
JLAB SCIENTIFIC COMPUTING ACCESS

Wednesday, May 21, 2025

Radiation Detector & Imaging Group, Nuclear Physics, Jefferson LabCameron Clarke

Access High Performance
Computing (HPC) Cluster

Set up scientific computing
software on Linux systems

Run physics experiments,
simulations, and data analysis

OUTLINE

2

• Slide 4: Logging in to JLab computing resources
• Slide 11: Navigating and manipulating files
• Slide 16: Intro to Git, Computing Software

• Git shared code
• Shared group installations
• CVMFS
• Conda
• Docker

• Hands on exercises to familiarize yourself with all these things!
• Slide 33: Logging In
• Slide 52: Navigating and manipulating files
• Slide 71: Scripting, Software, and Git

JLab Sci-Comp Knowledge
Base - Getting Started

https://jlab.servicenowservices.com/scicomp?id=kb_category&kb_id=9cc2dc1e1bcae050f0b4dc6ce54bcbe4&kb_category=4912fe051b798510a888ea4ce54bcb5f
https://jlab.servicenowservices.com/scicomp?id=kb_category&kb_id=9cc2dc1e1bcae050f0b4dc6ce54bcbe4&kb_category=4912fe051b798510a888ea4ce54bcb5f
https://jlab.servicenowservices.com/scicomp?id=kb_category&kb_id=9cc2dc1e1bcae050f0b4dc6ce54bcbe4&kb_category=4912fe051b798510a888ea4ce54bcb5f
https://jlab.servicenowservices.com/scicomp?id=kb_category&kb_id=9cc2dc1e1bcae050f0b4dc6ce54bcbe4&kb_category=4912fe051b798510a888ea4ce54bcb5f
https://jlab.servicenowservices.com/scicomp?id=kb_category&kb_id=9cc2dc1e1bcae050f0b4dc6ce54bcbe4&kb_category=4912fe051b798510a888ea4ce54bcb5f
https://jlab.servicenowservices.com/scicomp?id=kb_category&kb_id=9cc2dc1e1bcae050f0b4dc6ce54bcbe4&kb_category=4912fe051b798510a888ea4ce54bcb5f

ACQUIRING AN ACCOUNT

3

Before you can get an account:

• Register – several weeks before visiting, pick a user account you want to have as your permanent email and login
• Checklist – fill out necessary information
• Training – finish basic safety and computer training, advanced training can be done after joining
• Badging – visit the badging office on your first day to get access to JLab buildings

For JLab Farm computing access:
• Need to request permissions from your (experimental hall, theory group, detector group) computing coordinator
• Need to acquire multi-factor authentication (MFA) credentials from the Computer Center Helpdesk

https://www.jlab.org/facilities/badgingoffice

Computing Coordinators Knowledge Base Article:
https://jlab.servicenowservices.com/kb?id=kb_article_view&sysparm_article=KB0014686

https://www.jlab.org/facilities/badgingoffice
https://jlab.servicenowservices.com/kb?id=kb_article_view&sysparm_article=KB0014686

LECTURE: ACCESSING LAB RESOURCES

Wednesday, May 21, 2025

Access High Performance
Computing (HPC) Cluster

Set up scientific computing
software on Linux systems

Run physics experiments,
simulations, and data analysis

This section

LOGGING IN

5

• Common User Environment (CUE) accounts enable access to many systems at JLab
o JLab Insight Web Portal

o Training (https://misportal.jlab.org/training/people/srl)
o JList (staff directory)
o Help-desk, library, and facilities tickets (https://jlab.servicenowservices.com)
o Requisition system, etc.

https://misportal.jlab.org/training/people/srl

misportal.jlab.org/portal/insight

https://misportal.jlab.org/training/people/srl
https://jlab.servicenowservices.com/nav_to.do?uri=%2Fhome.do%3F
https://misportal.jlab.org/training/people/srl
https://misportal.jlab.org/portal/insight/frontPage

LOGGING IN

6

• Common User Environment (CUE) accounts enable access to many systems at JLab
o JLab Insight Web Portal

o Training (https://misportal.jlab.org/training/people/srl)
o JList (staff directory)
o Help-desk, library, and facilities tickets
o Requisition system, etc.

o Ask your sponsor or support staff at the lab for guidance
o Email helpdesk@jlab.org for computing assistance
o Email library@jlab.org for journal/book access questions
o Use the servicenow portal for facilities and other tickets

https://jlab.servicenowservices.com

https://misportal.jlab.org/training/people/srl
mailto:helpdesk@jlab.org
mailto:library@jlab.org
https://jlab.servicenowservices.com/nav_to.do?uri=%2Fhome.do%3F

LOGGING IN

7

• Common User Environment (CUE) accounts enable access to many systems at JLab
o JLab Insight Web Portal

o Training (https://misportal.jlab.org/training/people/srl)
o JList (staff directory)
o Help-desk, library, and facilities tickets (https://jlab.servicenowservices.com)
o Requisition system, etc.

o VPN or VDI for Insight protected pages
o Gitlab (https://code.jlab.org/)

o To access interactive computer
sessions a Multi-Factor Authentication
token (MFA) is required

o MobilePASS SAS is the JLab login-portal
access method – Help Desk distributed

o Phone app based
o Can ask for a USB stick button as well

https://code.jlab.org/

https://misportal.jlab.org/training/people/srl
https://jlab.servicenowservices.com/nav_to.do?uri=%2Fhome.do%3F
https://code.jlab.org/
https://code.jlab.org/

LOGGING IN

8

• Common User Environment (CUE) accounts enable access to many systems at JLab
o JLab Insight Web Portal

o Training (https://misportal.jlab.org/training/people/srl)
o JList (staff directory)
o Help-desk, library, and facilities tickets (https://jlab.servicenowservices.com)
o Requisition system, etc.

o VPN or VDI for Insight protected pages
o Gitlab (https://code.jlab.org/)
o Multi-Factor Authentication (MFA) login

• Public JLab computers (jlabl1, etc.)
• VMWare Horizon VDI (https://vdi.jlab.org/)
• Interactive Farm (ifarm)
• Globus
• Userweb webpage editing

o Secondary secure login portals
• Hall Gateway
• Accelerator Gateway
• JupyterHub (Google Auth)

MobilePass Phone App/USB
Code Generator

Uses SafeNet Authentication
Service (SAS)

Virtual Desktop Interface https://vdi.jlab.org/

https://misportal.jlab.org/training/people/srl
https://jlab.servicenowservices.com/nav_to.do?uri=%2Fhome.do%3F
https://code.jlab.org/
https://vdi.jlab.org/
https://vdi.jlab.org/

ACCESSING JLAB FILESYSTEMS

9

• Your personal computer can mount JLab network drives and ifarm job submission tools
o Requires OS management by JLab central CUE system
o Must be on-site
o Prevents use of local super user permissions
o Ask the Helpdesk if you want to do this

• Otherwise - Accessing JLab resources requires remote access via JupyterHub, VDI or SSH
o JupyterHub – Python Jupyter notebook system, with pre-installed virtual environment kernel options

• Need to request Google Authenticator MFA token
o VDI – JLab Virtual Desktop Infrastructure (VDI) Red Hat Enterprise Linux 9 (RHEL) Environment

• Need to request access to non-Windows Virtual machine – ask Helpdesk for RHEL9 access
o Preferred Access Method: SSH – Secure Shell command line interface (CLI) login

• X Windows Forwarding
o Mac – Terminal + XQuartz
o Windows – PuTTy + XMing
o Linux – Terminal

• SSH Tunneling – Manually or with ProxyJump
• File transfers – With manual tunneling, ProxyJump, Userweb, or Globus system

ACCESSING JLAB IFARM

10

Logging into and accessing the JLab job submission (batch) and interactive farm (ifarm)
computing systems can be done in many ways

• Depends on your personal system and needs

• Find the method in the following slides that is most convenient to you

• SSH or Linux RHEL9 VDI is recommended (can persist)

Hands-on session slides give detailed instructions for accessing ifarm with all systems:

➢ Secure Shell (SSH) Protocol and Transferring Files

• Linux

• JLab's Virtual Desktop Infrastructure (VDI), from either html web app or desktop app

• Windows

• Mac

➢ JupyterHub

➢ Tomorrow

• Interactive farm (ifarm) noded with slurm access

• Farm batch submission access

JLab Service Now Article on remote Access:
https://jlab.servicenowservices.com/scicomp?id=kb_article

&sysparm_article=KB0015066

https://jlab.servicenowservices.com/scicomp?id=kb_article&sysparm_article=KB0015066
https://jlab.servicenowservices.com/scicomp?id=kb_article&sysparm_article=KB0015066

LECTURE: NAVIGATE/MANIPULATE FILES

Wednesday, May 21, 2025

Access High Performance
Computing (HPC) Cluster

Set up scientific computing
software on Linux systems

Run physics experiments,
simulations, and data analysis

This section

NAVIGATING JLAB IFARM

12

JLab's shared HPC:
• Computing cluster "farm"
• Has interactive capability through "ifarm"
• Two nodes (ifarm2401, ifarm2402)
• Provides access points for testing, etc.

before sending off to production farm
• Interactive nodes:

• AMD EPYC 9554 (Zen 4 "Genoa")
• 256 threads (2 sockets × 64 cores ×

2 threads/core)
• 3.1 GHz base / 3.75 GHz max
• 1.5 TB memory
• 28 TB striped NVMe /scratch
• HDR (200 Gb/s) IB

NAVIGATING JLAB IFARM

13

• Linux CLI functionality
• Basic Unix Commands – what are they?
• Unix philosophy (from Wikipedia):

• Use of plain text for storing data
• A hierarchical file system
• Treating devices and certain types of inter-process communication (IPC) as files
• Use of a large number of software tools, small programs that can be strung together with CLI / as

opposed to using a single monolithic program that includes all of the same functionality

• JLab network file system features
• /group, /work, /home, /volatile,/scratch, /mss tapes, /cache
• User and group allocations, fairshare between the halls
• CVMFS as a global shared filesystem, CERN and many other science facilities
• File Transfer: SCP, SFTP, Globus

• Text editors
• Vim, Gedit, Emacs, Nano, etc.

• IDEs (Integrated Development Environment)
• VSCode, Eclipse, IntelliJ, etc.

