Detector Technologies for beam-dump experiments at MESA and JLab **BDX & Beyond Workshop at JLab** Luca Doria (doria@uni-mainz.de) PRISMA+ Cluster of Excellence and Institut für Kernphysik Johannes-Gutenberg Universität Mainz ### Overview - *Light Dark Matter - * The DarkMESA experiment - * Detector Technologies - *Applications at MESA and JLab - * Summary (Light) Dark Matter # Light Dark Matter - * Very wide mass range theoretically possible - * WIMP exclusion close to neutrino fog - * Alternative: new force and "light" DM $$\sigma \sim \frac{g^4}{m_\chi^2}$$ *Benchmark: minimal dark photon model $m_{\gamma'}$; m_{χ} ; ϵ ; α_D $$m_{\gamma'}$$; m_{χ} ; ϵ ; α_I # Beam-Dump Experiments #### Production $$Y_{Prod} \sim \epsilon^2/m_A^2$$ Detection $$Y_{Det} \sim \epsilon^2 \alpha_D / m_A^2$$ # Beam-Dump Experiments # The MESA Facility # The MAMI Facility #### **A2** Collaboration Experiments with real photons MAMI-C (since 2007) Harmonic Double-sided Microtron E= 1.6 GeV **Existing High-power Beam Dump** **Existing Halls cleared for MESA** #### MAMI-B 3 cascaded Racetrak Microtrons E=180-883 MeV Max beam current 100 uA c.w. #### A1 Collaboration 3-spectrometer setup Experiments with electrons HDSM Tagged Photons Parity Violation # The MAMI Facility #### **A2** Collaboration Experiments with real photons MAMI-C (since 2007) Harmonic Double-sided Microtron E= 1.6 GeV **New MESA Hall and Building** **Existing High-power Beam Dump** **Existing Halls cleared for MESA** #### MAMI-B 3 cascaded Racetrak Microtrons E=180-883 MeV Max beam current 100 uA c.w. #### **A1 Collaboration** 3-spectrometer setup Experiments with electrons HDSM X-Rays Hall Tagged Photons Parity Violation ## The MESA Facility #### The MESA Accelerator - 155 MeV max. beam energy - 2 SC TESLA-like cavities - >1mA beam current - Operation: - Extracted beam mode - Energy recovery/3x recirculation - Experimental Hall ready! ## The MESA Facility #### The MESA Accelerator - 155 MeV max. beam energy - 2 SC TESLA-like cavities - >1mA beam current - Operation: - Extracted beam mode - Energy recovery/3x recirculation - Experimental Hall ready! ## The DarkMESA experimental principle #### Beam Dump - 20 X₀ Beam Dump - Material: Aluminum (+ Water) - Energy on Dump: ∼135 MeV - 10⁴ h of operation; 10²² EOT #### Experimental Area - 70 X₀ (~8m) barite concrete - $-\sim$ no neutrons at detector position - no beam dump backgrounds #### Fluka Simulation (Neutrons) # The "Target" # Detector Technologies ``` M. Lauß et al., Nucl. Instr. Meth. A, 1012, 165617 (2021) ``` M. Christmann et al., Nucl. Instr. Meth. A, 958, 162398 (2020) M. Christmann et al., Nucl. Instr. Meth. A, 960, 163665 (2020) Prototype Detector 5x5 crystals + cosmics veto system Larger-scale Detector #### PbWO₄ Density ~8.3 g/cm³ Output 50-200 ph./MeV Fast (~10 ns) #### **BGO** Density ~ 7.1 g/cm³ Output ~10,000 ph./MeV Slow (~300-600 ns) #### PbF₂ Density ~8.4 g/cm3 Output ~16 ph./MeV Fast (~10ns) #### PbWO₄ Density ~8.3 g/cm³ Output 50-200 ph./MeV Fast (~10 ns) #### **BGO** Density ~ 7.1 g/cm³ Output ~10,000 ph./MeV Slow (~300-600 ns) #### PbF₂ Density ~8.4 g/cm3 Output ~16 ph./MeV Fast (~10ns) # Prototype Detector **Mirco Christmann** **Matteo Lauss** **Christian Stoss** Michail Kontogoulas # Prototype Detector **Matteo Lauss** **Christian Stoss** Michail Kontogoulas ### First Tests #### Electronics/DAQ CAEN V1742 (5GHz, 32ch, sigle