Secondary Beams at Jefferson Lab Workshop (BDX & Beyond) # Probing Millicharged Particles at BDX with Ultralow-Threshold Sensors Zhen Liu University of Minnesota 09/04/2025 # Letter of Intent to PAC 53 Probing Millicharged Particles at an Electron Beam Dump with Skipper-CCDs at BDX Marco Battaglieri,^a Mariangela Bondi,ⁱ Ana Botti,^b Brenda A. Cervantes-Vergara,^b Raffella De Vita,^{a,l} Rouven Essig,^d Juan Estrada,^b Peiran Li,^e Zhen Liu,^e Megan McDuffie,^{d,f} Santiago Perez,^g Dario Rodrigues,^g Ryan Plestid,^h Marco Spreafico,^a Javier Tiffenberg,^b Hailin Xu^{d,f} and the BDX Collaboration Received: December 16, 2024 ACCEPTED: March 7, 2025 Published: April 8, 2025 # Probing millicharged particles at an electron beam dump with ultralow-threshold sensors Rouven Essig \mathbb{D} , a Peiran Li \mathbb{D} , b Zhen Liu \mathbb{D} , b Megan McDuffie \mathbb{D} , a Ryan Plestid \mathbb{D}^d and Hailin Xu $\mathbb{D}^{a,c}$ #### A generic light hidden photon and millicharged particles #### Millicharged Particles at Neutrino Experiments High beam energy High beam intensity $(10^{20} \sim 10^{23})$ Proton On Target) #### NuMI beam: good source for Millicharged particles High beam energy High POT Typical geometric acceptance: $10^{-5\sim6}$ | | π^0 | η | η' | ρ | ω | ϕ | J/ψ | DY | |--|----------------------|--------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------------------| | #/POT | 2.9 | 3.2×10^{-1} | 3.4×10^{-2} | 3.7×10^{-1} | 3.7×10^{-1} | 1.1×10^{-2} | 5.4×10^{-7} | $4.7 \times 10^{-10} \epsilon^2$ | | $2 \times \operatorname{Br}_{X \to \chi \bar{\chi}}(\%)$ | $2.3\epsilon^2$ | $1.4\epsilon^2$ | $0.04\epsilon^2$ | $0.009\epsilon^2$ | $0.018\epsilon^2$ | $0.058\epsilon^2$ | $12\epsilon^2$ | | | $A_{\rm geo}^{\rm ArgoNeuT}(m_{\chi}{=}20~{ m MeV})$ | 3.1×10^{-5} | 2.1×10^{-5} | 1.6×10^{-5} | 1.9×10^{-5} | 2.0×10^{-5} | 9.1×10^{-6} | 5.0×10^{-6} | 3.2×10^{-6} | | $A_{\rm geo}^{\rm ArgoNeuT}(m_{\chi}{=}200~{ m MeV})$ | | 5.4×10^{-5} | 3.4×10^{-5} | 2.3×10^{-5} | 2.2×10^{-5} | 1.1×10^{-5} | 4.6×10^{-6} | 3.1×10^{-6} | #### **Detection** #### Signal scattering probability and mean free path $$\frac{d\sigma}{dE_r} = \pi \alpha^2 \epsilon^2 \frac{2E_{\chi}^2 m_e + E_r^2 m_e - E_r \left(m_{\chi}^2 + m_e (2E_{\chi} + m_e) \right)}{E_r^2 (E_{\chi}^2 - m_{\chi}^2) m_e^2}$$ $$\left. \frac{d\sigma}{dE_r} \right|_{E_\chi \gg m_\chi, m_e, E_r} \simeq \frac{2\pi\alpha^2\epsilon^2}{E_r^2 m_e}.$$ Dominated by low recoil energy Dominated by scattering $$\lambda(E_r^{\min}) \simeq \left(\frac{10^{-2}}{\epsilon}\right)^2 \left(\frac{E_r^{\min}}{1 \text{ MeV}}\right) 1 \text{ km}$$ #### How to see Millicharged Particles (Again)? Signal scattering probability and mean free path $$\left. \frac{d\sigma}{dE_r} \right|_{E_\chi \gg m_\chi, m_e, E_r} \simeq \frac{2\pi\alpha^2\epsilon^2}{E_r^2 m_e}.