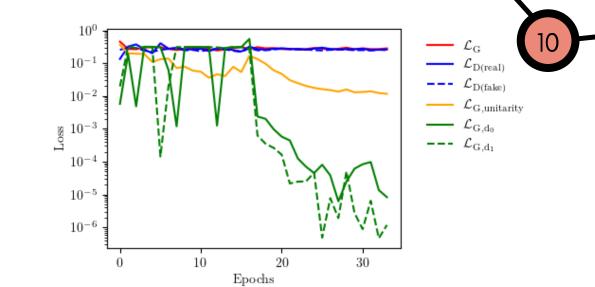


model ("true" without noise)

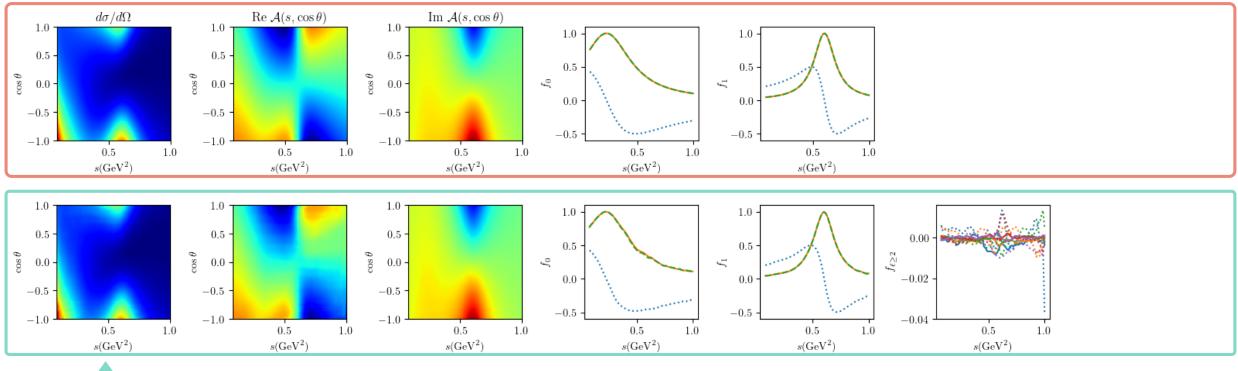


generated ("fake")

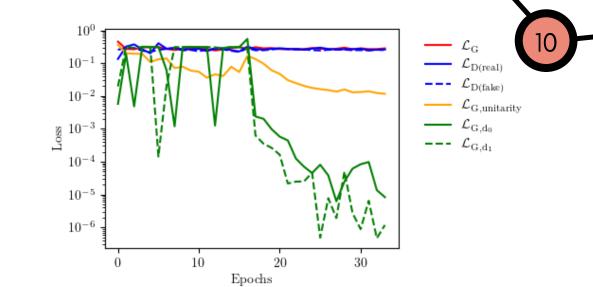
X Example of converged GAN with std=0.01:



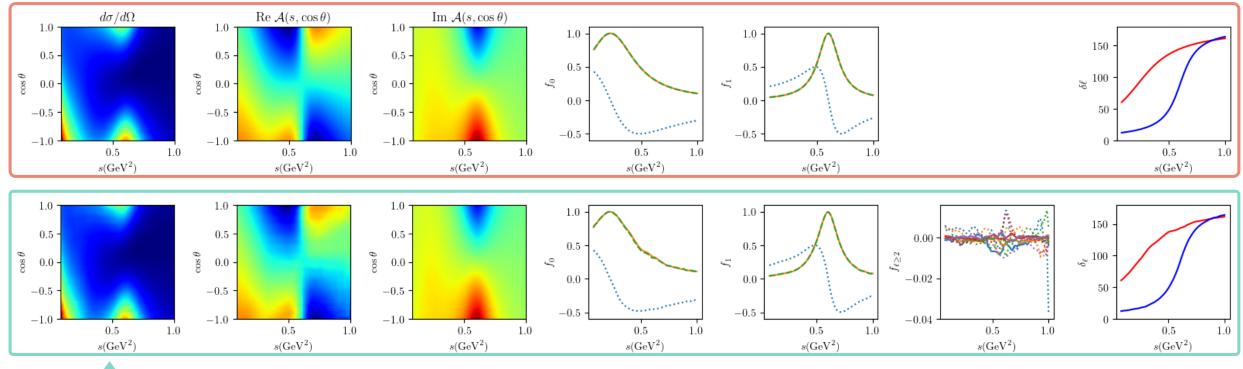
model ("true" without noise)



