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Lots of research on finding individual partonic contribution to the proton spin
(Spin sum rule).

l

Spatial distribution of angular momentum (AM) has been relatively underexplored.

l

Even less known: spatial distribution of transverse component of angular
momentum.
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Transverse spin sum rule

1

wh = 55T B.L.G Bakker, et al., PRD 70, 114001 (2004)
1
W = V55T X .Ji,F.Yuan, PLB 810, 135786 (2020)
1
Iy =~1 557 C.Lorce, ERPJC 81 (5) (2021)413.

where v = p°/M 5
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In Breit frame i.e. P = 0,
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Elastic frame

>
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Elastic frame

|
Apart from taking P = 0, there is another option

l

Elastic frame — P.A =0

l

Momentum transfer is confined to the transverse plane

l

Access to only 2D distribution but benefit of interpolation between Briet frame and infinite
momentum frame



Elastic frame

. . 3 . §(TOk 0
(L’>(X) — (K (C;ﬂ—?s eldx |:_I-d<8TA ) + )(2:)<T0k):|

Integrating over z-coordinate

Spatial distribution of OAM in elastic frame

W [ d2A o(T%)

LLY(by,P?) =tk [ — = g=iArby | ;20 J

(EbL P = [ e "oni
AZ=0

where 1=1,2

C. Lorce, et al., PLB 776 (2018).
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Spin-0 energy momentum tensor
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Generalized intrinsic spin tensor

- 1 _ A
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AM spatial distributions for spin-0 target

J 4 (by,P?) = /drz Uy, (r,P?)

d?A |
(2m)?

Z
4MP? gtAa + MPO ]
( ) t=—A2

e B bLid /7]

where X] = A’ /|A | | denotes that the contribution is dipole type



AM spatial distributions for spin-0 target
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AM spatial distributions for spin-0 target
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AM spatial distributions for spin-1/2 target

Spin-1/2

L) (by,P5is',s) = /drz L' . (r,P%s,s)
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where X; = 1 denotes monopole,
Xi = A" /|A, | denote dipole,

Xg = AILA’;/ V= 5%/2 denotes quadrupole



Spin-1/2 unpolarized target
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Spin-1/2 unpolarized target
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Spin-1/2 transversely polarized target
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Spin-1/2 transversely polarized target
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Conclusion

m Spatial distributions of angular momentum provide richer picture of hadron spin.
m Phase space formalism can be used to study them in elastic (or any) frame.
m Even spin-0 targets have a non-trivial transverse angular momentum distribution.

m Spin-1/2 targets have very complicated transverse angular momentum distribution
consisting of monopole, dipole and quadrupole contributions.

m Transverse spin sum rule is verified.

Future Goals:
m Study in detail the effect of pivot on the distributions.
m Study the distributions in light front frame and infinite momentum frame and connect
all the pictures.
m Create a complete and coherent map of transverse AM distributions in position
space.
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Form factors and spatial distribution

Example: X-ray diffraction

[y

Diffraction pattern
Incident X-rays Diffracted X-rays

w, K

2d sinB

Constructive interference
(Bragg's law)

2d sinfl = nA

Scattered amplitude
Agcatt X F(§) = / d3r e'T7 p(F) q= k—K
Form factor distribution



Quantum phase space formalism

3 .
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OAM multipole amplitudes
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Intrinsic spin multipole amplitudes

= MP?
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Interpretation of spin-0 AM distribution

y x
z

Rest frame Moving frame

23



Transverse spin sum rule

The transverse OAM and intrinsic spin distributions are normalized as
L, (P?8,s) = /dzbL L, (by,P*s,s)

PSRN (P?)? Ep M
= (01 )srs {_W(EPJrM)A(O) + MJ(O) - EPS(O)] , (1)

S (P%s',s) ::/dsz S\ (bi,P% s, s)
M
s FPS(O)v (2)

with Ep = P%|;_g = 4/ (PZ)2 -+ M2, Combining Egs. (1) and (2), we obtain the transverse
spin sum rule for a spin-1/2 target

i
J| (P?;s',8) = L (P?;s',8) + S| (P?;s',8) = % 3)

=(oL)y
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