(https://halldweb1.jlab.org/wiki/index.php/How_to_Setup_Visual_Studio_Code_for_the_ifarm)

https://halldweb1.jlab.org/wiki/index.php/How_to_Setup_Visual_Studio_Code_for_the_ifarm

SHELL SCRIPTING

14

Linux terminals utilize interactive "shell" environments:
• There are many acceptable "shells" pre-installed on most linux systems

• The Bourne Again Shell "BASH" is most popular

• Jefferson Lab scientific computing systems default to the "C" shell, called "tcsh", so called because it is "like" the C language

• Most commands have manuals: type `man <command>` without brackets, to learn more, or ̀ <command> --help` usually works too

• Any command accessible from the CLI can also be utilized in the exact same way inside of a script, enabling efficient operations

• Shells give access to the file system and many system-wide installed commands, such as:

• cd = change directory, move from one folder to another
• ls = list the contents of the directory
• pwd = state the full path of the current working directory (path working directory = pwd)
• cp = copy the first argument file to the location of the second argument
• mv = move the first argument file to the location of the second argument
• rm = remove, delete the file passed in as an argument (be very careful with this command!)
• ln = create a symbolic link, "shortcut"
• cat = concatenate, display the contents of the file passed as an argument to the screen
• which = give the full path of the location for a command passed as an argument
• echo = print back to the screen, this is useful in scripting for printing results to the screen
• grep = a powerful program for searching text strings for sub-strings, and much more
• ps = list all processes running in this terminal shell session
• top = list all processes running on the computer, with useful information and live updating
• less = like cat, but lets you scroll around and do text searching, like Vim text editor
• tmux and screen = convenient shell session preservation and re-attachment tools
• man = show the manual entry for this command

SSH PASSKEYS

15

• Key and lock pair, where you generate both and distribute the lock to your systems
• https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
• Useful as an intra-network stable password, git authentication (main point for our later hands-on

session), and multi-system login uniformity strategy
• Generate them on any system, ideally one unique one for each system
• You must place them on systems you want to access with them
• Utilize the known_hosts system to save some time and improve your security confidence -

https://www.baeldung.com/linux/public-key-known_hosts

• You must maintain their security
• Verify they have the correct permissions - https://www.tecmint.com/set-ssh-directory-permissions-

in-linux/
• Never share your private key
• Ideally use unique keys for each system, especially unsecured ones
• Use a password on each one (it is possible to have a no-password key pair, but not safe!)
• Pay attention to known_hosts authentication notifications for changed server identities (especially

for untrusted remote servers)

https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://www.baeldung.com/linux/public-key-known_hosts
https://www.baeldung.com/linux/public-key-known_hosts
https://www.baeldung.com/linux/public-key-known_hosts
https://www.baeldung.com/linux/public-key-known_hosts
https://www.baeldung.com/linux/public-key-known_hosts
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/

LECTURE: SCRIPTING/SOFTWARE & GIT

Wednesday, May 21, 2025

Access High Performance
Computing (HPC) Cluster

Set up scientific computing
software on Linux systems

Run physics experiments,
simulations, and data analysis

This section

GETTING STARTED WITH GIT

17

What is Git?
• Git is a file management and version control system: https://git-

scm.com/book/en/v2/ (Getting started guide)
• Git was designed in 2005 to support Linux kernel development by

Linus Torvalds
• Github is just a website that hosts Git repositories, like Bitbucket,

Gitlab, or your local machine operating as a file server

Want to use Git?
• https://code.jlab.org GitLab is the preferred remote Git

management system at JLab now (Gitlab backend, similar to
GitHub, better than BitBucket)

• The `git` command line program can do version control locally,
even if you do not track projects with a remote server system

• Git tools are supported on all OS and in many IDE systems
• There is a "gitbash" terminal emulator on Windows (or you can use

Linux Subsystem for Windows to run Linux in Windows 10/11)
• https://github.com is the standard free service

https://git-scm.com/book/en/v2/
https://git-scm.com/book/en/v2/
https://git-scm.com/book/en/v2/
https://git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git
https://git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git
https://code.jlab.org
https://code.jlab.org
https://github.com
https://github.com

GIT VERSION CONTROL BASICS

18

• Git skills to improve your analysis and software development work:
• Create a local blank repository
• Turn an existing project into a remote git repository
• Clone (download) an existing remote git repository
• Check and change git configuration and safely commit code changes to shared repository

• Additional skills to learn before using Git to contribute to a shared project include:
• Using the right branch and managing issues and pull requests with collaborators
• Setting up username and password settings for remote git server access
• Resolving push/pull/merge conflicts
• Writing good commit messages

Before pushing or pulling any commits to/from a remote repository,
set up your git ssh key config first:

• Github: https://docs.github.com/en/authentication/connecting-to-github-with-
ssh/adding-a-new-ssh-key-to-your-github-account

• Gitlab: https://docs.gitlab.com/ee/user/ssh.html
• More intro to Git: https://www.atlassian.com/git/tutorials/setting-up-a-repository

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.gitlab.com/ee/user/ssh.html
https://www.atlassian.com/git/tutorials/setting-up-a-repository
https://www.atlassian.com/git/tutorials/setting-up-a-repository
https://www.atlassian.com/git/tutorials/setting-up-a-repository
https://www.atlassian.com/git/tutorials/setting-up-a-repository
https://www.atlassian.com/git/tutorials/setting-up-a-repository
https://www.atlassian.com/git/tutorials/setting-up-a-repository
https://www.atlassian.com/git/tutorials/setting-up-a-repository

ACCESSING, SHARING, AND TRACKING SOFTWARE

19

• Software is easily stored:
• CernVM File System (CVMFS) computing resource for standard packages
• JLab people share code in /work, /group, /mss, GitLab, etc.
• Git: code.jlab.org GitLab (preferred), GitHub.com/JeffersonLab
• Accelerator and hall Logbooks, collaboration elogs and DocDBs

• Conda and Virtual Environments
• Subject to some version restrictions at JLab
• (Ana)conda and venv can enable rapid software environment build/rebuild and sharing

• FAIR = Findable, Accessible, Interoperable, and Reusable
• You will forget how you did your analysis (it doesn't take long) - you will thank yourself
• Always back up your code, your LaTeX files (OverLeaf), your figures, and even your data
• Add dates, version information, comments, and tag numbers too (all git features)
• Software versions aren't always backwards compatible and operating systems go end-of-life
• Virtual machines (Compiled Java, Docker Images, VMWare) are very convenient time-capsule tools!

HANDS ON: ACQUIRING AN ACCOUNT

Wednesday, May 21, 2025

Access High Performance
Computing (HPC) Cluster

Set up scientific computing
software on Linux systems

Run physics experiments,
simulations, and data analysis

ACQUIRING AN ACCOUNT

21

When starting at JLab several administrative steps must be taken to gain access to critical
lab resources

➢Get a site access name badge

➢Get and verify your JLab computer account

➢Request access to Microsoft Office (JLab staff and interns only), JLab ifarm, ifarm slurm,
VDI, and group file access

➢Necessary training (cybersecurity, oxygen deprivation, radiation training, etc.)

ACQUIRING AN ACCOUNT

22

Get a badge:

• Register – several weeks before visiting, pick a user account you want to have as your permanent email and login
• Checklist – fill out necessary information
• Training – finish basic safety and computer training, advanced training can be done after joining
• Badging – visit the badging office on your first day to get access to JLab buildings

For student interns:
• Mentor needs to finish MGT 202 training
• If outside of formal internship programs (specifically Undergraduate Physics Researchship – UPR students):

• Mentor needs to formally request site access, a badge, and a computer account for the student

https://www.jlab.org/facilities/badgingoffice

https://www.jlab.org/facilities/badgingoffice

ACQUIRING AN ACCOUNT

23

• Visit computer center helpdesk
on 2nd floor of CEBAF Center F
wing to receive your computer
account
• Ask for Office 365 access if you

are a JLab intern or staff (not
available for all users)

• Ask for invitation to
MobilePASS SAS MFA for
general `login.jlab.org` access

• Ask to be added to relevant
computer account user group

• Ask for VDI RHEL CUE access
(Linux web-based virtual
machine access)

• Reject using "SmartCard"
USB access if possible (it is
required to access
personal JLab-managed
Windows OS computers)

• Ask for Jupyterhub Google
Authenticator OTP MFA access
if you want it

https://scicomp.jlab.org/scicomp/home

https://scicomp.jlab.org/scicomp/home

ACQUIRING AN ACCOUNT

24

• Verify account access
• Go to www.jlab.org, log in to your user account, visit

the insight page, and check your skills list

https://jidp.jlab.org/idp/profile/SAML2/Redirect/SSO?execution=e1s2

https://misportal.jlab.org/training/people/srl
https://misportal.jlab.org/portal/insight/frontPage

http://www.jlab.org/
https://jidp.jlab.org/idp/profile/SAML2/Redirect/SSO?execution=e1s2
https://misportal.jlab.org/training/people/srl
https://misportal.jlab.org/portal/insight/frontPage

25

• Verify account access
• Go to www.jlab.org, log in to your user account, visit

the insight page, and check your skills list
• Change your temporary password, using the

website’s password management system or
command line `passwd` command

https://jman.jlab.org/jpasswd

ACQUIRING AN ACCOUNT

http://www.jlab.org
https://jman.jlab.org/jpasswd

26

• Verify account access
• Go to www.jlab.org, log in to your user account, visit

the insight page, and check your skills list
• Change your temporary password, using the

website’s password management system or
command line `passwd` command

• If you need help:
• For any of these steps, if you have any trouble
• Visiting the help desk in person or calling over

the phone (757) 269-7155 works best
• Emailing helpdesk@jlab.org automatically files a

support ticket
• Or you can file a helpdesk ticket manually at

https://jlab.servicenowservices.com/navpage.do

https://jlab.servicenowservices.com/navpage.do

ACQUIRING AN ACCOUNT

http://www.jlab.org
mailto:helpdesk@jlab.org
https://jlab.servicenowservices.com/navpage.do
https://jlab.servicenowservices.com/navpage.do

27

• Verify account access
• Go to www.jlab.org, log in to your user account, visit

the insight page, and check your skills list
• Change your temporary password, using the

website’s password management system or
command line `passwd` command

• If you need help: helpdesk@jlab.org tickets
• Verify Office 365 access – log in

to www.office.com with JLab credentials, set up
Microsoft MFA (if you are staff or an intern)

• Access MS Office + Teams applications (if you are
staff or an intern)

ACQUIRING AN ACCOUNT

http://www.jlab.org
mailto:helpdesk@jlab.org
http://www.office.com/

28

• Verify account access
• Go to www.jlab.org, log in to your user account, visit

the insight page, and check your skills list
• Change your temporary password, using the

website’s password management system or
command line `passwd` command

• If you need help: helpdesk@jlab.org tickets
• Verify Office 365 access – log in

to www.office.com with JLab credentials, set up
Microsoft MFA

• Access MS Office + Teams applications
• Set up and verify login.jlab.org access with the SAS

