Proton Form Factor Ratio Measurements at High Momentum Transfer via Recoil-Polarization

Mahmoud Gomina

40th Annual Hampton University Graduate Summer (HUGS) Program,

Jefferson Lab, Newport News, Virginia

May 27 - June 13, 2025 Newport News, VA

Outline

- Introduction
- Kinematics
- Technique
- SBS Layout for GEP V
- GEp/GMp World Data
- Summary

"If I have have seen further, it is by standing on the shoulders of giants" Isaac Newton

Introduction

- Elastic Form Factors (FF) probe the nucleons' four-current distributions, critical for understanding nucleon structure.
- They are functions of the squared momentum transfer (Q²) in the *e*-*N* scattering process:

 $Q^2 = 4EE'sin^2\left(rac{ heta_e}{2}
ight)$

where,

E is the beam energy,

E' is the scattered electron energy, and

 $\theta_{\rm e}$ is the electron's scattering angle

• Electric (GEp) and magnetic (GMp) FFs describe how the proton's charge and magnetization are spatially distributed.

Figure: Tree-level diagram of e-N elastic scattering

Introduction: OPE

 The differential cross section for scattering of electrons from a spin- 1/2 target in the OPE (One-Photon Exchange) approximation (Rosenbluth formula^[1]):

$$rac{d\sigma}{d\Omega} = \eta rac{\sigma_{mott}}{1+ au} ig((G_E)^2 + rac{ au}{\epsilon} (G_M)^2 ig)$$

where,

 $G_E(Q^2)$ and $G_M(Q^2)$ are the Sachs Electric and Magnetic form factors,

 $\eta = (1 + 2 rac{E}{M_N} \sin^2(rac{ heta}{2}))^{-1}$ recoil factor

$$=ig(1+rac{q^2}{Q^2 an^2(rac{ heta}{2})})^{-1}$$
 longitudinal polarization of the virtual photon

$$au = rac{Q^2}{4M_N^2}$$

 ϵ

Mott cross section for elastic electron scattering [1] *Phys. Rev.* 79, 615–619 (1950)

$$\sigma_{\text{Mott}} = \left. \frac{d\sigma}{d\Omega} \right|_{Q^2 \to 0} = \frac{\alpha^2 \cos^2 \frac{\theta_e}{2}}{4E_e^2 \sin^4 \frac{\theta_e}{2}} \frac{E'_e}{E_e}$$

Kinematics

4 momenta of the electron and the target particle are:

$$p_e^{\mu} = (E_e, \overrightarrow{p_e}) \qquad p_e^{\mu\prime} = (E'_e, \overrightarrow{p_e})$$
$$p_p^{\mu} = (E_p = M_p, 0) \qquad p_p^{\mu\prime} = (E'_p, \overrightarrow{P_p})$$

4 momenta conservation requires that:

$$P_e^{\mu} + p_p^{\mu} = p_e^{\mu'} + p_p^{\mu'}$$

$$\overrightarrow{q} = P_e^{\mu} - p_e^{\mu'} = p_p^{\mu'} - p_p^{\mu}$$

The invariance of the 4 momentum transfer yields: (applying energy conservation and neglecting the electron's mass)

$$\overrightarrow{q}^2 = -2E_e E'_e (1 - \cos\theta)$$

$$\vec{Q}^2 = -\vec{q}^2 = 2E_e E'_e (1 - \cos\theta)$$

$$\overrightarrow{Q}^2 = 4E_e E'_e \sin^2(\frac{\theta}{2})$$
 & $E'_e = \frac{E_e}{1 + \frac{2E_e}{m}sin^2\frac{\theta}{2}}$

Figure: e-N scattering

Mahmoud Gomina

١

Kinematics

Table: SBS GEP V Kinematics

Name	E _{beam} GeV	Q² GeV²	θ _{ECal} Degrees	<e'> GeV</e'>	θ _{SBS} Degrees	<p<sub>p> GeV</p<sub>
GEP-1	6.476	5.732	29.46	3.660	25.7	3.881
GEP-2	8.588	8.127	27.27	4.257	22.1	5.185
GEP-3	10.668	11.109	27.00	4.768	18.6	6.794
GEP-2a (GEP-0)	4.359	3.860	35.00	2.302	28.5	2.845