X Example of converged GAN with std=0.01:

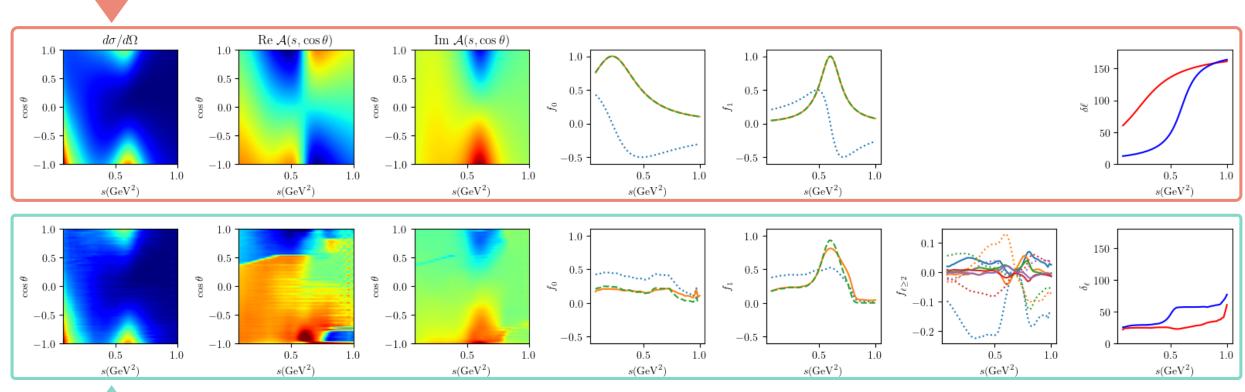


model ("true" without noise)



generated ("fake")

X Example of non-converged GAN with std=0.01:



 10^{0}

 10^{-1}

 $\overset{\rm S}{\overset{\rm O}{\Pi}} 10^{-2}$

 10^{-3}

 10^{-4}

100

Epochs

50

150

200

model ("true" without noise)

generated ("fake")

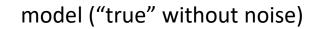
Glòria Montaña – "Al for Hadron Spectroscopy at Jlab"– 5 June 2025

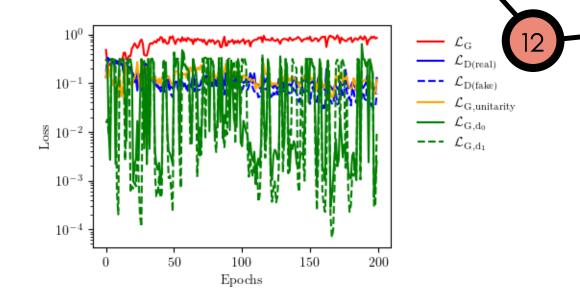
 \mathcal{L}_{G} $\mathcal{L}_{\mathrm{D(real)}}$

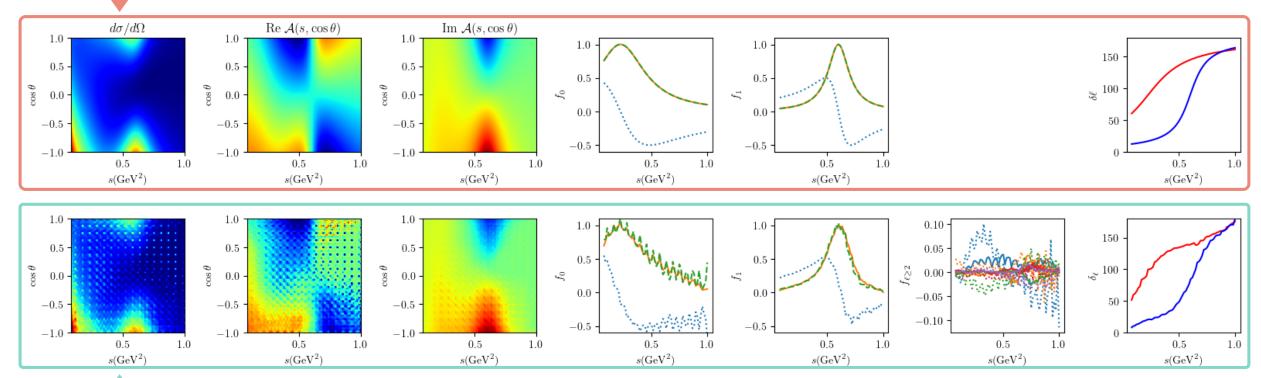
 $\mathcal{L}_{D(fake)}$ $\mathcal{L}_{G,unitarity}$ \mathcal{L}_{G,d_0}

 $\mathcal{L}_{\mathrm{G},d_1}$

Example of a "not too bad" non-converged GAN with std=0.05:







Glòria Montaña – "Al for Hadron Spectroscopy at Jlab"– 5 June 2025

CONCLUSIONS & OUTLOOK

X Current achievements:

We developed a physics-constrained GAN framework for the direct extraction of complex amplitudes from simulated cross-section data.