MobilePass multifactor app invitation

MobilePass Phone App

Or – USB Code Generator
(not a smart card, just a

convenient dongle that you
can press to get a code)

Uses SafeNet
Authentication Service

(SAS)

To test login.jlab.org access:
o Ask the helpdesk staff to help you test your login.jlab.org

by terminal on their work-station at the helpdesk
o Otherwise follow instructions in subsequent set of slides

ACQUIRING AN ACCOUNT

http://www.jlab.org
mailto:helpdesk@jlab.org
http://www.office.com/

29

• Verify account access
• Go to www.jlab.org, log in to your user account, visit

the insight page, and check your skills list
• Change your temporary password, using the

website’s password management system or
command line `passwd` command

• If you need help: helpdesk@jlab.org tickets
• Verify Office 365 access – log in

to www.office.com with JLab credentials, set up
Microsoft MFA

• Access MS Office + Teams applications
• Set up and verify login.jlab.org access with the SAS

MobilePass multifactor app invitation
• Set up and verify interactive farm (ifarm) slurm and

batch access (optional, can wait until later)

To test ifarm.jlab.org access:
o Ask the helpdesk staff to help you test your ifarm.jlab.org

access by terminal on their work-station at the helpdesk
o Otherwise follow instructions in subsequent set of slides

ACQUIRING AN ACCOUNT

http://www.jlab.org
mailto:helpdesk@jlab.org
http://www.office.com/

30

• Verify account access
• Go to www.jlab.org, log in to your user account, visit

the insight page, and check your skills list
• Change your temporary password, using the

website’s password management system or
command line `passwd` command

• If you need help: helpdesk@jlab.org tickets
• Verify Office 365 access – log in

to www.office.com with JLab credentials, set up
Microsoft MFA

• Access MS Office + Teams applications
• Set up and verify login.jlab.org access with the SAS

MobilePass multifactor app invitation
• Set up and verify interactive farm (ifarm) slurm and

batch access (optional, can wait until later)

Interactive farm (ifarm) slurm access pre-requisites:​
• Ask scicomp/helpdesk to add you to needed user group

• Check access by logging in to any Linux system and executing
`groups <username>`

• A slurm account manager will need to add you by
executing the following ifarm commands
• `sacctmgr -i create user <username> account=<group name>`
• `sacctmgr show user <username>`
• `sacctmgr list assoc account=<group name>`
Servicenow slurm account manager guide: https://jlab.servicenowservices.com/kb
?id=kb_article_view&sysparm_article=KB0014685

• To verify complete farm batch job access – log in to
ifarm, execute following commands from ifarm node:
• To enable submitting farm jobs you must run `/site/bin/jcert -

create` on ifarm
From
(https://jlab.servicenowservices.com/scicomp?id=kb_article_view&sys_kb_id=22d
2c5db1b4a09506a9e85dae54bcbcc)

• To test ability to submit jobs, then execute:
• ifarm> salloc -p ifarm
• ifarm> srun --pty bash
• bash-4.2$ echo "This is running on host `hostname`"
From (https://scicomp.jlab.org/docs/farm_slurm_batch_interactive_jobs)

To test ifarm.jlab.org access:
o Ask the helpdesk staff to help you test your ifarm.jlab.org

access by terminal on their work-station at the helpdesk
o Otherwise follow instructions in subsequent set of slides

ACQUIRING AN ACCOUNT

http://www.jlab.org
mailto:helpdesk@jlab.org
http://www.office.com/
https://jlab.servicenowservices.com/kb?id=kb_article_view&sysparm_article=KB0014685
https://jlab.servicenowservices.com/kb?id=kb_article_view&sysparm_article=KB0014685
https://jlab.servicenowservices.com/scicomp?id=kb_article_view&sys_kb_id=22d2c5db1b4a09506a9e85dae54bcbcc
https://jlab.servicenowservices.com/scicomp?id=kb_article_view&sys_kb_id=22d2c5db1b4a09506a9e85dae54bcbcc
https://scicomp.jlab.org/docs/farm_slurm_batch_interactive_jobs

31

• Verify account access
• Go to www.jlab.org, log in to your user account, visit

the insight page, and check your skills list
• Change your temporary password, using the

website’s password management system or
command line `passwd` command

• If you need help: helpdesk@jlab.org tickets
• Verify Office 365 access – log in

to www.office.com with JLab credentials, set up
Microsoft MFA

• Access MS Office + Teams applications
• Set up and verify login.jlab.org access with the SAS

MobilePass multifactor app invitation
• Set up and verify interactive farm (ifarm) slurm and

batch access (optional, can wait until later)
• Verify VDI access

Log in to https://vdi.jlab.org (download the app or use the
easier html web-version) using your common user

environment (CUE) username and password

Once you get to this screen – select CUE RHEL9

When prompted, log in to RHEL9 system welcome screen
using your MobilePASS SAS personal PIN plus 6 digit MFA

code as the password

(a SmartCard is required for Windows Systems – avoid!)
JLab VDI Support Article:
https://jlab.servicenowservices.com/sp?id=kb_article&sys_id=dec
16b0ddb7f0410ee4a3889fc961944

ACQUIRING AN ACCOUNT

http://www.jlab.org
mailto:helpdesk@jlab.org
http://www.office.com/
https://vdi.jlab.org
https://jlab.servicenowservices.com/sp?id=kb_article&sys_id=dec16b0ddb7f0410ee4a3889fc961944
https://jlab.servicenowservices.com/sp?id=kb_article&sys_id=dec16b0ddb7f0410ee4a3889fc961944

32

• Verify account access
• Go to www.jlab.org, log in to your user account, visit

the insight page, and check your skills list
• Change your temporary password, using the

website’s password management system or
command line `passwd` command

• If you need help: helpdesk@jlab.org tickets
• Verify Office 365 access – log in

to www.office.com with JLab credentials, set up
Microsoft MFA

• Access MS Office + Teams applications
• Set up and verify login.jlab.org access with the SAS

MobilePass multifactor app invitation
• Set up and verify interactive farm (ifarm) slurm and

batch access (optional, can wait until later)
• Verify VDI access
• Set up and verify access to JupyterHub Log in to https://jupyterhub.jlab.org – first using your

common user environment (CUE) password – second using
your Google Authenticator OTP code

ACQUIRING AN ACCOUNT

http://www.jlab.org
mailto:helpdesk@jlab.org
http://www.office.com/
https://jupyterhub.jlab.org

HANDS-ON: ACCESSING LAB RESOURCES

Wednesday, May 21, 2025

Access High Performance
Computing (HPC) Cluster

Set up scientific computing
software on Linux systems

Run physics experiments,
simulations, and data analysis

This section

ACCESSING JLAB IFARM

34

Hands-On Exercises to master:

• SSH to JLab login portal

• SSH to jlabl1 public machine

• SSH to JLab ifarm

• SSH between jlabl1 and ifarm

• Verify ifarm group and job submission permissions

• Perform a manual SSH ProxyJump into the ifarm

• Perform a manual SSH tunnel into the ifarm

• Recommended: Set up a permanent SSH ProxyJump

• Optional: Connect to JLab JupyterHub – https://jupyterhub.jlab.org

• Optional: Connect to JLab VDI system – https://vdi.jlab.org

https://jupyterhub.jlab.org
https://vdi.jlab.org

ACCESSING JLAB IFARM

35

Logging into and accessing the JLab job submission (batch) and interactive farm (ifarm)
computing systems can be done in many ways

• Depends on your personal system and needs

• Find the method in the following slides that is most convenient to you

• SSH or Linux RHEL9 VDI is recommended (can persist)

The following slides cover accessing JLab's ifarm with various systems:
➢ Secure Shell (SSH) Protocol

• Linux

• JLab's Virtual Desktop Infrastructure (VDI), from either html web app or desktop app

• Windows

• Mac

➢ ProxyJump SSH and Port Forwarding

➢ JupyterHub

➢ Tomorrow

• Interactive farm (ifarm) nodes with slurm access

• Farm batch submission access

JLab Service Now Article on remote Access:
https://jlab.servicenowservices.com/scicomp?id=kb_article

&sysparm_article=KB0015066

GlueX Wiki on VSCode ifarm access
https://halldweb1.jlab.org/wiki/index.php/How_t

o_Setup_Visual_Studio_Code_for_the_ifarm

https://jlab.servicenowservices.com/scicomp?id=kb_article&sysparm_article=KB0015066
https://jlab.servicenowservices.com/scicomp?id=kb_article&sysparm_article=KB0015066
https://halldweb1.jlab.org/wiki/index.php/How_to_Setup_Visual_Studio_Code_for_the_ifarm
https://halldweb1.jlab.org/wiki/index.php/How_to_Setup_Visual_Studio_Code_for_the_ifarm

ACCESSING JLAB IFARM WITH SSH X WINDOWS FORWARDING

36

SSH with Linux:
• Once inside a Linux system

• Click Activities or find an applications drop down
menu

• Find the terminal application and open it

• Execute `ssh –Y <username>@login.jlab.org`
• Use MobilePass SAS MFA personal 6-8 digit code + 6

digit encrypted code output in one line as
the password

• Then: Execute `ssh –Y <username>@ifarm`
• Use your usual JLab Common User Environment (CUE)

password, or your ssh-key if you have set one up

• Linux VDI (shown on the right):
• Same as using Linux, managed by JLab
• Accessed using https://vdi.jlab.org login website
• See notes from prior set of slides for instructions
• Then: open a terminal from inside the VDI session

JLab RHEL9 VDI screen – activities button and terminal

mailto:%3cusername%3e@scilogin.jlab.org%60
https://vdi.jlab.org

ACCESSING JLAB IFARM WITH SSH X WINDOWS FORWARDING

37

SSH with Windows the new way:
• There is a ssh client now installed by default in modern Windows operating systems
• Open any terminal in Windows: "cmd", PowerShell, or any Windows Subsystem for Linux (WSL) prompt
• Execute SSH commands following instructions on prior Linux instructions slide

• To Install a Linux operating system in Windows Subsystem for Linux (WSL) utilize Windows official channels
• Ubuntu 20.04.6: https://apps.microsoft.com/detail/9mttcl66cpxj?hl=en-us&gl=en
• These can come in many Linux flavors – Ubuntu and Debian are the same thing and are most newby friendly
• Enable installation of many scientific computing resources such as Python, ROOT, and even Geant4 using

package management tools such as "Snap" or "Miniconda"
• Simplify X11 windows forwarding for Linux and gives you the power of Linux within the Windows ecosystem

https://apps.microsoft.com/detail/9mttcl66cpxj?hl=en-us&gl=en
https://apps.microsoft.com/detail/9mttcl66cpxj?hl=en-us&gl=en
https://apps.microsoft.com/detail/9mttcl66cpxj?hl=en-us&gl=en