Run period (March - August, 2025)

4th kinematic point (GEP-2a or GEP-0) approved at lower Q² to complement future positron program

Technique: Polarization Method

- In the *OPE* approx., the scattering of the longitudinally polarized electrons from unpolarized hydrogen results in a transfer of polarization to the recoil proton,
- with two components, P_t perpendicular to, and P_l parallel to the proton momentum in the scattering plane^[1]:

simplifying the ratio of the two components yields the proton form factor ratio:

$$\frac{G_E}{G_M} = -\frac{P_t}{P_\ell} \frac{(E_e + E'_e)}{2m_p} \tan \frac{\theta_e}{2}$$

[1] A. I. Akhiezer and M. P. Rekalo, Sov. J. Part. Nucl. 3, 277 (1974); R. Arnold, C. Carlson, and F. Gross, Phys. Rev. C 23, 363 (1981) Polarization method was first employed by Milbrath et al., Phys. Rev. Lett. 80, 452 (1998) at MIT-Bates.

Technique: Benefits

Benefits of the Polarization Method

proton's form factor ratio at a given Q² can be obtained without;

- measuring the absolute cross sections
- changing beam energy
- changing detector angle

Therefore, minimizing systematic uncertainties.

Rosenbluth method:

-leverages linearity of cross section in $\epsilon = (1 + rac{q^2}{Q^2 an^2(rac{ heta}{2})})^{-1}$

-measures cross section at fixed Q² but varying scattering angle:

$$\sigma_R = \left(\frac{d\sigma}{d\Omega}\right)_{exp} / \left(\frac{d\sigma}{d\Omega}\right)_M \frac{\epsilon(1+\tau)}{\tau} = \frac{\epsilon}{\tau} G_E^2 + G_M^2$$

 $-G_{\mathsf{E}}$ and G_{M} are then obtained from the slope and intercept of the Rosenbluth curve

Setup and Detectors

Figure: g4sbs GEP3 Kinematic Setup

Mahmoud Gomina

Apparatus: Hadron Calorimeter Arm

B. Wojtsekhowski

Hadron Arm:

SBS magnet, GEM based trackers, CH2 analyzer, and HCal.

HCal:

- 288 modules (12x24 blocks of 15 x 15 x 100 cm³)
- each module is made of 40 layers of iron absorbers alternating with scintillators.
- Momentum resolution ~1%
- Angular resolution ~1 mrad

Figure: SBS HCal in Hall A (J. Poudel, SBS Collaboration Meeting 2023)^[2]

[2] https://indico.jlab.org/event/721/contributions/13216/attachments/10055/14941/SBS_collaboration_HCAL_072023.pdf

Apparatus: Electron Calorimeter Arm

Figure: ECal (1656 channels) for SBS GEp V Experiment

Elastic Events with Geometrical Match

Preliminary HCal Calibration

HCal: Before and After Calibration

Projected Result of GEp/GMp

Figure: GEp/GMp ratio for charge and magnetization distribution in the proton, scaled by the proton's magnetic moment (μ_p), as a function of Q^2

- **spatial distribution** of **charge** shrinks faster than **magnetization** for deeper probe into the proton.
- Rosenbluth (Cross section) suggested a flat ratio with increasing Q².
- Polarization method portray decreasing ratio with increasing Q².
- discrepancy may be due to the Two-photon Exchange (TPE) effects.

Summary

- Elastic Form Factors (FF) probe the nucleons' four-current distributions.
- Proton FF ratio measurement (using polarization method) up to ~12 GeV², which is beyond current experimental data.
- Experiment at JLab using the Super Bigbite Spectrometer with the new electron arm upgrade.
- GEp V schedule: March August, 2025.

