

Secondary Beams at Jefferson Lab Workshop (BDX & Beyond)

4–5 Sept 2025 Jefferson Lab US/Eastern timezone

Enter your search term

Q

Introduction to secondary beams at Jefferson Lab

M.Battaglieri (INFN)

BDX & Beyond workshop

Goal explore opportunities offered by secondary beams at Jefferson Lab to leveraging BDX infrastructures

Format workshop

Secondary Beams Worksho sharing thoughts and ideas on muon, neutrino, neutron and LDM beams @ JLab

Program

two days of presentations, discussion time, flash talks

Expected outcome

to build a new user community e deliver soon after a white paper with results of the brainstorming jlab.org/conference/bdx20

REGISTER

Thursday, September 4, 2025

Jefferson Lab and BDX Facility (tbc)	
113, Jefferson Lab	09:00 - 09:
uture Initiatives for the JLab Experimental Program	Cynthia Kepp
113, Jefferson Lab	09:15 - 09:
ntroduction to Secondary Beams at Jefferson Lab	Marco Battagii
113, Jefferson Lab	09:30 - 09:
he BDX & Beyond Infrastructure	Wait Ake
F113, Jefferson Lab	09:45 - 10:
Simulation of Secondary Beam Fluxes	Antonino Fu
E113, Jefferson Lab	10:00 - 10:
ight dark matter searches with BDX	Marco Spreafic
113, Jefferson Lab	10:50 - 11:1
Probing Millicharged Particles at BDX with Ultralow-Threshold Sensors (remote)	Zhen Li
F113, Jefferson Lab	11:15 - 11:4
Measuring Proton Form Factors and Two-Photon Exchange with the Future BDX Muon Beam	Ethan Clin
113, Jefferson Lab	11:40 - 12:0
leutrino Physics Opportunities with Pion and Kaon Decay-at-Rest Neutrino Source	Vishvas Pande
213, Jefferson Lab	12:05 - 12:0
Precision physics with low-energy muons (remote)	Adrian Sig
113, Jefferson Lab	14:00 - 14
Pirectional muon beams using Laser Plasma Acceleration at the BELLA Center (remote)	Davide Terz
113, Jefferson Lab	14:15 - 14
Liquid Argon-based technologies for neutrino and dark matter detection	Claudio Montar
F113, Jefferson Lab	14:40 - 15
AMU and beyond: muonic atoms in fundamental and applied physics	Riccardo Ros
F113, Jefferson Lab	15:05 - 15
Muon-philic dark matter search at the BDX facility	Mariangela Bo
113, Jefferson Lab	16:00 - 16
Cooling Demonstrator Program for the Muon Collider (remote)	Diktys Strata
F113, Jefferson Lab	16:20 - 16
Muon beamlines at J-PARC MLF (remote)	Takayuki Yamazaki
113, Jefferson Lab	16:40 - 17
Collaborative NSF MRI Grants with Primarily Undergraduate Institutions	Michael Wo
F113, Jefferson Lab	17:00 - 17

REGISTER

Scientific Program Committee

Patrick Achenbach (Jefferson Lab) Adi Ashkenazi (Tel Aviv U) Marco Battaglieri (INFN Genova) lay Benesch (Jefferson Lab) Mariangela Bondi (INFN Catania) Eric Christy (Jefferson Lab) Simona Giovannella (INFN-LNF) Thia Keppel (Jefferson Lab) Michael Kohl (U Hampton) Camillo Mariani (Virginia Tech) Kevin McFarland (U Rochester) Jianwei Qiu (Jefferson Lab Theory Center) Adrian Signer (PSI)