ACCESSING JLAB IFARM WITH SSH X WINDOWS FORWARDING

38

SSH with Windows the old way:
• Download and Install PuTTY and Xming

• PuTTY: Download the application from the Microsoft Apps store to install PuTTY.
• https://apps.microsoft.com/detail/xpfnzksklbp7rj?amp%3Bgl=US&hl=en-us&gl=US

• Xming: Download from SourceForge – be careful to not click on advertisements – inspect all links first!
• https://sourceforge.net/projects/xming/
• Xming will run in the background, only acting when you try to open GUIs on remote servers via PuTTY

PuTTY GUI "Session" page

Enter the hostname you
want to access in "Host

Name (or IP address) field

Port 22 is standard ssh
protocol port

IPv4 protocol port numbers
range from 0 - 65535 (16

bit integer range)

Host Name for Accessing
JLab scientific computing

resources is "login.jlab.org"

https://apps.microsoft.com/detail/xpfnzksklbp7rj?amp%3Bgl=US&hl=en-us&gl=US
https://apps.microsoft.com/detail/xpfnzksklbp7rj?amp%3Bgl=US&hl=en-us&gl=US
https://apps.microsoft.com/detail/xpfnzksklbp7rj?amp%3Bgl=US&hl=en-us&gl=US
https://apps.microsoft.com/detail/xpfnzksklbp7rj?amp%3Bgl=US&hl=en-us&gl=US
https://sourceforge.net/projects/xming/
https://sourceforge.net/projects/xming/

ACCESSING JLAB IFARM WITH SSH X WINDOWS FORWARDING

39

SSH with Windows the old way:
• Configure PuTTY for X11 window forwarding to work

• Open PuTTY, filling in the IP address or DNS host name
• Type in "login.jlab.org" (no quotes) to access the JLab scientific computing resources from on or off-site
• A specified hostname, like "jlabl1" (no quotes), if ifarm access is not the goal

• Go to the Connection > SSH > Auth > X11 Page menu
• Check the box "Enable X11 forwarding" and type in the "X display location" to be "localhost:0" (no quotes)

• Go back to "Session" page, type some useful name (like "jlab login"), and 'Save' your configuration for later loading

PuTTY GUI "Session" page Connection > SSH > Auth > X11 Page

ACCESSING JLAB IFARM WITH SSH X WINDOWS FORWARDING

40

SSH with Windows the old way:
• Try X11 forwarding with XMing

• You will need to execute the XMing program (double click it's start menu icon) so that it runs in the background
• You may need to allow Window’s firewall access – if so then accept the pop-up request

• ssh into the "login.jlab.org" portal
• Connect by using the "open" button on PuTTY

• Use MobilePass SAS MFA personal 6-8 digit code + 6 digit encrypted code output in one line as the password to enter the
login portal

• Then: execute `ssh –Y <username>@ifarm` on the command line
• Use your usual JLab Common User Environment (CUE) password, or your ssh-key if you have set one up

<-- A PuTTY prompt after
successful logging into a

remote host

xclock test-command
demonstrating successful
windows forwarding -->

ACCESSING JLAB IFARM WITH SSH X WINDOWS FORWARDING

41

SSH with Mac:
• Install XQuartz https://www.xquartz.org/

• XQuartz must be run before attempting to open any process with forwarded graphical display (similar to
Windows' XMing program, but easier)

• Open a standard Mac terminal and SSH the same way as with Linux
• Execute `ssh –Y <username>@login.jlab.org`

• Use MobilePass SAS MFA personal 6-8 digit code + 6 digit encrypted code output in one line as the password

• Then: execute `ssh –Y <username>@ifarm` command
• Use your usual JLab Common User Environment (CUE) password, or your ssh-key if you have set one up

XQuartz splash page and
included xterm terminal

emulator

https://www.xquartz.org/

ACCESSING JLAB IFARM WITH SSH X WINDOWS FORWARDING

42

Farm login and batch submission access:
• ssh to ifarm following earlier instructions
• Perform an interactive job submission test

(instructions on the right)
• Batch submission, monitoring, and debugging will

be covered later
• Successful verification requires your

collaboration/group's computing coordinator to
have given you permissions (see details on the right)

Interactive farm (ifarm) slurm access pre-requisites:​
• Ask scicomp/helpdesk to add you to needed user group

• Check access by logging in to any Linux system and executing
`groups <username>`

• A slurm account manager will need to add you by
executing the following ifarm commands
• `sacctmgr -i create user <username> account=<group name>`
• `sacctmgr show user <username>`
• `sacctmgr list assoc account=<group name>`
Servicenow slurm account manager guide: https://jlab.servicenowservices.com/kb
?id=kb_article_view&sysparm_article=KB0014685

• To verify complete farm batch job access – log in to
ifarm, execute following commands from ifarm node:
• To enable submitting farm jobs you must run `/site/bin/jcert -

create` on ifarm
From

(https://jlab.servicenowservices.com/scicomp?id=kb_article_view&sys_kb_id=22d
2c5db1b4a09506a9e85dae54bcbcc)

• To test ability to submit jobs, then execute:
• ifarm> salloc -p ifarm
• ifarm> srun --pty bash
• bash-4.2$ echo "This is running on host `hostname`"
From (https://scicomp.jlab.org/docs/farm_slurm_batch_interactive_jobs)

https://jlab.servicenowservices.com/kb?id=kb_article_view&sysparm_article=KB0014685
https://jlab.servicenowservices.com/kb?id=kb_article_view&sysparm_article=KB0014685
https://jlab.servicenowservices.com/scicomp?id=kb_article_view&sys_kb_id=22d2c5db1b4a09506a9e85dae54bcbcc
https://jlab.servicenowservices.com/scicomp?id=kb_article_view&sys_kb_id=22d2c5db1b4a09506a9e85dae54bcbcc
https://scicomp.jlab.org/docs/farm_slurm_batch_interactive_jobs

ACCESSING JLAB IFARM WITH SSH X WINDOWS FORWARDING

43

Advanced:
• SSH command chaining
• SSH tunneling through login.jlab.org
• SSH ProxyJump with linux SSH config
• SSH ProxyJump with Windows PuTTY
• Virtual Network Computing (VNC) initialization
• VNC port forward tunneling through login.jlab.org and local access

ACCESSING JLAB IFARM WITH SSH X WINDOWS FORWARDING

44

Advanced: SSH ProxyJump
• SSH command chaining via manual ProxyJump

• `ssh -Y -J <user>@login.jlab.org <user>@ifarm`

• J indicates manual ProxyJump
• Y indicates X forwarding with strict security check (can do –X instead to not check security)
• This is quite convenient: it simplifies to one line and requires entering only the MFA password

ACCESSING JLAB IFARM WITH SSH X WINDOWS FORWARDING

45

Advanced: SSH Tunnels
• SSH tunneling through login.jlab.org

• This permits only entering the MobilePass SAS MFA key one time and no subsequent authentication is needed
• Set up tunnel: `ssh -L <forwarding port>:ifarm:22 <username>@login.jlab.org`

• <forwarding port> can be 22, or any other unused port number
• Example bashrc: alias tunnellogin="ssh -L 2201:ifarm:22 <username>@login.jlab.org"

• SSH over tunnel: `ssh -p <forwarding port> localhost`
• <use the same forwarding port as set up earlier>
• Example bashrc: alias ifarmssh="ssh -p 2201 localhost"

• What is this doing?
• What you are doing here is attaching a remote port (in this case 22) onto a local port (in this case 2201)
• With this attached port you can now interact with the localhost (your own computer) as if it is the remote (because it is!)
• Primary convenience is you can attach many activities through this one opened port, all without needing to type a

password (including additional SSH windows, sftp, scp, VNC, etc.)

• Make sure the terminal executing the tunnel does not close, or else all traffic will fail

• Verify that the port you chose to forward over is allowed (not bind rejected error message after logging in) - it may be occupied
by another user or process

ACCESSING JLAB IFARM WITH SSH X WINDOWS FORWARDING

46

Advanced: Permanent ProxyJump
• SSH ProxyJump – permanent proxy configuration

• General guide:
https://jlab.servicenowservices.com/scicomp?id=kb_article&sysparm_article=KB0015066

• Specific guide, Linux:
https://jlab.servicenowservices.com/scicomp?id=kb_article&sysparm_article=KB0014918

• Specific guide, Windows:
https://jlab.servicenowservices.com/kb?id=kb_article_view&sysparm_article=KB0015113

https://jlab.servicenowservices.com/scicomp?id=kb_article&sysparm_article=KB0015066
https://jlab.servicenowservices.com/scicomp?id=kb_article&sysparm_article=KB0014918
https://jlab.servicenowservices.com/kb?id=kb_article_view&sysparm_article=KB0015113

ACCESSING JLAB IFARM WITH SSH X WINDOWS FORWARDING

47

Advanced: JupyterHub
• https://JupyterHub.jlab.org
• Provides access to JLab ifarm compute power, GPUs, and

file systems
• Requires a Google Authenticator MFA token (generated

when initially joining JupyterHub – ask Help Desk for help)
• You can set up your own Notebook Images using venv

Virtual Environment tools (example right)

 You can use the jlab ifarm to hold temp files, home folder, etc.
o Just need to configure symlinks from the main jlabl1 ~/home/<username> folder to point

where you want things to go
o To avoid running out of space on your ~/home folder – put them in a /work/ or /group/

space
○ .local -> /work/detimg/cameronc/local
○ .jupyter -> /work/detimg/cameronc/jupyter
○ .cache -> /work/detimg/cameronc/cache
○ .conda -> /work/detimg/cameronc/conda

 You can use conda virtual environments to set up your own custom designed environments
(or just use the ones pre-made by the SciComp team)

 To make your own venv-kernel (example case):
o ` conda activate pytorch_env`
o ` python -m ipykernel install --user --name=pytorch_env --display-name="Python

(pytorch_env)"`
o Restart your Jupyter Notebook server for the new kernel to appear in the list.
o Select Kernel: In your Jupyter Notebook, go to Kernel -> Change Kernel and select

"Python (pytorch_env)".

https://JupyterHub.jlab.org
https://JupyterHub.jlab.org

ACCESSING JLAB IFARM WITH SSH X WINDOWS FORWARDING

48

Advanced: VDI
• VDI is Virtual Desktop Infrastructure – VMWare Horizon Virtual Machine connected to JLab CUE Account shared /home
• Must first request Linux RHEL9 access from Computer Center (helpdesk)
• File-sharing through VDI -> Under settings enable "edit files" and pick a local folder to share

• Mount <your folder> from your local your computer
• Now accessible inside VDI at ~/tsclient/<your folder> (can copy/paste files, no editing!)

