Secondary Beams at Jefferson Lab Workshop (BDX & Beyond)

Probing Millicharged Particles at BDX with Ultralow-Threshold Sensors

Zhen Liu University of Minnesota

09/04/2025

Letter of Intent to PAC 53 Probing Millicharged Particles at an Electron Beam Dump with Skipper-CCDs at BDX

Marco Battaglieri,^a Mariangela Bondi,ⁱ Ana Botti,^b Brenda A. Cervantes-Vergara,^b Raffella De Vita,^{a,l} Rouven Essig,^d Juan Estrada,^b Peiran Li,^e Zhen Liu,^e Megan McDuffie,^{d,f} Santiago Perez,^g Dario Rodrigues,^g Ryan Plestid,^h Marco Spreafico,^a Javier Tiffenberg,^b Hailin Xu^{d,f} and the BDX Collaboration

Received: December 16, 2024

ACCEPTED: March 7, 2025

Published: April 8, 2025

Probing millicharged particles at an electron beam dump with ultralow-threshold sensors

Rouven Essig \mathbb{D} , a Peiran Li \mathbb{D} , b Zhen Liu \mathbb{D} , b Megan McDuffie \mathbb{D} , a Ryan Plestid \mathbb{D}^d and Hailin Xu $\mathbb{D}^{a,c}$

A generic light hidden photon and millicharged particles

Millicharged Particles at Neutrino Experiments

High beam energy High beam intensity $(10^{20} \sim 10^{23})$ Proton On Target)

NuMI beam: good source for Millicharged particles

High beam energy High POT

Typical geometric acceptance: $10^{-5\sim6}$

	π^0	η	η'	ρ	ω	ϕ	J/ψ	DY
#/POT	2.9	3.2×10^{-1}	3.4×10^{-2}	3.7×10^{-1}	3.7×10^{-1}	1.1×10^{-2}	5.4×10^{-7}	$4.7 \times 10^{-10} \epsilon^2$
$2 \times \operatorname{Br}_{X \to \chi \bar{\chi}}(\%)$	$2.3\epsilon^2$	$1.4\epsilon^2$	$0.04\epsilon^2$	$0.009\epsilon^2$	$0.018\epsilon^2$	$0.058\epsilon^2$	$12\epsilon^2$	
$A_{\rm geo}^{\rm ArgoNeuT}(m_{\chi}{=}20~{ m MeV})$	3.1×10^{-5}	2.1×10^{-5}	1.6×10^{-5}	1.9×10^{-5}	2.0×10^{-5}	9.1×10^{-6}	5.0×10^{-6}	3.2×10^{-6}
$A_{\rm geo}^{\rm ArgoNeuT}(m_{\chi}{=}200~{ m MeV})$		5.4×10^{-5}	3.4×10^{-5}	2.3×10^{-5}	2.2×10^{-5}	1.1×10^{-5}	4.6×10^{-6}	3.1×10^{-6}

Detection

Signal scattering probability and mean free path

$$\frac{d\sigma}{dE_r} = \pi \alpha^2 \epsilon^2 \frac{2E_{\chi}^2 m_e + E_r^2 m_e - E_r \left(m_{\chi}^2 + m_e (2E_{\chi} + m_e) \right)}{E_r^2 (E_{\chi}^2 - m_{\chi}^2) m_e^2}$$

$$\left. \frac{d\sigma}{dE_r} \right|_{E_\chi \gg m_\chi, m_e, E_r} \simeq \frac{2\pi\alpha^2\epsilon^2}{E_r^2 m_e}.$$
 Dominated by low recoil energy

Dominated by scattering

$$\lambda(E_r^{\min}) \simeq \left(\frac{10^{-2}}{\epsilon}\right)^2 \left(\frac{E_r^{\min}}{1 \text{ MeV}}\right) 1 \text{ km}$$

How to see Millicharged Particles (Again)?

