Office of

# Fermilab ENERGY Science

Muon Collider Demonstrator Program

Diktys Stratakis (Fermilab)
Secondary Beams at JLAB
September 4, 2025



Motivation

2

Muons as compared to protons

» Are leptons & use all energy in a collision

* Need less collision energy for same physics
Muons as compared electrons

* Muons emit little synchrotron radiation

* Acceleration in rings possible to many TeV

A Muon Collider (MuC) can serve as
energy reach and precision machine
at the same time

In a MuC, luminosity to power ratio
improves substantially with energy
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International Muon Collider Collaboration (IMCC)

* |nternational Muon Collider R&D activities
are coordinated by the IMCC

International ‘
. . . UON Collid
* \lery active collaboration since 2021, over 50 Jeansssration  Mu Col
institutions have signed formal agreements

* Progress on many fronts of the accelerator &
detector design

* US scientists actively engaged with IMCC
* US representatives in IMCC leadership
* 7 Universities signed MoU, more to come

* DOE - CERN collaborative agreement in
progress, that will enable labs to official join
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Technology R&D
Technology demonstration Civil engineering
Optimisation Production
Installation & commissioning| Shutdown 1 Shutdown 2
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The USMCC / Ratified a chartem

on May 8, 2025
USMCC Elected

www.muoncollider.us Leadership on

Define necessary work for mid-P5 panel

Design a US demonstrator

Engage with the international community v omes (UTK) kil Hennedy (Prnteton)

Create a long-term vision for Fermilab that
leads to a muon collider

Build on a theory-driven physics case

Diktys Stratakis (FNAL)  Simone Pagan Griso (LBNL) Patrick Meade (SBU)

« Currently nearly 250 members. Still possible to join USMCC!
« Self subscribe to the mailing list

£& Fermilab
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https://listserv.fnal.gov/scripts/wa.exe?SUBED1=usmcc-info&A=1
https://drive.google.com/file/d/1y5Z5OHoUTwrPT8yMk7YV4Ch98EswjqoJ/view
http://www.muoncollider.us/

Muon Collider overview

Proton Driver Front End Cooling Acceleration Collider Ring
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« Cooling has huge leverage on the overall machine design
» What proton power is required? What target technology to choose?

 What luminosities can be envisioned?
3¢ Fermilab
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Concept of ionization cooling

radio-frequency cavity

absorber
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« Considerations for MuC cooling:

 Beam size must be small at the absorber to reduce scattering

» Absorbers with low Z and large energy loss must be selected

x1000 cells!
Not identical

-

one cell (~ 1m)

« Magnetic field has to increase in strength over distance to keep cooling

» The magnetic field, makes normal conducting (NC) cavities the only option
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Integration & technology questions

« 12 stages, with each stage having ~ 100 identical cells
* Field progressively increases from2 Tto >14 T
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Principle verification

Physics of ionization cooling has been demonstrated in two occasions
MICE Experiment

cavity

focus coil

g-2 Experiment

Fermilab Muon
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NC cavities in magnetic fields

« Behavior of NC cavities in B-fields (up to 3 T) was tested at Fermilab

« Two technologies have demonstrated mitigation

* Very encouraging!

Vacuum cavities

Material

B-field (T)

SOG (MV/m)

BDP (x1077)

Cu 0 244+0.7 1.8 0.4
Cu 3 1294+ 04 0.8 +0.2
Be 0 41.1 £2.1 L.1+£0:3
Be 3 >49.8 +2.5 0.2 + 0.07
Be/Cu 0 43.9+0.5 118 £ 1.18
Be/Cu 3 10.1 = 0.1 0.48 £0.14

Tests at higher B-field needed!
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Motivation for a cooling demonstrator

The principle of ionization cooling has been demonstrated
As a next step it is critical to benchmark a realistic cooling lattice

« This will give us the input, knowledge, and experience to design a real,
operational cooling channel for a MuC

It will advance magnet technology since we will design, prototype
and test solenoids similar to those needed for a MuC