VT PaSHa Team

Rvan McLaughlin

Student

HUGS Team

Acknowledgements

Supported by:

- DOE grant (DE-SC0025657),
- Virginia Tech College of Science,
- SBS Collaboration,
- 4-VA via the VT Office of the Executive Vice, President and Provost

Thank you

Bonus Slides

Jefferson Lab (JLab)

Aerial View of the Continuous Electron Beam Accelerator Facilty (CEBAF) at JLab^[1]

- Jefferson Lab (JLab) is a DoE owned national accelerator facility located in Newport News, VA
- The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab is a racetrack-shaped electron accelerator located 25 feet underground.
- It can deliver up to 12 GeV continuous wave (CW) electron beam with unparalleled intensity and precision.
- JLab has 4 experimental Halls (A, B, C, and D). This experiment is scheduled to run in Hall A.
- My research is based on the next experiment in Hall A (Schedule to start at the end of March 2025) with the SBS collaboration.

٠

Model Experimental Layout

Experimental layout in Model (Jones, 2023)^[1]

SBS Collaboration

The JLab Super BigBite Spectrometer (SBS) Collaboration is a research group working on high-precision nucleon structure experiments at JLab using the Super BigBite Spectrometer (SBS) in Hall A. The collaboration focuses on studying the electromagnetic form factors of the proton and neutron at very high Q².

SBS Experiments: four ground-breaking measurements of the nucleon's elastic form factors. The experiments in this program are:

- GEp-V: Measurement of the Proton Form Factor Ratio, *GEp/GMp* up to 12 *GeV*² Using Recoil Polarization Method (E12-07-109).
- GEn-II: Measurement of the Neutron Electromagnetic Form Factor Ratio *GEn/GMn* at High Q² (5.0, 6.8 and 10.2 *GeV*²) (E12-09-016).
- GEn-RP: Measurement of the Neutron Electromagnetic Form Factor Ratio *GEn /GMn* at Q² = 4.5 *GeV*² using recoil polarization technique (E12-17-004), ran with K_{LL} (E12-20-008).
- **GMn:** Precision Measurement of the Neutron Magnetic Form Factor up to Q² =13.5 *GeV*² (E12-09-016).

Hall A Layout

GEp V Experiment: PMT Work

ECal for the SBS electron arm

- The detector consist of 1656 lead-glass blocks (42.5 x 42.5 x 340 mm³) viewed via 150-mm long light guides by FEU-84 PMTs
- The 1656 channels are made up of 184 Super Module (SM), each with 9 PMT installed in 3 by 3 array.
- PMT HV bases were modified by JMU, and assembled at JMU, VT and JLab.

Work station (for assemblying bases) at VT

Some bases (w/o HV and signal cables) at JMU

Electron Calorimeter Installation (People)

Photos from Simona's slides: https://indico.jlab.org/event/893/contributions/15728/attachments/12098/19119/ECAL_SM.pdf

PMT Test and Shielding

Mu-Metal Fabrication:

- shielding was implemented in the 3×3 PMTs matrix to reduce magnetic field to <0.1 mT,
- achieved with 4" long, 18 mm (6 mm tri-layer wrapping) mu-metals and,
- the PMT photocathode positioned at 1.5" depth as shown below.

Assembled base, PMT and mu-metal

ECal PMT Test Setup at JLab

HV and Dark Current Test:

- The assembly (base+PMT+mu-metal) was covered in a dark box after connecting HV and signal cables,
- then HV (in steps up to ~1,500 V) was supplied,
- PMT signal and dark current were read to determine if assembly is good and labeled for installation.

PMT Installation

Needs to ensure good transmission between PMT and guide line through cookie

Inserting PMT through hole in the backplate

Aligning PMT/cookie to the lightguide

Placing the mu-metal for the PMT photocathode at the right depth - see silver line on the PMT; this must be done before putting in the screws

Putting in the screws by hand

Using a torque screw driver: setting = 2