Integrated a unitarity loss and explicit phase constraints to guide the GAN training, ensuring the physical validity and uniqueness of the recovered amplitudes.

What's next?

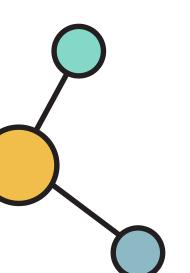
Optimize the GAN architecture and fine-tune hyperparameters to maximize performance and training stability.

Explore additional/alternative physics-informed constraints to stabilize the GAN training further. Perform a quantitative analysis and error estimation.

CONCLUSIONS & OUTLOOK

X Longer-term future directions:

Explore diffusion models as an alternative generative model for amplitude extraction. Extend from cross-section to the event-level analysis using, e.g. normalizing flows. Generalize to more complex processes and data.



Preliminary status, but the results of using physics-constrained generative models to extract amplitudes from cross sections employing are promising.

Back-up slides

X GAN architecture:

	Layer Type	Input Dimensions	Output Dimensions	Activation/Other Details
enerator	Fully Connected Reshape ConvTranspose2d (1) ConvTranspose2d (2) ConvTranspose2d (3)	$(batch_size, noise_dim)$ $(batch_size, 4 \times 4 \times 1024)$ $(batch_size, 4, 64, 64)$ $(batch_size, 64, 64, 64)$ $(batch_size, 64, 64, 64)$	$(batch_size, 4 \times 4 \times 1024)$ $(batch_size, 4, 64, 64)$ $(batch_size, 64, 64, 64)$ $(batch_size, 64, 64, 64)$ $(batch_size, 64, 64, 64)$	BatchNorm, LeakyReLU (0.2) Reshapes tensor BatchNorm, LeakyReLU (0.2), Kernel=17 BatchNorm, LeakyReLU (0.2), Kernel=17 BatchNorm, LeakyReLU (0.2), Kernel=17
5	ConvTranspose2d (4) Conv2d (Final)	$(batch_size, 64, 64, 64)$ $(batch_size, 64, 64, 64)$	$(batch_size, 64, 64, 64)$ $(batch_size, 2, 64, 64)$	BatchNorm, LeakyReLU (0.2), Kernel=17 Produces 2-channel image output

					~~~~~~~~
pd	Layer Type	Input Dimensions	Output Dimensions	Transformation Details	Too complex?
an	Lambda	$(batch_size, 2, 64, 64)$	$(batch_size, 1, 64, 64)$	Maps generator output to discriminator input	Too simple?

Layer Type	Input Dimensions	Output Dimensions	Activation/Other Details
Conv2d $(1)$	$(batch_size, 1, 64, 64)$	$(batch_{size}, 64, 32, 32)$	LeakyReLU $(0.2)$ , Dropout $(0.3)$ , Kernel=4
Conv2d $(2)$	$(batch_size, 64, 32, 32)$	$(batch_size, 128, 16, 16)$	BatchNorm, LeakyReLU $(0.2)$ , Dropout $(0.3)$
Flatten	$(batch_size, 128, 16, 16)$	$(batch_size, 128 \times 16 \times 16)$	Flattens for FC layers
Fully Connected $(1)$	$(batch_size, 128 \times 16 \times 16)$	$(batch_size, 64)$	LeakyReLU $(0.2)$ , Dropout $(0.3)$
Fully Connected (2)	$(batch_size, 64)$	$(batch_size, 1)$	Outputs real/fake score

#### **IMPLEMENTATION DETAILS**

**X** Other hyperparameters:

Generator Optimizer	Adam Learning rate: 0.0001		
Discriminator Optimizer	Adam Learning rate: 0.00001		
Batch Size	256	How to optimize?	
Training Size	40×256		
Input Noise Dimension	100		
Epochs	Total: 200 (with stopping if convergence achieved)		
Weights for Generator Losses	[MSE, unitarity, d0, d1] = [1,1,10,10]		
Device	GPU		