• Persistence – closed tab can be reconnected to, within a reasonable time-frame
• Settings and files are persistent, this is == your farm or jlabl1 /home/<username> directory!

https://vdi.jlab.org -> Log in with
CUE Username and Password​

Select RHEL9 machine (Windows
requires SmartCard!!)​

Enter CUE Username​
(Password = MobilePASS SAS MFA PIN+Code ​)

https://vdi.jlab.org/

ACCESSING JLAB IFARM WITH VIRTUAL NETWORK COMPUTING (VNC)

49

Advanced: VNC
• Virtual Network Computing (VNC) initialization

• Old JLab instructions (requires sudo access):
https://jlab.servicenowservices.com/sp?sys_kb_id=d4520b731b2f2d106a9e85dae54bcbe6&id=kb_article_view&sysparm_rank
=1&sysparm_tsqueryId=9a6ccb0c478fca10281bbd51026d4392

• Hall A wiki instructions (a bit old, but still works):
https://hallaweb.jlab.org/wiki/index.php/Using_a_VNC_Server/Client#Setting_up_the_VNC_Server

• Official instructions (requires sudo):
• Read /usr/share/doc/tigervnc/HOWTO.md
• Set user defaults in /etc/tigervnc/vncserver.users - set default VNC session number "y" (should be y=1 for primary user)
• `systemctl start vncserver@:1`
• `systemctl enable vncserver@:1`
• Or as sudo replace 1 with "x" to start all users

• Without sudo: just do
• `vncserver :1`
• `vncserver -kill :1`
• Replace 1 with whatever number is available

https://jlab.servicenowservices.com/sp?sys_kb_id=d4520b731b2f2d106a9e85dae54bcbe6&id=kb_article_view&sysparm_rank=1&sysparm_tsqueryId=9a6ccb0c478fca10281bbd51026d4392
https://jlab.servicenowservices.com/sp?sys_kb_id=d4520b731b2f2d106a9e85dae54bcbe6&id=kb_article_view&sysparm_rank=1&sysparm_tsqueryId=9a6ccb0c478fca10281bbd51026d4392
https://hallaweb.jlab.org/wiki/index.php/Using_a_VNC_Server/Client

50

Advanced: VNC
• VNC port forward tunneling through login.jlab.org and local access

• For
Mac: https://jlab.servicenowservices.com/sp?sys_kb_id=63d78ae2dbc888107d37365e7c961986&id=kb_article_
view&sysparm_rank=2&sysparm_tsqueryId=eeab4bc8478fca10281bbd51026d4361

• For
Windows: https://jlab.servicenowservices.com/sp?sys_kb_id=ab0602eadb844810ee4a3889fc961942&id=kb_art
icle_view&sysparm_rank=6&sysparm_tsqueryId=eeab4bc8478fca10281bbd51026d4361

• For Linux:
• Similar to Mac, or follow these instructions
• <vnc port> = 5900 + VNC session ID number (typically 1 is available) = 5901
• `ssh -L <vnc port>:localhost:<vnc port> <username>@<remote host name>`
• `vncviewer localhost:<vnc port>`

• Advanced, 3 terminal system to access ifarm
with login.jlab.org tunnel included:
(recommend to use ProxyJumps instead)
(<forwarding port> is anything free other than 22)

Terminal 1: `ssh -L <forwarding port>:ifarm:<ssh port> <username>@login.jlab.org`
Terminal 2: `ssh -p <forwarding port> -L <vnc port>:localhost:<vnc port> <username>@localhost`
Terminal 3: `vncviewer localhost:<vnc port>`

ACCESSING JLAB IFARM WITH VIRTUAL NETWORK COMPUTING (VNC)

https://jlab.servicenowservices.com/sp?sys_kb_id=63d78ae2dbc888107d37365e7c961986&id=kb_article_view&sysparm_rank=2&sysparm_tsqueryId=eeab4bc8478fca10281bbd51026d4361
https://jlab.servicenowservices.com/sp?sys_kb_id=63d78ae2dbc888107d37365e7c961986&id=kb_article_view&sysparm_rank=2&sysparm_tsqueryId=eeab4bc8478fca10281bbd51026d4361
https://jlab.servicenowservices.com/sp?sys_kb_id=ab0602eadb844810ee4a3889fc961942&id=kb_article_view&sysparm_rank=6&sysparm_tsqueryId=eeab4bc8478fca10281bbd51026d4361
https://jlab.servicenowservices.com/sp?sys_kb_id=ab0602eadb844810ee4a3889fc961942&id=kb_article_view&sysparm_rank=6&sysparm_tsqueryId=eeab4bc8478fca10281bbd51026d4361

51

Advanced: VNC
• VNC port forward tunneling through login.jlab.org and local access

• For
Mac: https://jlab.servicenowservices.com/sp?sys_kb_id=63d78ae2dbc888107d37365e7c961986&id=kb_article_
view&sysparm_rank=2&sysparm_tsqueryId=eeab4bc8478fca10281bbd51026d4361

• For
Windows: https://jlab.servicenowservices.com/sp?sys_kb_id=ab0602eadb844810ee4a3889fc961942&id=kb_art
icle_view&sysparm_rank=6&sysparm_tsqueryId=eeab4bc8478fca10281bbd51026d4361

• For Linux:
• Similar to Mac, or follow these instructions
• <vnc port> = 5900 + VNC session ID number (typically 1 is available) = 5901
• `ssh -L <vnc port>:localhost:<vnc port> <username>@<remote host name>`
• `vncviewer localhost:<vnc port>`

• Advanced, 3 terminal system to access ifarm
with login.jlab.org tunnel included:
(recommend to use ProxyJumps instead)
(<forwarding port> is anything free other than 22)

Example alias for bashrc. Assumes you ran `vncserver :2 ̀on the ifarm2402 server and your local
username is the same as the jlab one (otherwise tag <username>@ in front of login.jlab.org and
localhost) and assumes ports 2201 and VNC:2 are available:
• alias tunnelscilogin="ssh -L 2201:ifarm2402:22 login.jlab.org"
• alias tunnelifarm="ssh -p 2201 -L 5902:localhost:5902 localhost"
• alias ifarmvnc="vncviewer localhost:5902"

ACCESSING JLAB IFARM WITH VIRTUAL NETWORK COMPUTING (VNC)

https://jlab.servicenowservices.com/sp?sys_kb_id=63d78ae2dbc888107d37365e7c961986&id=kb_article_view&sysparm_rank=2&sysparm_tsqueryId=eeab4bc8478fca10281bbd51026d4361
https://jlab.servicenowservices.com/sp?sys_kb_id=63d78ae2dbc888107d37365e7c961986&id=kb_article_view&sysparm_rank=2&sysparm_tsqueryId=eeab4bc8478fca10281bbd51026d4361
https://jlab.servicenowservices.com/sp?sys_kb_id=ab0602eadb844810ee4a3889fc961942&id=kb_article_view&sysparm_rank=6&sysparm_tsqueryId=eeab4bc8478fca10281bbd51026d4361
https://jlab.servicenowservices.com/sp?sys_kb_id=ab0602eadb844810ee4a3889fc961942&id=kb_article_view&sysparm_rank=6&sysparm_tsqueryId=eeab4bc8478fca10281bbd51026d4361

HANDS-ON: NAVIGATE/MANIPULATE FILES

Wednesday, May 21, 2025

Access High Performance
Computing (HPC) Cluster

Set up scientific computing
software on Linux systems

Run physics experiments,
simulations, and data analysis

This section

NAVIGATING IFARM FILESYSTEMS

53

Hands-On Exercises to master:

• Test a round of ssh and scp/sftp/globus of a simple example file

• Generate an SSH key (with password protection)

• Look at your SSH key, using the text editor of your choice

• Tweak your .*shell rc (Run Commands) and .login files to your taste

• Edit the comment, contact information, computer identity of the SSH Pub-Key as needed

• Place SSH keys in the right place on your local and remote computers filesystems

• Modify and verify r/w/x and global/group/user security for your ~/ home folder, .ssh/ folder, and contents

• Practice parsing of the example-file, change the scripts to your taste

• bash

• tcsh

• Python

• ROOT

NAVIGATING IFARM FILESYSTEMS

54

• Basic Unix CLI Commands
• JLab network file system features
• SFTP, SCP, Globus file transfers
• Text editors – Vim, Gedit, Emacs, Nano
• IDEs – VSCode, Eclipse, IntelliJ

In this set of slides we will go over how to utilize Linux for scientific computing:

➢ Shell scripting

➢ Text editors

➢ Environment setup

➢ Basic scripting example

JLab computing cluster "farm" has interactive capability
through "ifarm", with two nodes (ifarm2401, ifarm2402)
providing access points for testing, etc.

• AMD EPYC 9554 (Zen 4 "Genoa")
• 256 threads (2 sockets × 64 cores × 2

threads/core)
• 3.1 GHz base / 3.75 GHz max
• 1.5 TB memory
• 28 TB striped NVMe /scratch
• HDR (200 Gb/s) IB

Exercises
• Place your SSH public key on remote and local

computers​
• Verify security, explain chmod, chgrp, ls, bits, etc.​
• Test a round of ssh and scp/sftp/globus(?)​

ACCESSING JLAB IFARM FILES REMOTELY

55

Transferring files: The Easy Way – Download from the internet with `wget`
• wget – Linux command, download a known internet file to your local machine
• Please download the example text file and bash, tcsh, python, and ROOT scripts for later use!
• Execute these commands in a folder you want to work out of, try executing those scripts (if you know how!):

• wget https://userweb.jlab.org/~cameronc/files/Talks/20250522-SciComp_Workshop/raw/lorem.txt
• wget https://userweb.jlab.org/~cameronc/files/Talks/20250522-SciComp_Workshop/raw/print_first_and_every_45th.py
• wget https://userweb.jlab.org/~cameronc/files/Talks/20250522-SciComp_Workshop/raw/print_first_and_every_45th.tcsh
• wget https://userweb.jlab.org/~cameronc/files/Talks/20250522-SciComp_Workshop/raw/printFirstAndEvery45th.C
• wget https://userweb.jlab.org/~cameronc/files/Talks/20250522-SciComp_Workshop/raw/print_first_and_every_45th.sh

• (/work/<groupname>/<username>/SciComp_Examples/ would be a good starting place, or just use your home directory)