Signal scattering probability and mean free path

$$\left. \frac{d\sigma}{dE_r} \right|_{E_\chi \gg m_\chi, m_e, E_r} \simeq \frac{2\pi\alpha^2\epsilon^2}{E_r^2 m_e}.$$

$$\lambda(E_r^{\min}) \simeq \left(\frac{10^{-2}}{\epsilon}\right)^2 \left(\frac{E_r^{\min}}{1 \text{ MeV}}\right) \text{ 1 km}$$
 Compared to LAr, Skipper CCD increases signal efficiency by 10⁵ (1 MeV v.s. 10 eV)

Dominated by low recoil energy scattering

What if we lower the threshold?

Compared to LAr, Skipper CCD MeV v.s. 10 eV)

Single Scatter Detection Parametric (1-hit):

- Detection Rate proportional to Volume
 - SENSEI 3gram is small in volume, about 1/10⁵ compared to ArgoNeuT
- Detection Rate proportional to effective POT
- But Skippers has much lower 1-hit background.

New Results with SENSEI Collaboration (2305.04964)

3 gram of detectors with 3 days equivalent of data $(9g \cdot day)$ on NUMI beam) already achieving new results.

with the OSCURA collaboration (2304.08625)

Zhen Liu

Assuming 1kg skipper CCD for "early science" of OSCURA experiment.

Different background level assumptions:

- Very conservatively assuming a large number of backgrounds;
- Adapting our multi-hit strategy;
- Also shown in dashed the zero-background projections (consistent with my earlier calculation in the previous slide).

MCP@BDX BDX & Beyond 09/04/2025 13

BDX Experiment

Probing Millicharged Particles at an Electron Beam Dump with Ultralow-Threshold Sensors

R. Essig, **P.R. Li**, ZL, **M. McDuffie**, R. Plestid, **H.L. Xu**, <u>2412.09652</u>

10.6 GeV electron beam with 10^{22} EoT (electron on Target) on 3meter of Al. Jefferson Lab.

Electron Beamdumps

Probing Millicharged Particles at an Electron Beam Dump with Ultralow-Threshold Sensors

R. Essig, P.R. Li, ZL, M. McDuffie, R. Plestid, H.L. Xu, 2412.09652

- Production of mCPs in the first radiation length (Many existing searches & projections rely on this)
- Production of mCPs in the electromagnetic cascade

EW Shower Effects

Zhen Liu MCP@BDX BDX & Beyond 09/04/2025

16

Skipper Responses & Geometric Effects

Projections

Good at Excluding. Are we good discovering?

I think so:

• For 1-hit searches: one can test if the excess events follow (this requires a reasonable modeling of backgrounds) the expected behavior:

$$\frac{d\sigma}{dE_r} = \pi \alpha^2 \epsilon^2 \frac{2E_{\chi}^2 m_e + E_r^2 m_e - E_r \left(m_{\chi}^2 + m_e (2E_{\chi} + m_e)\right)}{E_r^2 (E_{\chi}^2 - m_{\chi}^2) m_e^2}$$

- For double hit searches in LArTPC: one can additionally check the mean distance distribution between the hits
- This is not true for some other mCP searches

Fast developing frontier:

Beyond beam production, we can have:

- Atmospheric production of MCPs
- Local (and collected) abundance of MCP (a fraction of) DM, enabling new searches such as using ion-trap heating or cavity-like experiment
- MCP production prediction improvement (for all beam sourced MCPs)

Summary

- Exciting opportunity
- Exciting work ahead

Beam Dump Experiment (BDX)

Power consumption

Subsystem	Component	Power Consumption		
Vacuum System	Turbo pump + backing pump	100-300 W		
Cryogenic Cooling	Cryocooler	300-600 W		
Readout Electronics	Controller + digitizers	$50-150~\mathrm{W}$		
Computing	Control + local storage	200-300 W		

09/04/2025 24