$$ $$\lambda(E_r^{\min}) \simeq \left(\frac{10^{-2}}{\epsilon}\right)^2 \left(\frac{E_r^{\min}}{1 \text{ MeV}}\right) \text{ 1 km}$$ Compared to LAr, Skipper CCD increases signal efficiency by 10⁵ (1 MeV v.s. 10 eV) Dominated by low recoil energy scattering What if we lower the threshold? Compared to LAr, Skipper CCD MeV v.s. 10 eV) #### Single Scatter Detection Parametric (1-hit): - Detection Rate proportional to Volume - SENSEI 3gram is small in volume, about 1/10⁵ compared to ArgoNeuT - Detection Rate proportional to effective POT - But Skippers has much lower 1-hit background. #### **New Results with SENSEI Collaboration (2305.04964)** 3 gram of detectors with 3 days equivalent of data $(9g \cdot day)$ on NUMI beam) already achieving new results. #### with the OSCURA collaboration (2304.08625) Zhen Liu Assuming 1kg skipper CCD for "early science" of OSCURA experiment. Different background level assumptions: - Very conservatively assuming a large number of backgrounds; - Adapting our multi-hit strategy; - Also shown in dashed the zero-background projections (consistent with my earlier calculation in the previous slide). MCP@BDX BDX & Beyond 09/04/2025 13 #### **BDX Experiment** Probing Millicharged Particles at an Electron Beam Dump with Ultralow-Threshold Sensors R. Essig, **P.R. Li**, ZL, **M. McDuffie**, R. Plestid, **H.L. Xu**, <u>2412.09652</u> 10.6 GeV electron beam with 10^{22} EoT (electron on Target) on 3meter of Al. Jefferson Lab. #### **Electron Beamdumps** Probing Millicharged Particles at an Electron Beam Dump with Ultralow-Threshold Sensors R. Essig, P.R. Li, ZL, M. McDuffie, R. Plestid, H.L. Xu, 2412.09652 - Production of mCPs in the first radiation length (Many existing searches & projections rely on this) - Production of mCPs in the electromagnetic cascade #### **EW Shower Effects** Zhen Liu MCP@BDX BDX & Beyond 09/04/2025 16 #### **Skipper Responses & Geometric Effects** #### **Projections** #### Good at Excluding. Are we good discovering? #### I think so: • For 1-hit searches: one can test if the excess events follow (this requires a reasonable modeling of backgrounds) the expected behavior: $$\frac{d\sigma}{dE_r} = \pi \alpha^2 \epsilon^2 \frac{2E_{\chi}^2 m_e + E_r^2 m_e - E_r \left(m_{\chi}^2 + m_e (2E_{\chi} + m_e)\right)}{E_r^2 (E_{\chi}^2 - m_{\chi}^2) m_e^2}$$ - For double hit searches in LArTPC: one can additionally check the mean distance distribution between the hits - This is not true for some other mCP searches #### Fast developing frontier: Beyond beam production, we can have: - Atmospheric production of MCPs - Local (and collected) abundance of MCP (a fraction of) DM, enabling new searches such as using ion-trap heating or cavity-like experiment - MCP production prediction improvement (for all beam sourced MCPs) #### Summary - Exciting opportunity - Exciting work ahead ### Beam Dump Experiment (BDX) ## Power consumption | Subsystem | Component | Power Consumption | | | |---------------------|---------------------------|---------------------|--|--| | Vacuum System | Turbo pump + backing pump | 100-300 W | | | | Cryogenic Cooling | Cryocooler | 300-600 W | | | | Readout Electronics | Controller + digitizers | $50-150~\mathrm{W}$ | | | | Computing | Control + local storage | 200-300 W | | | 09/04/2025 24