

Secondary Beams at Jefferson Lab Workshop

Precision physics with low-energy muons

Adrian Signer

Paul Scherrer Institut / Universität Zürich

 4^{TH} Sep 2025

A. Signer, 04.09.25 - p.1/11

simplistic thoughts of a blissfully ignorant theorist

- theory for low-energy processes (with leptons) is typically limited by non-perturbative contributions
- can we turn this round and learn about non-perturbative physics ??
- replacing electrons by muons leads to complementarity information / advantages

- (1) overview of state-of-the-art for QED
- (2) three examples where $e \to \mu$ is theoretically interesting (not all are new)

- huge progress in past ~ 10 years (please do not use theory from the 70's any longer)
- fixed-order NNLO QED corrections (at low energies) available/planned for

$$\begin{array}{lll} \ell \rightarrow \ell' \nu \bar{\nu} & \ell \rightarrow \ell' \nu \bar{\nu} \gamma & \ell \rightarrow \ell' \nu \bar{\nu} (e^+ e^-) \\ \hline e^\pm \mu \rightarrow e^\pm \mu & e^\pm e^\pm \rightarrow \ell^\pm \ell^\pm & \ell p \rightarrow \ell p \\ e^+ e^- \rightarrow \gamma^* & e^+ e^- \rightarrow \gamma \gamma & e^+ e^- \rightarrow \mu^+ \mu^- \gamma \\ \hline e^+ e^- \rightarrow \pi^+ \pi^- & e^+ e^- \rightarrow \pi^+ \pi^- \gamma \end{array}$$

- full NNLO (beware of liberal use of the letter N), fully differential, toying with N³LO
- polarisation adds complication
- but largest uncertainty is often due to non-perturbative hadronic effects

example: $e^- N \rightarrow e^- N$ at NNLO, $N \in \{e, \mu, p, N\}$

	two-loop virtual	one-loop squared	real virtual	double real
е	What was a second of the secon		**************************************	
VP		\$ \$		
mix	25 X		who were the second sec	~~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~
VP			Jan my	

also $e \rightarrow N$ corrections, but they are often tiny for "difficult" N

e.g. $\mu^{\pm} e^{-} \rightarrow \mu^{\pm} e^{-}$ at NNLO: many people involved, Monte Carlo and beyond!

• many diagrams \to automate generation of diagrams, algebra, reduction to master integrals \Rightarrow amplitude \sim 60 Mb

[Bonciani, Broggio, Di Vita, Ferroglia, Mandal, Mastrolia, Mattiazzi, Primo, Ronca, Schubert, Torres Bobadilla, Tramontano]

- MUonE two-loop integrals with $m_e=0$ expressed in terms of generalised polylogs \rightarrow develop Fortran tool for fast numerical evaluation [handyG]
- include effects of $m_e \neq 0$ in mixed NNLO approximately (massification) [Penin; Becher, Melnikov; Engel, Gnendiger, AS, Ulrich]
- delicate numerics for one-loop (up to pentagon) diagrams \rightarrow use [OpenLoops]
- delicate numerics in phase space integration \rightarrow use next-to-soft approach, extension of LBK theorem beyond NLO [Engel, AS, Ulrich, McMULE]

TPE from e.g. MUSE, $p=210\,\mathrm{MeV}$

find

and

in slide 4 (NNLO QED is sufficient)

ep: no cut on (forward) γ

A. Signer, 04.09.25 - p.6/11

TPE from e.g. MUSE, $p=210\,\mathrm{MeV}$

find

and

in slide 4 (NNLO QED is sufficient)

ep: with cut on (forward) γ

TPE from e.g. MUSE, $p=210\,\mathrm{MeV}$

QED corrections large

μp : no/cut on forward γ

QED corrections small

avoiding initial state collinear emission and $e \to \mu$ helps $e\,p$ with cut looks similar to $\mu\,p$ (with/out) cut

$\Pi_{\gamma\gamma}(q^2)$ from MUonE

measure a 0.1% effect to 1% (need to go beyond NNLO)

PV 'kills' QED, EW pops up

from

measure a large effect to ?% RGE improved (L)EFT non-perturbative matching at $\sim 2\,\mathrm{GeV}$

use $\mu^{\pm}\,X \to \mu^{\pm}\,X$ with $X \in \{e,p,^{12}\,C,\ldots\}$

extract information on EW / non-perturbative effects ???

 $\begin{array}{ll} \text{facilitate} & \text{non-pertubative} \\ \text{matching LEFT} \rightarrow \text{EFT}_{@\mu_{\text{exp}}} \end{array}$

maybe Lattice will also help at some point

learn from $(g-2)_{\mu}$ history

since you encouraged crazy ideas ...

if you wanted to study

- TPE effects in $\mu^{\pm} N \to \mu^{\pm} N$ for $N \neq p$ but also deuteron or ^{12}C or ...
- ullet weak / non-perturbative effects in polarised μ scattering on N
- ullet weak / non-perturbative effects in (un/polarised) μ on (unpolarised) e
- produce and use data to fix / constrain non-perturbative effects

QED effects are (will be) known to sufficient precision to be disentangled but they have to be taken into account !!