» Synergistic with fusion reactors and axion dark matter searches

It will advance rf cavity technology since we will design, prototype
and test NC cavities similar to those need for a MuC

» Opportunity to develop efficient klystrons that can be useful for future colliders

» Opportunity to develop technology towards very high-gradient rf cavities for
future colliders

2% Fermilab
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Muon demonstrator staging

« Detailed parameters will depend on available funding and resources

RF studies in B-fields

+

_l E
7 cavity l Material studies & cryogenic Cu
_CCU coil ~
o .
. — Cell integration studies
g - —3 Cell resembles late 6D cooling
BT [
o | [ 1 [ Reuse components from Phase |
o Tagets Cooling module vagosics T Ull demonstrator with beam
source  capture iagnostics iagnostics
= g | _ Coils producing 7T axial fields
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= [E-.-.-.-.-a] cooling
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Full demonstrator with beam

Design in progress T
Peak solenoid ficld on-axis 72T
Djlpole field 02T
* Muon source, target and II !“! H III! || Rrromenion 2
transport RF fequency 704 Mz
Wedge thickness on-axis 0.0342 m
Wedge apex angle 5°
° B eam trans po rt ; \ Wedge material LiH
. Solen01d + ’ |
° COO | | ng Ch an nel dipole RF cavity Absorber
. . . - Muon Total length, | Total # of B max. T 6D emm. Beam loss,
, MeV 1l ducti
Investing synergies with other : - EENE
Full scale MC ~980 ~820 2-14 X 1/10%5  ~70%

applications S [ e e [ R e

RF  Solenoid Absorber
L ——

C. Rogers, Phys. Sci. Forum 2023, 8(1), 37

Upstream Instrumentation

and Matching Downstream

Instrumentation
== High-intensity high-energy pion source

Target Collimation and
phase rotation

Fermilab and CERN have started design work to host such a Cooling
Demonstrator

2% Fermilab
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Candidate locations at CERN

proton  Target & Cooling module

source  capture Diagnostics | DiagTostics
|
bl | X | I H 100+ m is desired
oM
[g - | l- I- n - l- EJ

~CTF3: ~10 kW beam power, plenty of space
dbut requires a new extraction line from the PS

TT7: Less intense, Iess space but
no need for a new PS extraction line

2% Fermilab
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Candidate locations at Fermilab

Lon.g.Baseline Neutrino ggoster Neutrino NuMI-MINOS
Facility AL Beam (8 GeV) Beam (120 GeV)

(60-120 GeV) #3e  w2a * Muon Campus
] v¢1b,2b, 3a

Booster (8 GeV)  +%3b

Main Injector
(120 GeV)

ey 2
~ Switchyard
13\ \
PIP-llinac &, (120 GeV)

Recycler (0.8 GeV) \Q
(8 GeV) . .
1) 0.8-1.0 GeV H- particles from the PIP-II linac: \
* (1a) Greenfield site in the Tevatron field ‘
3C (1b) Following the proposed muZ2e-Il line to muon

campus.

2) 8 GeV protons from the Booster:
(2a) At the present day short-baseline neutrino
(2b) At present day muon campus site.

3) 8-120 GeV protons from the Main Injector:
(3a) Split off P1 Muon Campus line.
(3b) Split off P1 Meson line.
(3c) Split off Ml Abort beamline.
(3d) At the present day NuMI beamline.
(3e) Split off LBNF beamline.

2% Fermilab
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0.8-1.0+ GeV scenarios at Fermilab

Long Baseline Neutrino gooster Neutrino NuMI-MINOS

Facility AC Beam (8 GeV) Beam (120 GeV)
(60-120 GeV) ¥w3e Ww2a

Main Injector

(120 GeV) A Switchyard
PIP-Il linac \\ (LE0.5e)
Recycler (0.8 GeV) 2
(8 GeV) L\
*3c ‘.
2& Fermilab
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0.8-1.0+ GeV protons from PIP-ll linac
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Excellent proton availability

— CW operation of the PIP-II linac would supply 1.6 MW of beam power, only
1% which is used for the Fermilab booster (the rest is potentially available for
experiments)

