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Abstract
When it comes to extracting actual testable predictions from theoretical models, perturbative
QFT is one of the most successful frameworks, with Feynman diagrams being one of the key
bookkeeping devices. However, as one increases the loop order, it becomes a daunting task to
overcome the increasingly rampant subdivergences that appear. The BPHZ renormalization
scheme provides a way of organizing these divergences, but even then, the amount of effort
needed to handle 5-loop diagrams demonstrates that renormalization, in its current form, is
still a monumental task. Here, we present a different perspective on perturbative
renormalization, based in Hopf algebras, which has been used to recontextualize Ward
identities as well as automate counterterm calculations out to as much as 200 loops..

Review of Renormalization
Consider the following 5-loop Feynman diagram in the 𝜑4 QFT theory in 3 + 1 dimensions.

Figure 1: Feynman diagram 𝐺 with 1PI UV-divergent subdiagrams.

Through naive powercounting, one can identify that this diagram diverges (d
4ℓ)5

(ℓ2)10
∼ log(ℓ) and

so needs to be renormalized to obtain physically meaningful quantities. However, if the
diagram has subdiagrams that also diverge, as in Figure 1, then the subdivergences must also
be dealt with. With nested subdiagrams like 𝛾1 ⊂ 𝛾2 ⊂ 𝛾3 ⊂ 𝛾5, one must avoid
“overcancelling” subdivergences. Handling this task at all loop orders is a long story, but
culminated in one form with Zimmerman’s forest formula:

𝑍(𝐺) = −𝑅(𝐺) −∑
𝛾∈𝐺
𝑅[𝑍(𝛾)𝐺/𝛾]

One poster is not enough to explain the notation, but in short, one finds all subdiagrams
(including disjoint ones) that contribute subdivergences and then replaces them with their
counterterms; the terms that, upon subtraction from the overall diagram, will cancel the
subdivergence. Do this for all subdiagrams and the overall diagram, and one has the term one
must add to 𝐺 to get a finite quantity; that is,

𝐺+ 𝑍(𝐺)

is what one wants.

Where’s the Forest?
Okay, so Zimmerman’s formula cancels all subdivergences, but where’s the forest? The answer
lies in how the subdivergences are organized. Notice that, from 𝐺, it is possible to have nested
subdivergences or disjoint diagrams. One can organize all these subdivergences in the form of
a tree, as seen in Figure 2, where the main diagram 𝐺 forms the root, disjoint subdiagrams
form different branches, while nested subdiagrams form lower branches (the one shown is
actually technically wrong, can you spot why?).
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Figure 2: Divergence tree structure of Feynman diagram 𝐺.

One gets forests from trees because cancelling subdivergences comes down to cutting the tree
into pieces “every possible way” and replacing the piece without the root with its counterterm.
An example is shown in the next box.

Hopf What Now?
Okay, so we have renormalization via Zimmerman’s forest formula, why bring in more math?
The answer is that, while the forest formula is correct, the practicality of using it for high loop
order calculations is less than ideal. Hopf algebras provide a more natural framework to
understand how to manipulate the forests. The heart of the naturality is that, while an algebra
𝒜 only allow one to take two operators 𝐴,𝐵 ∈ 𝒜 and multiply them, sending two objects into
one via

𝑚(𝐴,𝐵) = 𝐴𝐵

a Hopf algebra ℋ allows one to split one operator 𝐶 ∈ ℋ into two, via its comultiplication
function Δ and the tensor product:

Δ(𝐴) =Ex.𝐵 ⊗𝐶

This might seem arbitrary, but remember how the forest formula cancels subdivergences by
cutting trees into pieces? Well, for the Hopf algebra of Feynman diagrams, the Connes-Kreimer
Hopf algebra, we have (this expression is actually oversimplified):
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With this, it should be a bit more clear why the comultiplication of Hopf algebras is relevant
for renormalization. The real clincher to this structure is that the Hopf algebra possesses a
unique function, called the antipode, which “sort of” maps an element to its inverse; that is, the
antipode 𝑆 acts via:

𝑆(𝐴) ≈ 𝐴−1

For the Hopf algebra of Feynman graphs, the antipode map is Zimmerman’s forest formula.

Consequences of Hopf Algebra Approach
Model Tested 1998 2025
Model: BPHZ; 12 loops 7466.264 sec 113.64 sec
Model: QFT; 11 loops 1846.880 sec 121.32 sec
Model: HQ; 11 loops 2381.448 sec 36.49 sec

Table 1: Performance Comparison of Hopf Algebra REDUCE program

So far, we have only seen a neat repackaging of things that were already known, and that trend
does continue in [Sui07] and [Sui09], where the Ward/Slavnov-Taylor identities are
recontextualized using Hopf algebras. However, because of this more natural organization, it
has become much easier to perform higher-order calculations, and some aspects of
renormalization have been automated as well, as seen in [BK99] and [BS08]. In particular, the
results by Kreimer and Broadhurst handled the analytical aspects of multiple field theories for
10-12 loop calculations, back in 1998. The calculations used REDUCE and took a couple hours.
Rough benchmarks using modern hardware are given in Table 1. As for the paper by by Bellon
and Schaposnik, through some optimizations and understanding of their supersymmetric
theory of interest, they were able to renormalize diagrams up to 200 loops.
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