• Next task:
• Copy the lorem.txt file between the ifarm folder and your local personal computer using your preferred method

(full instructions for each method are described in the following few slides)

ACCESSING JLAB IFARM FILES REMOTELY

56

Transferring files:
• Globus – standalone software: file transfer system that can be operated from a browser

• Requires CUE login
• Requires software installation in order to transfer files to and from your personal computer
• Works for Mac, Windows, and Linux
• https://jlab.servicenowservices.com/scicomp?id=kb_article&sysparm_article=KB0014843
• https://docs.globus.org/guides/tutorials/manage-files/transfer-files/

https://jlab.servicenowservices.com/scicomp?id=kb_article&sysparm_article=KB0014843
https://jlab.servicenowservices.com/scicomp?id=kb_article&sysparm_article=KB0014843
https://docs.globus.org/guides/tutorials/manage-files/transfer-files/
https://docs.globus.org/guides/tutorials/manage-files/transfer-files/
https://docs.globus.org/guides/tutorials/manage-files/transfer-files/
https://docs.globus.org/guides/tutorials/manage-files/transfer-files/
https://docs.globus.org/guides/tutorials/manage-files/transfer-files/
https://docs.globus.org/guides/tutorials/manage-files/transfer-files/

ACCESSING JLAB IFARM FILES REMOTELY

57

Transferring files:
• Windows:

• Download WinSCP: https://winscp.net/eng/index.php
• To tunnel through login.jlab.org and access jlabl1 or ifarm computers

• From your command prompt ("cmd", PowerShell, or WSL)
• Execute: `ssh -L 23:ifarm:22 <username>@login.jlab.org`

• Then open WinSCP to localhost:23 and login with JLab account to ifarm

Example WinSCP GUI
screenshot

Left is your local computer
file tree

Right is the remote
computer file tree

WinSCP across the login
portal from outside JLab

network requires​
ProxyJump or SSH port
forwarding tunneling

Port "23" here is chosen
for convenience, it may
be already occupied, in

which case chose another
unoccupied port

https://winscp.net/eng/index.php

ACCESSING JLAB IFARM FILES REMOTELY

58

Transferring files:
• From terminals (any Operating System)
• Secure Copy Protocol: `scp -rp <files to copy> <destination>`

• "-r" allows recursive copy, meaning all sub-folders and their contents will be copied as well
• "-p" allows preserving permissions and meta-data like date of file creation, etc. when copying (recommended)

• You can copy from the local computer to a remote destination, then:
• <destination> = <username>@<remote host name>:<path on remote computer>
• <path on remote computer> should be something like ~/Downloads/ (where ~ means "my home folder")
• <files to copy> would be the path to the files, or just the file's name if it is in the current directory

• You can copy from a remote computer if you know the exact path, then:
• <files to copy> would be <username>@<remote host name>:<path on remote computer>

• Example: `scp –p cameronc@enpcameronc-rhel:~/Downloads/20240625-JLab_computer_access.pdf ~/stage/`
• ` ` tick marks denote a block of code
• < > brackets denote something you

should replace with your own choice
• scp through login portal requires

ProxyJump or tunneling

Using Manual ProxyJump though Login portal:
Upload: scp -J <user>@login.jlab.org. file_to_upload <user>@ifarm:/dest/path/
Download: scp -J <user>@login.jlab.org. <user>@ifarm:/file/to/download ./

SSH PASSKEYS

59

• History and what they are
• Why they are useful (intra-network stable password, git authentication, multi-system

login uniformity)
• How to generate them (multi-system)
• How to place them (multi-system, and git)
• How to maintain security (permissions, never share private key, unique keys, passwords,

authentication notifications)

SSH PASSKEYS

60

• Key and lock pair, where you generate both and distribute the lock to your systems
• https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html

• Useful as an intra-network stable password, git authentication (main point for our later hands-on
session), and multi-system login uniformity strategy

• Generate them on any system, ideally one unique one for each system
• You must place them on systems you want to access with them
• Utilize the known_hosts system to save some time and improve your security confidence -

https://www.baeldung.com/linux/public-key-known_hosts

• You must maintain their security
• Verify they have the correct permissions - https://www.tecmint.com/set-ssh-directory-permissions-in-linux/ , https://portal.perforce.com/s/article/6210

• .ssh directory should be 700 (drwx------), The public key (.pub file) should be 644 (-rw-r--r--). The private
key (id_rsa) on the client host, and authorized_keys on the server, should be 600 (-rw-------).

• Never share your private key
• Ideally use unique keys for each system, especially unsecured ones
• Use a password on each one (it is possible to have a no-password key pair)
• Pay attention to known_hosts authentication notifications for changed server identities (especially

for untrusted remote servers)

https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://blakesmith.me/2010/02/08/understanding-public-key-private-key-concepts.html
https://www.baeldung.com/linux/public-key-known_hosts
https://www.baeldung.com/linux/public-key-known_hosts
https://www.baeldung.com/linux/public-key-known_hosts
https://www.baeldung.com/linux/public-key-known_hosts
https://www.baeldung.com/linux/public-key-known_hosts
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://portal.perforce.com/s/article/6210

ACCESSING JLAB IFARM WITH SSH KEYS

61

SSH Key Generation: Generate your SSH key
• SSH key generation and installation: Linux and Mac (including Windows Subsystem for Linux)

• GitHub guide (useful for github access instructions): https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-

new-ssh-key-and-adding-it-to-the-ssh-agent

• nixCraft guide (preferred): https://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/

• SSH key generation and installation: Windows ("cmd", PowerShell)
• Microsoft guide: https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_keymanagement

• Atlassian guide: https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-windows/

• PuTTY ssh keys in Windows:
• DigitalOcean guide: https://docs.digitalocean.com/products/droplets/how-to/add-ssh-keys/create-with-putty/

• Register your key with the ssh-agent: (use ssh-add command: https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-linux/)
• Verify security, utilize chmod, chgrp, ls -lsa, etc., and amend the comment information on the pub-key

• verify you have the correct permissions - https://www.tecmint.com/set-ssh-directory-permissions-in-linux/ , https://portal.perforce.com/s/article/6210

• .ssh directory should be 700 (drwx------), The public key (.pub file) should be 644 (-rw-r--r--). The private key (id_rsa) on the
client host, and authorized_keys on the server, should be 600 (-rw-------).

• Always verify the permissions bits before proceeding – 3 digt numbers correspond to read, write, execute access: 1+2+4 = 7

• Place .ssh key on the remote server, test a round of ssh and scp/sftp/globus

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/
https://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/
https://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/
https://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/
https://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/
https://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/
https://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/
https://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/
https://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/
https://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/
https://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/
https://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/
https://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/
https://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/
https://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/
https://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/
https://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/
https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_keymanagement
https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_keymanagement
https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_keymanagement
https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_keymanagement
https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_keymanagement
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-windows/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-windows/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-windows/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-windows/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-windows/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-windows/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-windows/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-windows/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-windows/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-windows/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-windows/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-windows/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-windows/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-windows/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-windows/
https://docs.digitalocean.com/products/droplets/how-to/add-ssh-keys/create-with-putty/
https://docs.digitalocean.com/products/droplets/how-to/add-ssh-keys/create-with-putty/
https://docs.digitalocean.com/products/droplets/how-to/add-ssh-keys/create-with-putty/
https://docs.digitalocean.com/products/droplets/how-to/add-ssh-keys/create-with-putty/
https://docs.digitalocean.com/products/droplets/how-to/add-ssh-keys/create-with-putty/
https://docs.digitalocean.com/products/droplets/how-to/add-ssh-keys/create-with-putty/
https://docs.digitalocean.com/products/droplets/how-to/add-ssh-keys/create-with-putty/
https://docs.digitalocean.com/products/droplets/how-to/add-ssh-keys/create-with-putty/
https://docs.digitalocean.com/products/droplets/how-to/add-ssh-keys/create-with-putty/
https://docs.digitalocean.com/products/droplets/how-to/add-ssh-keys/create-with-putty/
https://docs.digitalocean.com/products/droplets/how-to/add-ssh-keys/create-with-putty/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-linux/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-linux/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-linux/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-linux/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-linux/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-linux/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-linux/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-linux/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-linux/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-linux/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-linux/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-linux/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-linux/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-linux/
https://support.atlassian.com/bitbucket-cloud/docs/set-up-personal-ssh-keys-on-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://www.tecmint.com/set-ssh-directory-permissions-in-linux/
https://portal.perforce.com/s/article/6210

SHELL SCRIPTING

62

Linux terminals utilize interactive "shell" environments:
• There are many acceptable "shells" pre-installed on most linux systems

• The Bourne Again Shell "BASH" is most popular

• Jefferson Lab scientific computing systems default to the "C" shell, called "tcsh", so called because it is "like" the C language

• Please read the Ubuntu website beginner's guide: https://ubuntu.com/tutorials/command-line-for-beginners#1-overview

• You may find the FreeCodeCamp guide additionally informative: https://www.freecodecamp.org/news/command-line-for-
beginners/

https://ubuntu.com/tutorials/command-line-for-beginners
https://ubuntu.com/tutorials/command-line-for-beginners
https://ubuntu.com/tutorials/command-line-for-beginners
https://ubuntu.com/tutorials/command-line-for-beginners
https://ubuntu.com/tutorials/command-line-for-beginners
https://ubuntu.com/tutorials/command-line-for-beginners
https://ubuntu.com/tutorials/command-line-for-beginners
https://ubuntu.com/tutorials/command-line-for-beginners
https://ubuntu.com/tutorials/command-line-for-beginners
https://www.freecodecamp.org/news/command-line-for-beginners/
https://www.freecodecamp.org/news/command-line-for-beginners/
https://www.freecodecamp.org/news/command-line-for-beginners/
https://www.freecodecamp.org/news/command-line-for-beginners/
https://www.freecodecamp.org/news/command-line-for-beginners/
https://www.freecodecamp.org/news/command-line-for-beginners/
https://www.freecodecamp.org/news/command-line-for-beginners/

SHELL SCRIPTING

63

Linux terminals utilize interactive "shell" environments:
• There are many acceptable "shells" pre-installed on most linux systems

• The Bourne Again Shell "BASH" is most popular

• Jefferson Lab scientific computing systems default to the "C" shell, called "tcsh", so called because it is "like" the C language

• Most commands have manuals: type `man <command>` without brackets, to learn more, or ̀ <command> --help` usually works too

• Any command accessible from the CLI can also be utilized in the exact same way inside of a script, enabling efficient operations

• Shells give access to the file system and many system-wide installed commands, such as:

• cd = change directory, move from one folder to another
• ls = list the contents of the directory
• pwd = state the full path of the current working directory (path working directory = pwd)
• cp = copy the first argument file to the location of the second argument
• mv = move the first argument file to the location of the second argument
• rm = remove, delete the file passed in as an argument (be very careful with this command!)
• ln = create a symbolic link, "shortcut"
• cat = concatenate, display the contents of the file passed as an argument to the screen
• which = give the full path of the location for a command passed as an argument
• echo = print back to the screen, this is useful in scripting for printing results to the screen
• grep = a powerful program for searching text strings for sub-strings, and much more
• ps = list all processes running in this terminal shell session
• top = list all processes running on the computer, with useful information and live updating
• less = like cat, but lets you scroll around and do text searching, like Vim text editor
• tmux and screen = convenient shell session preservation and re-attachment tools
• man = show the manual entry for this command

SHELL SCRIPTING

64

Linux terminals utilize interactive "shell" environments:
• There are many acceptable "shells" pre-installed on most linux systems

• The Bourne Again Shell "BASH" is most popular

• Jefferson Lab scientific computing systems default to the "C" shell, called "tcsh", so called because it is "like" the C language

• Shells give access to the file system and many system-wide installed commands

• Now, login to the JLab ifarm to proceed to practice using text editors

• ssh to through the login.jlab.org portal, then on to ifarm

• Find your group's work folder and make yourself a sub-directory:

• `cd /work/<group name>/`

• `mkdir <my username>` (no < > brackets)

• `cd <my username>`

• `touch helloworld.txt`

• `<editor> helloworld.txt` where <editor> = vim, gedit, or emacs as you prefer – described on the follow slides

TEXT EDITORS

65

Text Editors – Vim vs. Gedit vs. Emacs:
• StackShare has a guide to the three and their differences: https://stackshare.io/stackups/emacs-vs-gedit-vs-vim

• Vim (my preferred): https://thevaluable.dev/vim-commands-beginner/ - Or just type the `vimtutor` command at the terminal!

• Gedit: https://help.gnome.org/users/gedit/stable/index.html.en

• Emacs: http://www.jesshamrick.com/2012/09/10/absolute-beginners-guide-to-emacs/

• Learn about the three of them (or throw in nano as a fourth option) and pick the one you would like to learn

• This is a personal choice

• You can stick to GUI based Integrated Development Environments (IDE's) line Eclipse or VSCode if you chose

• However, knowing how to use one of these is critical

• Just in case you need to access a system with no GUI or software installation capabilities or need to quickly edit code

https://stackshare.io/stackups/emacs-vs-gedit-vs-vim
https://stackshare.io/stackups/emacs-vs-gedit-vs-vim
https://stackshare.io/stackups/emacs-vs-gedit-vs-vim
https://stackshare.io/stackups/emacs-vs-gedit-vs-vim
https://stackshare.io/stackups/emacs-vs-gedit-vs-vim
https://stackshare.io/stackups/emacs-vs-gedit-vs-vim
https://stackshare.io/stackups/emacs-vs-gedit-vs-vim
https://stackshare.io/stackups/emacs-vs-gedit-vs-vim
https://stackshare.io/stackups/emacs-vs-gedit-vs-vim
https://thevaluable.dev/vim-commands-beginner/
https://thevaluable.dev/vim-commands-beginner/
https://thevaluable.dev/vim-commands-beginner/
https://thevaluable.dev/vim-commands-beginner/
https://thevaluable.dev/vim-commands-beginner/
https://help.gnome.org/users/gedit/stable/index.html.en
http://www.jesshamrick.com/2012/09/10/absolute-beginners-guide-to-emacs/
http://www.jesshamrick.com/2012/09/10/absolute-beginners-guide-to-emacs/
http://www.jesshamrick.com/2012/09/10/absolute-beginners-guide-to-emacs/
http://www.jesshamrick.com/2012/09/10/absolute-beginners-guide-to-emacs/
http://www.jesshamrick.com/2012/09/10/absolute-beginners-guide-to-emacs/
http://www.jesshamrick.com/2012/09/10/absolute-beginners-guide-to-emacs/
http://www.jesshamrick.com/2012/09/10/absolute-beginners-guide-to-emacs/
http://www.jesshamrick.com/2012/09/10/absolute-beginners-guide-to-emacs/
http://www.jesshamrick.com/2012/09/10/absolute-beginners-guide-to-emacs/

ENVIRONMENT SETUP

66

Setting up your shell environment:
• There is a "rc" = "run commands" file for each kind of shell

• tcsh uses ~/.tcshrc

• They are executed at each new shell open, new terminal, or new remote login

• They can be relied upon, along with a ~/.login file and other more niche configuration files, to set up your environment

• For the JLab ifarm: to successful set up a user environment that gives access to ROOT and Geant4

• Load modules stored in the /cvmfs system

• /cvmfs is the CernVM File System, which gives global access to scientific collaborations to scientific computing software

• Edit your .tcshrc on the jlabl1 or ifarm server to contain, at the bottom:

set hostnamex="`hostname`"
if ($hostnamex =~ *'farm'*) then
 module use /cvmfs/oasis.opensciencegrid.org/jlab/scicomp/sw/el9/modulefiles
 module load root

endif

Once satisfactorily set up – next few slides: execute the every 45th line scripts on the lorem.txt (or your own .txt file)

BASIC SCRIPTING EXAMPLE

67

Scripting in Linux allows for complex chains of shell commands to accomplish your goals
• Let's work on an example to learn the basics of using Bash, tcsh, Python, and ROOT on the JLab scientific computing systems

• Go to your "work" folder: `cd /work/<group name>/<my username>`

• Bash – parse an example text, skip lines and print each 45th line to the screen

➢ Open a blank text file print_first_and_every_45th.sh with your text editor
➢ Paste in the following bash code

#!/bin/bash
Check if a file was provided as an argument
if ["$#" -ne 1]; then

echo "Usage: $0 filename"
exit 1

fi
File to read
file=$1
Check if the file exists
if [! -f "$file"]; then

echo "File not found!"
exit 1

fi
Counter for lines
count=1
Read the file line by line
while IFS= read -r line
do

Check if the current line number is the first line or every 46th line thereafter
if [$(((count - 1) % 45)) -eq 0]; then

echo "$line"
fi
Increment the counter
count=$((count + 1))

done < "$file"

➢ chmod +x print_first_and_every_45th.sh
➢ ./print_first_and_every_45th.sh yourfile.txt

To generate a text file to parse, first execute the following
(from the ifarm or your local computer, depending on vim
version number):
• cat /usr/share/vim/vim82/tutor/tutor >> yourfile.txt

BASIC SCRIPTING EXAMPLE

68

Scripting in Linux allows for complex chains of shell commands to accomplish your goals
• Let's work on an example to learn the basics of using Bash, tcsh, Python, and ROOT on the JLab scientific computing systems

• Go to your "work" folder: `cd /work/<group name>/<my username>`

• tcsh – parse an example text, skip lines and print each 45th line to the screen

➢ Open a blank text file print_first_and_every_45th.tcsh with your text editor
➢ Paste in the following tcsh code

#!/bin/tcsh
Check if a file was provided as an argument
if ($#argv != 1) then

echo "Usage: $0 filename"
exit 1

endif
File to read
set file = $argv[1]
Check if the file exists
if (! -f $file) then

echo "File not found!"
exit 1

endif
Counter for lines
set count = 1
Read the file line by line
foreach line (`cat $file`)

Check if the current line number is the first line or every 46th line thereafter
if (($count - 1) % 45 == 0) then

echo $line
endif
Increment the counter
@ count++

end

➢ chmod +x print_first_and_every_45th.tcsh
➢ ./print_first_and_every_45th.tcsh yourfile.txt

BASIC SCRIPTING EXAMPLE

69

Scripting in Linux allows for complex chains of shell commands to accomplish your goals
• Let's work on an example to learn the basics of using Bash, tcsh, Python, and ROOT on the JLab scientific computing systems

• Go to your "work" folder: `cd /work/<group name>/<my username>`

• Python – parse an example text, skip lines and print each 45th line to the screen

➢ Open a blank text file print_first_and_every_45th.py with your text editor
➢ Paste in the following python code

import sys
def print_first_and_every_45th_line(filename):

try:
with open(filename, 'r') as file:

for count, line in enumerate(file, start=1):
if (count - 1) % 45 == 0:

print(line.strip())
except FileNotFoundError:

print(f"File {filename} not found!")
if __name__ == "__main__":

if len(sys.argv) != 2:
print(f"Usage: {sys.argv[0]} filename")
sys.exit(1)

filename = sys.argv[1]
print_first_and_every_45th_line(filename)

➢ python print_first_and_every_45th.py yourfile.txt

BASIC SCRIPTING EXAMPLE

70

Scripting in Linux allows for complex chains of shell commands to accomplish your goals
• Let's work on an example to learn the basics of using Bash, tcsh, Python, and ROOT on the JLab scientific computing systems

• Go to your "work" folder: `cd /work/<group name>/<my username>`

• ROOT (interpretted C++) – parse example text, skip lines and print each 45th line to the screen

➢ Open a blank text file printFirstAndEvery45th.C with your text editor
➢ Paste in the following ROOT C code

#include <iostream>
#include <fstream>
#include <string>
int printFirstAndEvery45th(const char* filename) {

std::ifstream file(filename);
if (!file.is_open()) {

std::cerr << "File not found!" << std::endl;
return 0;

}
std::string line;
int count = 1;
while (std::getline(file, line)) {

if ((count - 1) % 45 == 0) {
std::cout << line << std::endl;

}
count++;

}
file.close();
return 1;

}

➢ root -l 'printFirstAndEvery45th.C("yourfile.txt")'

HANDS-ON: SCRIPTING/SOFTWARE & GIT

Wednesday, May 21, 2025

Access High Performance
Computing (HPC) Cluster

Set up scientific computing
software on Linux systems

Run physics experiments,
simulations, and data analysis

This section

SCRIPTING/SOFTWARE AND GIT

72

Hands-On Exercises to master:

• Clone a software repository

• Set up your user information in your git configuration

• Set up ROOT module from CVMFS

• Practice executing scripts in bash, tcsh, python, and ROOT

• Try to debug the tcsh script problem

• Either create your own branch with the bugfix or checkout the bugfix-tcsh branch

• Fork the repository to your personal code.jlab.org account

• Create a pull-request in your personal account for the bugfix-tcsh branch

• Approve the PR and merge

TYPICAL GIT VERSION CONTROL EXAMPLE

73

Code.jlab.org repo-creation instructions
• You can create an empty new repository
• You can create a repository on your computer and push it

into code.jlab.org ("Push an Existing Folder")
• We will use this later, plus creating an empty repository on

code.jlab.org, to hold the results of your "fork"

• Can clone an existing repository and push it to your personal
space (manual "Forking")

• You can also do these actions from the code.jlab.org website
interface (sometimes takes more effort)

• Note: Web interface enables CD/CI tools (commits, PRs, etc.)