Green field sitting near PIP-Il linac
— Abundant real-estate in the Tevatron field, proximity to PIP-Il power/cryo

— Scenarios to send this beam to Muon Campus for Mu2e-Il are under study

Expect 0.8 GeV particles but 1.0+ GeV scenarios are also
considered

Synergies with other proposed experiments are possible
— Proposed low-energy muon facility (muSR)

— Proposed Fermilab facility for dark discovery (F2D2) beam dump physics
program

2% Fermilab
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8 GeV scenarios at Fermilab

Long Baseline Neutrino gooster Neutrino NuMI-MINOS

Facility AC Beam (8 Ge Beam (120 GeV)
(60-120 GeV) w3e |W ¥ Muor[Campus
f I3ds  +¥1b,2b,Ba

Booster (8 GeV)  +¥3b

3

Main Injector

(120 GeV) - = Switchyard
*ﬁ?la\ %
PIP-lllinac &%, (120 GeV)
Recycler (0.8 GeV) \Q
(8 GeV) L\
*3c ‘.
£& Fermilab
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Site at Fermilab: Muon Campus

« Designed to provide beam for the Muon g-2 and Mu2e experiments

muz2e
Production Solenoid

,:,

Production Target

Excellent opportunity to
examine targets under 5 T
field

2% Fermilab
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8 GeV protons from the booster

19

Excellent proton availability

— 81 bunches, each 1.2 ns separated at 19 ns intervals, 6.5e12 protons in 1.5
microsecond pulse

Sitting at Muon Campus
— Options to manipulate beam in Recycler before Muon Campus

— Can start at the end of the Mu2e program (2033) and take advantage of
existing tunnel and infrastructure.

— Will require use of the Recycler which is parasitic to the LBNF program

— A 7% reduction of LBNF 2.1 MW beam power for ~ 10 kW at 8 GeV

Siting at the Short-Baseline Neutrino Target Hall
— Can start at the end of the SBN program (3-5 years)
— No impact on LBNF: corresponds roughly to a 10+ kW at 8 GeV

2% Fermilab
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8-120 GeV scenarios at Fermilab

Long Baseline Neutrino gooster Neutrino NuMI-MINOS

Facility AC Beam (8 GeV) Beam (120 GeV)

(60' 120 GGV) *3e *Za ..‘ Muon Campus
v¢1b, 2b, 3a

Main Injector

(120 GeV) - = Switchyard
*ﬁ?la\ %
PIP-lllinac &%, (120 GeV)
Recycler (0.8 GeV) \Q
‘ (8 GeV) L\
*3c ‘.
£& Fermilab
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8-120 GeV protons from Fermilab Main Injector

« Low-duty factor intense proton pulse

— 972 bunches each 2 ns separated at 19 n intervals, 78e12 protons in 9
microsecond pulse

« Direct extraction from Main Injector
— Multiple beamline options, depending real estate and infrastructure needs
— Ml abort was the planned site for NUSTORM

— Operation is parasitic to the LBNF program: A 5% reduction in 2.1 MW LBNF
beam corresponds to 105 kW at 120 GeV

« 8-120 GeV tunable energy

— Proton energy can be set by the demonstrator needs, option to vary the
energy in some locations

2% Fermilab
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Future Steps

 Per PS5, a targeted panel is expected to review demonstrator
facilities in the collider R&D portfolios later this decade

* In preparation for this, we need to prepare a Demonstrator conceptual design
AND a detailed study on possible US sitting locations

« Fermilab with access to high-power proton beams and technological
expertise, is the ideal place for a Cooling Demonstrator

— It requires dedicated studies for designing this facility and exploring its
implementation within the Fermilab accelerator complex.

 LDRD has been awarded to Explore candidate sites of a cooling
Demonstrator facility within Fermilab (2-3 years)

« Good enough to look at sites within Fermilab and evaluate performance
« Evaluate risks and carry out preliminary engineering designs

«  Will require more funding for final engineering design and detailed cost analysis

2% Fermilab
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