ended) - Fast, more expensive PANDA sADC (80 MHz, 64ch, diff.) - Slower, cheaper, shaping required. #### Operation with cosmics started: Central BGO crystal for test. Surrounding crystals: PbF₂. SiPM readout ## **Background Studies** #### Cosmic Rays Simulation - CRY Library (LANL) - Overburden - Neutrons #### Cosmic Rays Veto Detector - Plastic Scintillators - SiPM readout - Custom electronics # Beam Tests (Cherenkov Radiators) # plastic SF5 SF57HTU PbF₂ BGO plastic plastic scintillator BGO 25 cm #### MAMI Beam (6-14 MeV) - Produced PEs - Lower Threshold - Neutron efficiency (source) #### In preparation: - Test at LNGS - Radioactive Assay ²⁴¹Am⁹Be # Opaque Liquid Scintillators # (Opaque) Liquid Scintillators Load LS with wax (e.g. 80%-20%) Opaqueness: scattering w/o absorption PID: topology of vertices Readout: optical fibres. #### Stefan Schoppann et al. (JGU) arXiv:2407.05999 Water-Based Scintillators 1%-10% scintillator Long time component > 10ns PID: Cherenkov/Scint ratio # Optimised Wavelength-Shifting Fibres (OWLs) - * In commercial fibers, the wavelength shifter is distributed isotropically in the fibres core. - *By a purely geometrical argument, total internal reflection $\sin \alpha \sqrt{1 \rho \sin^2 \phi} < \sin \beta$ - * is enhanced concentrating the wavelength shifter at high radii ρ K.F.Johnson, NIM-A, 334 (2), 432 (1994) - * With this arrangement, light capture can be increased by a factor 3-4. * Relevant for large experiments (long fibers) - * Largest loss at the fiber/scintillator interface - * OWLs can compensate for this. B. Kessler M.Sci Thesis # OWLs and the Liquid Scintillator - *The WLS paint can dissolve in the LS - *Fibres protected by a hollow quartz rod - *Mechanical stability - *Enhanced average light transport ## Detector Concept Prototype of a 0νββ experiment (NuDoubt⁺⁺) Test isotopes: ⁷⁸Ke, ¹²⁴Xe, ¹⁰⁶Cd Aim: observe $0\nu\beta\beta$ + in p-rich isotopes: No only a detector test: <u>DarkMESA</u>. #### Technology: Liquid Scintillator (Opaque/W-based) Optimised WLS Fibres (OWL) Readout: SiPMs #### Concept for NuDoubt++/DarkMESA # Detector Concept Simulation towards a ~10cm³ prototype. To be tested at MAMI accelerator (JGU). Key point: threshold, tracking, PID. Jonas Pätschke Simulation of neutron background Michail Kontogoulas # Projected Limits - * Moving from G4+MadGraph to full G4 simulation (A. Celentano, INFN Genova). - * Add background contributions. - * Simulate other physics models: - Z' - axions - - # Muon Signal 2 GeV muon through a 1m³ detector filled with OLS and 10mm-pitch fibers # Neutrino Signal (?) #### Expected yield: $$N_H \lesssim 1/year$$ — Larger Detector $N_C \sim 2/year$ #### With 22 GeV beam: ~ O(10) improvement for 400-500 MeV neutrinos # Summary - *MESA under construction: first 55 MeV beam in 2025. - *Beam Dump experiments: a lot of EOTs, sensitivity, direct measurement. - *DarkMESA: sensitivity to DM < 10MeV. BDX complementarity. - *Investigation of different technological options underway. - * Potential for applications to DM/muon/neutrino/neutron physics. # Summary - *MESA under construction: first 55 MeV beam in 2025. - *Beam Dump experiments: a lot of EOTs, sensitivity, direct measurement. - *DarkMESA: sensitivity to DM < 10MeV. BDX complementarity. - *Investigation of different technological options underway. - * Potential for applications to DM/muon/neutrino/neutron physics. - *Thank you!