Assignment: Clone my example repo with every-45th
line parsing scripts in it
• First set up your ssh key on code.jlab.org, following

these instructions: https://docs.gitlab.com/user/ssh/#add-an-ssh-
key-to-your-gitlab-account

• Execute git clone command (easiest approach):
• `git clone git@code.jlab.org:cameronc/SciComp_Workshop_Git_Example`

https://docs.gitlab.com/user/ssh/
https://docs.gitlab.com/user/ssh/
https://docs.gitlab.com/user/ssh/
https://docs.gitlab.com/user/ssh/
https://docs.gitlab.com/user/ssh/
https://docs.gitlab.com/user/ssh/
https://docs.gitlab.com/user/ssh/
https://docs.gitlab.com/user/ssh/
https://docs.gitlab.com/user/ssh/
https://docs.gitlab.com/user/ssh/
https://docs.gitlab.com/user/ssh/
https://docs.gitlab.com/user/ssh/
https://docs.gitlab.com/user/ssh/
https://docs.gitlab.com/user/ssh/
https://docs.gitlab.com/user/ssh/

TYPICAL GIT VERSION CONTROL EXAMPLE

74

To create a local blank repository:
• $ git init
• $ cat "Hello World" >> README.md
• $ git add README.md
• $ git commit -m "initial commit"

To turn an existing project into a remote git repository:
• Do the same steps above for creating a local repository, then attach it to a remote host like Gitlab as follows:
• Create an empty repository on Gitlab: fill out information on https://github.com/new with <reponame>
• $ git remote add origin git@code.jlab.org:<username or organization name>/<reponame>.git
• $ git remote –v (verify)

• $ git branch –a (to find default initial branch-name, can be changed with `git branch -m <branch-name> <new branch-name>`)

• $ git config --global user.name <username>
• $ git config --global user.email <email>
• $ git push --set-upstream origin <branch-name>
• $ git remote show origin (verify)

To clone (download) an existing remote git repository:
• $ git clone git@code.jlab.org:<username or organization name>/<reponame>.git

Before pushing or pulling any commits to/from a remote repository,
set up your git ssh key config first:

• Github: https://docs.github.com/en/authentication/connecting-to-github-with-
ssh/adding-a-new-ssh-key-to-your-github-account

• Gitlab: https://docs.gitlab.com/ee/user/ssh.html (This is what code.jlab.org runs)
• More intro to Git: https://www.atlassian.com/git/tutorials/setting-up-a-repository

http://Chttps:/github.com/new
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.gitlab.com/ee/user/ssh.html
https://www.atlassian.com/git/tutorials/setting-up-a-repository
https://www.atlassian.com/git/tutorials/setting-up-a-repository
https://www.atlassian.com/git/tutorials/setting-up-a-repository
https://www.atlassian.com/git/tutorials/setting-up-a-repository
https://www.atlassian.com/git/tutorials/setting-up-a-repository
https://www.atlassian.com/git/tutorials/setting-up-a-repository
https://www.atlassian.com/git/tutorials/setting-up-a-repository

TYPICAL GIT VERSION CONTROL EXAMPLE

75

Example sequence of commands to check git configuration and safely commit changes:
▪ git remote show origin (verify your local repository is connected to the remote you think it should be)

▪ git branch -a
▪ git fetch
▪ git pull --ff-only (use this to avoid unwanted merge conflicts and better monitor recent remote changes)

▪ git checkout -b <new branch name here>
▪ git status (can also pass the folder of file of interest as an argument to simplify outputs)

▪ git log -N (N = number of recent commit logs to read)
▪ git diff [some local file that has changes]
▪ git blame [some local file you want change history of]
▪ git add [some local file that has changes you want to push]
▪ git commit --author=[your git remote server username]
▪ git push -u [origin name] [your branch name] (the origin names – typically “origin” or “remote” - are set in .git/config)

Additional challenges to plan to address before using Git to contribute to a project include:
• Using the right branch and managing issues and pull requests with collaborators
• Setting up username and password settings for remote git server access
• Resolving push/pull/merge conflicts
• Writing good commit messages

ACCESSING SHARED SOFTWARE

76

• Shared software can reside in many places
• /group/ disks
• /mss/ tapes
• More recently: CVMFS (CernVM File System)

• Load ROOT from CVMFS
• From the command line, execute:

• module use /cvmfs/oasis.opensciencegrid.org/jlab/scicomp/sw/el9/modulefiles
• module load root

• Or, add that line to your .tcshrc file (in ~/ your home folder, use `ls –lsa` to see the "hidden" . files)

set hostnamex="`hostname`"
if ($hostnamex =~ *'farm'*) then
 module use /cvmfs/oasis.opensciencegrid.org/jlab/scicomp/sw/el9/modulefiles
 module load root
endif

SCRIPTING

77

• Execute the scripts from the Git Repo you cloned earlier
• Simply type ./<script name> <filename> for .sh and .tcsh (bash and C-shell scripts)
• Use `python3` to run the .py python scripts, also with <filename> as an argument
• Use `root –l –b –q <script name>.C'("<filename>")' ` to execute ROOT scripts

• Identify the bug (with the tcsh script)

• Try to debug it

• Create your own branch with your bug fixes, or `git checkout` the bugfix-tcsh branch

• Fork the repository to your personal account
• (Or you can create an empty repository and push it there, as in the prior example)

• Create a Pull Request on the code.jlab.org website (personal repository) and approve

JLAB SCIENTIFIC COMPUTING ACCESS

Wednesday, May 21, 2025

Access High Performance
Computing (HPC) Cluster

Set up scientific computing
software on Linux systems

Run physics experiments,
simulations, and data analysis

Feel free to ask any follow up questions:
cameronc@jlab.org Tomorrow

mailto:cameronc@jlab.org

OUTLINE

79

• Different ways of using the farm - VNC, ssh, VDI, VSCode, etc, Introduce scp, sftp, globus
• Walk people through accessing the farm and making their own work directory

• Navigating the farm using Linux commands
• Make sure people can use at least the following commands
• Proxy jump
• Help people set up globus or scp or sftp
• If time, make git ssh key

• Sanitation permissions, gitlab intro, etc.
• Git repo on your work directory, make changes and pull request, execute script

• Git basics! Clone repository to your work directory, Edit a script or text file within
the cloned repository, Add, commit, push change to the forked repo, Create a pull
request for the change

• Load some basic modules, CVMFS
• Write a “Hello World!” script and execute it - use ROOT/C++, Building software and

debugging

	Slide 1: JLab Scientific Computing Access
	Slide 2: Outline
	Slide 3: Acquiring an Account
	Slide 4: Lecture: Accessing Lab Resources
	Slide 5: Logging In
	Slide 6: Logging In
	Slide 7: Logging In
	Slide 8: Logging In
	Slide 9: Accessing JLab Filesystems
	Slide 10: Accessing JLab ifarm
	Slide 11: Lecture: Navigate/Manipulate Files
	Slide 12: Navigating JLab ifarm
	Slide 13: Navigating JLab ifarm
	Slide 14: Shell Scripting
	Slide 15: SSH Passkeys
	Slide 16: Lecture: Scripting/Software & Git
	Slide 17: Getting Started with Git
	Slide 18: Git Version Control Basics
	Slide 19: Accessing, Sharing, and Tracking Software
	Slide 20: Hands On: Acquiring an Account
	Slide 21: Acquiring an Account
	Slide 22: Acquiring an Account
	Slide 23: Acquiring an Account
	Slide 24: Acquiring an Account
	Slide 25: Acquiring an Account
	Slide 26: Acquiring an Account
	Slide 27: Acquiring an Account
	Slide 28: Acquiring an Account
	Slide 29: Acquiring an Account
	Slide 30: Acquiring an Account
	Slide 31: Acquiring an Account
	Slide 32: Acquiring an Account
	Slide 33: Hands-On: Accessing Lab Resources
	Slide 34: Accessing JLab ifarm
	Slide 35: Accessing JLab ifarm
	Slide 36: Accessing JLab ifarm with SSH X windows forwarding
	Slide 37: Accessing JLab ifarm with SSH X windows forwarding
	Slide 38: Accessing JLab ifarm with SSH X windows forwarding
	Slide 39: Accessing JLab ifarm with SSH X windows forwarding
	Slide 40: Accessing JLab ifarm with SSH X windows forwarding
	Slide 41: Accessing JLab ifarm with SSH X windows forwarding
	Slide 42: Accessing JLab ifarm with SSH X windows forwarding
	Slide 43: Accessing JLab ifarm with SSH X windows forwarding
	Slide 44: Accessing JLab ifarm with SSH X windows forwarding
	Slide 45: Accessing JLab ifarm with SSH X windows forwarding
	Slide 46: Accessing JLab ifarm with SSH X windows forwarding
	Slide 47: Accessing JLab ifarm with SSH X windows forwarding
	Slide 48: Accessing JLab ifarm with SSH X windows forwarding
	Slide 49: Accessing JLab ifarm with Virtual Network Computing (VNC)
	Slide 50
	Slide 51
	Slide 52: Hands-On: Navigate/Manipulate Files
	Slide 53: Navigating ifarm Filesystems
	Slide 54: Navigating ifarm Filesystems
	Slide 55: Accessing JLab ifarm Files Remotely
	Slide 56: Accessing JLab ifarm Files Remotely
	Slide 57: Accessing JLab ifarm Files Remotely
	Slide 58: Accessing JLab ifarm Files Remotely
	Slide 59: SSH Passkeys
	Slide 60: SSH Passkeys
	Slide 61: Accessing JLab ifarm with SSH Keys
	Slide 62: Shell Scripting
	Slide 63: Shell Scripting
	Slide 64: Shell Scripting
	Slide 65: Text Editors
	Slide 66: Environment Setup
	Slide 67: Basic Scripting Example
	Slide 68: Basic Scripting Example
	Slide 69: Basic Scripting Example
	Slide 70: Basic Scripting Example
	Slide 71: Hands-On: Scripting/Software & Git
	Slide 72: Scripting/Software and Git
	Slide 73: Typical Git Version Control Example
	Slide 74: Typical Git Version Control Example
	Slide 75: Typical Git Version Control Example
	Slide 76: Accessing Shared Software
	Slide 77: Scripting
	Slide 78: JLab Scientific Computing Access
	Slide 79: Outline