Friday, September 5, 2025

Probing neutrino interaction simulations with electron scattering data (remote)	Júlia Tena-Vidal
F113, Jefferson Lab	09:00 - 09:25
Discussion on neutrino scattering in the BDX facility (remote)	Júlia Tena-Vidal et al.
F113, Jefferson Lab	09:25 - 09:40
Overview of CERN secondary beam lines (remote)	Dipanwita Banerjee
F113, Jefferson Lab	09:40 - 10:05
Physics Opportunities with Muon Beams from Low to High Energies	Andrei Afanasev
F113, Jefferson Lab	10:05 - 10:25
Detector Technologies for beam-dump experiments at MESA and JLab (remote)	Luca Doria
F113, Jefferson Lab	11:00 - 11:25
Muon physics infrastructure and program at PSI (remote)	Klaus Kirch
F113, Jefferson Lab	11:25 - 11:50
Prospects for muon on electron scattering at JLab	Michael Kohl
F113, Jefferson Lab	11:50 - 12:00
Possible muon beam lines for BDX	Jay Benesch 🥚
F113, Jefferson Lab	12:00 - 12:15
Facility Tour	Eric Christy
CEBAF	Eric Christy 13:30 - 15:00
CEBAF Coffee Break	13:30 - 15:00
CEBAF Coffee Break F113, Jefferson Lab	
CEBAF Coffee Break F113, Jefferson Lab	13:30 - 15:00
CEBAF Coffee Break	13:30 - 15:00
CEBAF Coffee Break F113, Jefferson Lab	13:30 - 15:00
CEBAF Coffee Break F113, Jefferson Lab	13:30 - 15:00
CEBAF Coffee Break F113, Jefferson Lab	13:30 - 15:00

Jefferson Lab The intensity frontier

- *Primary Beam: Electrons
- * Beam Energy: 12 GeV
- $10 > \lambda > 0.1$ fm
- nucleon → quark transition
- baryon and meson excited states

- *100% Duty Factor (cw) Beam * Polarization
- coincidence experiments
- Four simultaneous beams
- Independent E and I

- spin degrees of freedom
 - weak neutral currents

New physics perspectives at Jlab with secondary beams

- CEBAF provides a high-intensity II GeV (in future 20+ GeV) electron beam for extracted-beam experiments
- High-intensity secondary beams are produced in the dump(s) fully opportunistically
- The machine can sustain up to ~MW power (100 uA @ 10 GeV, 200 uA @ 5 GeV)
- Hall-A routinely receives ~50-70 nA @ II GeV, Hall-D 7-8 uA @ I2 GeV
 - High-intensity secondary beams:
 - Muon
 - Neutrino
 - Neutrons
 - Light Dark Matter (if it exists)
- A positron beam is expected in the near future as part of the 22 GeV upgrade of the machine

https://www.mdpi.com/2410-390X/8/1/1/pdf

The simulation framework

- Hall-A beam-dump geometry/materials implemented in FLUKA (with JLab RadCon Group)
 - FLUKA biasing: xsecs enhancement, 'leading particle', importance sampling, threshold T>100 MeV
 - GEANT: detailed and realistic descriptions of the detector active volume response

• Good consistency between G4 and FLUKA for μ and high energy neutrons (T_n>100 MeV) in the BD

Muon beam

- Muon flux estimated using FLUKA for 11 GeV and 22 GeV ebeam on Hall-A BD
- High-energy muon produced via two processes:
 - Photo-production of π and k and decay
 - Pair-production: γN -> μμΝ

- Significant advantage at 22 GeV (higher muon flux and higher energ

- The flux increases with the energy of primary beam:
- Muon flux (11 GeV e- beam): 9 10-7 μ/EOT
 - Rate ~ $3 \cdot 10^8 \, \mu/s$
- Muon (22 GeV e- beam): 5.3 10-6 μ/EOT
 - Rate ~ $2 \cdot 10^9 \, \mu/s$
- CERN's M2 beamline (E_{μ} >100GeV Rate ~2 10⁷)
- Muon flux profile: σ_x and $\sigma_y \sim 20$ cm
- The muon flux predicted by FLUKA was validated in a dedicated experiment µBDX in the future BDX area

SM Physics: the proton radius

Proton charge radius

 Protons are not elementary particles, thus is possible to define a proton charge radius

The proton charge radius can be measured by:

- 1. Leptonic scattering
- 2. Spectroscopic measurement

- Smaller Bohr radius / closer probing
- Reduced radiative effects
- Higher momentum transfer at same energy
- Independent cross-check
- AMBER @ CERN (M2 beam line)

BSM Physics: muon-phillic forces

μ³BDX @ JLab

- Fixed-target, missingmomentum experiment to probe invisibly decaying particles
- Scalar or vector mediator of a new force
- This experiment is similar to M³ experiment proposed at FERMILAB

μBDX @ JLab

- Muon beam dump experiment to probe the visible decay into e+e-(γγ)
- Same infrastructure requested by BDX

Neutrino beam

- Low energy Vs due pion and muon decay at rest
 - π decay produces a prompt 28.5 MeV v_μ along with a μ which subsequently decays producing a v_e and a v_μ
 - Weak angular dependence
- High-energy v from in-flight pion and muon decay

$$\pi^+ \to \mu^+ + \nu_\mu$$
, $E_\nu \sim$ 29.8 MeV, almost monochromatic; $\mu^+ \to \bar{\nu}_\mu + \nu_e + e^+$, E_ν in the range 0–52.8 MeV; $K^+ \to \mu^+ + \nu_\mu$, $E_\nu \sim$ 236 MeV, almost monochromatic.

