

Theory

$$I(\Omega, \Phi) \equiv \frac{\mathrm{d}\sigma}{\mathrm{d}t\mathrm{d}m_{K^+K^-}\mathrm{d}\Omega\mathrm{d}\Phi} = 2\kappa \sum_{k} \left(1 + P_{\gamma}\right) \left| [l]_{m;k}^{(+)} \mathrm{Re}Z_l^m(\Omega, \Phi) \right|^2 + \left(1 - P_{\gamma}\right) \\ + \left(1 - P_{\gamma}\right) \left| [l]_{m;k}^{(-)} \mathrm{Re}Z_l^m(\Omega, \Phi) \right|^2 + \left(1 + P_{\gamma}\right) \left| [l]_m^{(-)}$$

Partial Wave Amplitudes of K⁺K⁻ with CLAS12

Charlie Velasquez, University of York (charlie.velasquez@york.ac.uk) Supervisors: Daniel Watts, Nick Zachariou

Method & Results

Event-by-event Extended Maximum Likelihood Fitting Fitting the experimental intensity involved fitting distributions of $\cos\theta$, ϕ , Φ and P_{ν} by varying the partial wave amplitudes and phases.

corrected log-likelihood function was minimized,

$$-\ln L(p) \propto -\sum_{i}^{N} f(x_i; p) + A(p), \qquad A(p) = \int f(x_i; p) \eta(x_i) \, dx \approx \sum_{j}^{M} f(x_i; p).$$

Experimental data (black) and acceptance-corrected projections of the intensity function (red) for $\cos\theta$, ϕ , Φ and P_{γ} are shown below,

Partial Wave Amplitudes for K⁺K⁻

The data was divided into $IM(K^+K^-)$ bins across the $IM(K^+K^-)$ range 1.0 – 2.5 GeV. The partial wave amplitudes were extracted independently in each bin for the S, P and D-waves.

<u>Outlook</u>

- Account for overlapping resonances in reaction model

<u>References</u>

- 1] https://arxiv.org/pdf/1909.06366
- 2] https://doi.org/10.1016/j.nima.2020.163472 [3] https://etheses.whiterose.ac.uk/id/eprint/36409/

A suitable set of parameters corresponds to when the following acceptance-

Apply signal-background separation methods to remove baryon contamination Obtain expected enhancement in P-wave amplitude at $\phi(1020)$ mass Apply workflow to other reactions such as $ep \rightarrow epK^+K^{*-} \rightarrow epK^+K^-\pi^0$