- Neutrino flux estimated using FLUKA for 11 GeV and 22 GeV primary e- beam on Hall-A BD
- Flux scored on a plane downstream Hall-A beam dump:
 - II GeV e- beam: 3 10¹⁷ v/m²/year (I year corresponding to 10²² EOT)
 - 22 GeV e- beam: 9 10¹⁷ v/m²/year (1 year corresponding to 10²² EOT)
- Decay-At-Rest (DAR) energy spectrum

Beam Energy	Off-Axis Flux [v/EOT/m ²]	On-Axis Flux [v/EOT/m ²]
11 GeV	6.7×10^{-5}	2.9×10^{-5}
22 GeV	1.9×10^{-4}	6.3×10^{-5}

vBDX @ JLab

CEvNS (Coherent Elastic nu-Nucleus Scattering)

- Low-energy neutrinos (<100 MeV) coherent scatter on nucleus
- The largest xsec for $E_v < 100 \text{ MeV}$
- First detected in 2017 on CsI by COHERENT (~134 events)
- Low recoil energy due to kinematics O(10 keV)

Why interesting?

- weak parameters -> mixing angle
- nuclear properties -> neutrons distribution radius
- sterile neutrino
- neutrino magnetic moment
- non standard interaction mediated by exotic particles

Requirements

- High-intense v-flux
- v-flux energy range: few MeV few 100 MeV
- · detector sensitive to small energy deposition
- small background

The vBDX detector

- 10m above the dump
- Two detection technologies under study: Csl and LAr-TPC
- Veto system: active (plastic ...) and passive (lead, water, borate silicone and/or cadmium sheet layers...)

Detecting CEvNS at JLab

Neutrons

SecNeutrons@JLab electron beam II GeV I00uA = 6.3 I0¹⁴ e/s Hall-A BD target

SNS@ORNL
proton beam
I GeV
I.4 mA = 8.8 I0¹⁵ p/s
Hg target

Energy Range	Jlab (n/s)	Oak Ridge (n/s)	Ratio (J/O)
0 - 6GeV	7.86e+13	1.41e+17	0.001
0.1eV - 100.0eV	0.00e+00	0.00e+00	inf
100.0eV - 100.0keV	2.13e+13	2.17e+16	0.001
100.0keV - 1.0MeV	4.51e+12	8.60e+16	0.000
1.0MeV - 100.0MeV	4.16e+13	3.26e+16	0.001
100.0MeV - 2.0GeV	1.14e+13	3.43e+14	0.033
2.0GeV - 11.0GeV	2.07e+09	0.00e+00	inf

- FLUKA simulation framework cross checked with SNS data
- Assuming the excavation of the BDX pit (no dedicated near facility)
- Neutron flux sampled around the BD, upstream/downstream of the concrete vault and BDX pit entrance

Summary

- * High-intensity electron beams are a precious source of secondary beams:
- * The high intensity (~100uA), medium energy (~10 GeV) CEBAF electron beam at Jefferson lab is ideal for producing secondary beams
 - Light Dark Matter (if it exists)
 - Neutrinos
 - Muons
 - Neutrons
- * Realistic simulations performed with FLUKA and GEANT4
 - LDM: best beam around the world for a beam-dump experiment
 - Muon beams: Bremsstrahlung-like energy spectrum, (100 MeV 5 GeV), \sim 10-6 μ /EOT
 - Neutrino beams: DAR energy spectrum, (0 50 MeV), 3 10¹⁷ v/m²/year
 - Neutros beams: may be competitive in certain energy range with world leading facilities
- * The 22 GeV upgrade of CEBAF will provide even better secondary beams (in particular muons)
- * Secondary beams offer new (opportunistic) opportunities to extend the physics program of lepton-beam facilities

... more at the end of the BDX&Beyond workshop and in the white paper